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Neutron stars -

# Neutron stars are one of the densest massive objects in the universe.
2+ A. Sedrakian, et al., PPNP 131, 104041 (2023)

r<13km i
Relativistic electrons, nucTCi_\ B A /p =0.5p

Inner crust r<12km
Neutron-rich nuclei, pasta phase,
unbound neutrons, electrons

Y

p>2.0p;,

Outer core r<10km
Neutrons, protons, electrons
and muons

Inner core r<6km
Full baryon octet of spin-1/2 baryons,
non-strange spin-3/2 A-resonances,

mesonic Bose condensates, color superconducting phase of quark matter

(1) Usually refer to a star with a mass on the order of 1-2 solar masses, a
radius of 10-12 km.

2) The central density can reach several times the empirical nuclear
matter saturation density (ps,¢=0.16 fm~3).



Observations of Neutron stars

#” Mass measurements

Mass distribution of neutron stars in binary pulsar systems
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3t Figure from Vivek V. Krishnan

# The radius and mass can be measured by the NICER collaboration.
it Raaijmakers, et al., ApJ 887, L22 (2019)

# The gravitational wave signal provides
the astrophysical measurements of tidal
deformabilities, masses, etc.

i B. P. Abbott, et al., PRL 119, 161101 (2017)

1t Figure from NASA/Goddard Space Flight Center
2



Hyperon puzzle B

# Some of the nuclear many-body approaches, such as Hartree-Fock
and Brueckner-Hartree-Fock, predict the appearance of hyperons
at a density of (2 — 3)p,, and a softening of the EoS, implying a

reduction of the maximum mass.

i+ H. Bapo, et al., PRC 81, 035803 (2010)
7 H.-J. Schulze and T. Rijken, PRC 84, 035801 (2011)
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it Figure from D. Lonardoni
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EoS with Hyperons from AFDMC

# ANN(II) can support 2Mg, but the onset of A is above the
maximum density (0.56 fm~3).
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(1 Phenomenological AN + ANN potential + Auxiliary field diffusion Monte Carlo,

no AA + AAN potential
(2) Only some fixed number of neutrons (N,,=66, 54, 38) and hyperons (N,=1, 2, 14)
in the simulation box used from AFDMC, the EoS of hyper-neutron matter needs

to be parametrized
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EoS with Hyperons from AFDMC -

~

ANN(II) can support 2Mg, but the onset of A is above the
maximum density (0.56 fm~3). No A present in Neutron Star?
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(1 Phenomenological AN + ANN potential + Auxiliary field diffusion Monte Carlo,
no AA + AAN potential
(2) Only some fixed number of neutrons (N,,=66, 54, 38) and hyperons (N,=1, 2, 14)

in the simulation box used from AFDMC, the EoS of hyper-neutron matter needs

to be parametrized .
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EoS with Hyperons from AFDMC
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EoS with Hyperons from AFDMC -

# ANN(II) can support 2My, but the onset of A is above the

E [MeV]

maximum density (0.56 fm~3). No A present in Neutron Star?

140 1.2
-— =~ —--.._,,______.“- 10°
120 I3 1.0 | s
| £
100 | s -
; - 08
80 i AN + ANN (1) 1
_______ “U'0.6
60F  emy S e
0.4 -
40 t
20 02
———————— AFDMC
0 ' I - 0.0 b= : : ' !
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 2 3 4 5
p [fm™] P/Po

%+ D. Lonardoni, et al., PRL 114, 092301 (2015)

In this work

The hyper-neutron matter and neutron star properties are studied by
Nuclear Lattice Effective Field Theory with a novel auxiliary field quantum
Monte Carlo algorithm.




Contents

ad Hyper-Neutron matter



The Hamiltonian for nucleons -

# Hamiltonian

C PR & ~
H = Hyee + — 2 [P+ #2831 5]+ +VER + Veoulomb + Vann

the density operator g(n) is defined as

pli) = Y “';z(ﬁ)a?;,j(msL Z Y af (i)

1,7=0,1 i’ |?=1 4,7=0,1

where i is the spin index, j is the isospin index. The smeared
annihilation and creation operators are defined as

dijj (ﬁ) = Q4 (’T_?:) + SNL Z aj j (ﬁ,)
|7’ —i|=1

the parameter s;, is a local smearing parameter, sy, is a nonlocal
smearing parameter. Cyy and Cyy gives the strength of the two-
body interaction. Vyyy is the three-body interaction.



Phase shift for nucleons -

# The Cyy couplings are determined by fitting the phase shift.
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# The Galilean invariance restoration for each channel are obtained
by tuning Cgr ; (i = 0,1,2) with the constraint

Ccir,0 +6Ccir,1 +12CgmR2 =0



Nuclear Matter and light nuclei

# The couplings for three-body interaction are determined by the

empirical value for nuclear matter. As a prediction, the compression
(3.6) MeV.

modulus K., = 229.0

-10 ‘
----- Symmetric nuclear matter
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# The ground state energies of several light nuclei (prediction).

Nucleus NLEFT Exp.
°H —9.21(4)(1) —8.48
“He —29.38(1)(4) —28.3
*Be —58.38(3)(7) —56.5
e —87.08(12)(11) —~92.2
150 —121.84(28)(52) —127.6




Pure Neutron Matter (PNM)
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(1) NLEFT: The calculations are performed for PNM by considering up to
232 neutrons in a box to achieve several times the saturation density
(2) AFDMLC : AV8’+3N interaction inspired by the Urbana IX and the Illinois

models



The Hamiltonian for nucleons and hyperons 3

# For the hyperon-nucleon and hyperon-hyperon interactions, we
utilize minimal interactions. The Hamiltonian is defined as,

T
B CNN Cr~r=n12 ., CNN
H =Hgee + 5 E  p(nm)]” - + 5

—

+CNAZ —I—CATAZ : [é(ﬁ)r ;

GIR GIR GIR
V V V + VCoulomb

+ Vnny + Vnva + Vvaa,

Cna Cap give the strength of the two-body interactions. Vs and
Vnaa are the three-body interactions. The simulation of systems
with both neutrons and A hyperons can be achieved by using a

single auxiliary field.



Auxiliary Field for Hyper-nuclear Systems 3

# A discrete auxiliary field formulation for the SU(4) interaction,

:exp( a CNN "'2) Z Wg : exp \/—at CNN Sk /5) .

where a; is the temporal lattice spacing.

#” The two-baryon interactions,

Vo = CJ;N S C tena Z H(R)E(R) » 1A Ay [é(ﬁ)r :

this potential can be rewritten in the following form,
2

Vep = SV (@) : 4y (CAA _ “NA) > ém)]

CNN

~ . c ~ . . ..
where p=p + %5 , the simulations of systems consisting of both
arbitrary number of nucleons and As with a single auxiliary field,

:exp( atCNN 2) Zwk exp \/—atcNNsk;é) :

10



Scattering data with hyperons

# (y is determined by fitting the cross section, and Cj, by fitting the
chiral EFT phase shift.

it J, Haidenbauer, Ulf-G. MeifSner, and S. Petschauer, Nucl. Phys. A 954, 273 (2016).
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# Three sets of three-body forces are determined by the separation
energies for A hyper-nuclei. The * marks a prediction.

NLEFT
System —— o i HANM(ID) ANMI(II) Exp.

RHe | 3.40(1)(1) 3.45(1)(2) 3.46(1)(3) | 3.10(3)
1Be | 5.72(5)(4) 5.64(5)(3) 5.57(5)(3) | 6.61(7)
AC [10.54(17)(29)* [10.09(17)(27)* [9.80(17)(26)* [11.80(16)
QAHe | 6.91(1)(1) 6.91(1)(1) 6.91(1)(1) | 6.91(16)
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Neutron Star EoS

# The energy density can be obtained as

n A
Eanm = PlEEANM (Pn, PA) /N + %mn + %m/\],

the chemical potentials for neutrons and lambdas are evaluated via

acc5HNM
8,0/\

65HNM
Hn P, L) = y HA\Py L) —
() = 25 g ()

Y

the A threshold density pf\h is determined by imposing uy = Uy,
and the pressure is defined as

12



Energy density for different number of hyperc-

T I T T T I T T T I T 1 L I T T T ] 1 T

960 | | p=0.8 fm~3 HNM(II)A
S L bl L

.immfgmmmm“’"’“’“1mmEIJ!mmmmmmmmmmcummmmmmmmmmmmmmmm

940 * .
I b
IE HNM(II)
q>_ 920 Poooeeeeeeed
)
=.900 - .
W | HNM(I) 1
R ttxs*ssgssz
880 [ .
- 760 S
860 L
0 100

(1) Different number of hyperons can be simulated in our calculations.
2 HNM(LI1,111) have different couplings for NNA and NAA interactions.
(3) Only N,,=66,54,38 and N,=1,2,14 are used in AFDMC.
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The chemical potential and particle fractions -
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Equation of State for hyper-neutron matter %
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it L. Brandes, W. Weise, and N. Kaiser, Phys. Rev. D 108, 094014 (2023) 15



Neutron Star properties -

# Tolman-Oppenheimer-Volkoff (TOV) equations
it R. C. Tolman, Phys. Rev. 55, 364 (1939) ::J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939)
dP(r)  [P(r)+e(r)][M(r) + 43 P(r)]
dr rlr —2M(r)]
dM (r)
dr
where P(r) is the pressure, and M(r) is the total star mass.

?

= dnr?e(r),

# Neutron star tidal deformability A
i+ E. E. Flanagan and T. Hinderer, PRD 77, 021502 (2008) ** T. Hinderer, ApJ 677, 1216 (2008)

2 [ R\’
A= —ky| —
32<M>7

where k, is the second Love number

1 /2M\° IM\ 2 oM IM 3M
by = — [ 22 1—22) |2- B il “(6-3 2 (5yp — 8
2 QO(R)( R)[ Yr + (YR )R]X{R( yR-I-R(yR )
1 /2M\? oM IM N\ 2 IM\ 2
(22 26— 92 == —9 ) 1=
+4(R) [6 v+ 22 (3yn )+(R)(+yR>D+3( R)

IM oM\ ) !
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The moment of inertia -

# |n the slow-rotation approximation, the moment of inertia is
it F. J. Fattoyev and J. Piekarewicz, Phys. Rev. C 82, 025810 (2010)

ST [ @) ) + Plr)

=3 0 Q \/1—2M(r)/r '

The quantity v(r) is a radially dependent metric function is defined as

dx

1 ( QM) B B M(z) 4+ 4ra® P(x)
. x?[l —2M(x)/x]

The frame-dragging angular velocity @ is usually obtained by the
dimensionless relative frequency @ = w /), which satisfies

i [0S e o

where

j(r) = e "1 —2M(r)/r

17



Neutron star Mass and radius

2'8 E T T Ll Ll l Ll L} Ll T I T T T T
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D HNM(I): Mpay=1.59(1)(1)M
HNM(I11): Myyax=2.17(1)(2) M,

HNM(11): Mppax=1.94(1)(1) M

(2) PSR J0030+0451 and J0740+6620 : pulsar observed by the NICER.
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Neutron star tidal deformability
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(1) The neutron star tidal deformabilities A are consistent with astrophysical

observations of GW170817
it B. P. Abbott, et al., PRL 121, 161101 (2018)

i M. Fasano, et al., PRL 123, 141101 (2019)
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Universal relations I-Love-Q

30 LI LA | L B LR LR LR |
—— Fit 7
25 PNM "
A HNM(I &

20 o HNM(II) )
HNM(') i g

(D [ is the dimensionless quantities for the moment of inertia, 8.2</<13.7
@ Fitting fu nction # K. Yagi and N. Yunes, Science 341, 365 (2013)

Iny, = a; + b;Inx; + ¢;(In :13@-)2 + d;(In .237;)3 + ei(lna?,;)4
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Rotating Neutron Star -

# Rotation causes an NS to deform into an oblate spheroid, resulting
in a larger equatorial radius and an increased gravitational mass
compared to a non-rotating NS, which is related to an increase of
the centrifugal force.

static case Q =6 kHz Kepler frequency

i+ C. Gartlein, arXiv:2412.07758 (2024)

The rapidly rotating neutron star can be described by the energy-
momentum tensor:

T = (e + P)ut'u” — g"" P,

where u# is the fluid's four-velocity.

21



Rotating Neutron Star Properties
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(1) Four constant spin frequencies v = 0, 205, 346, 716 Hz are shown
(2) The impact of rotational dynamics on the maximum mass is small
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Hyper B-stable nuclear matter -

# The equilibrium conditions and the charge neutrality condition,

Hn — Hp = e, He = Hu, Hn = HA, Pp = Pe T Pu-

Incorporating protons significantly increases the computational. For
example, at p = 0.5 fm~3 (the total number of baryons are 142),

108 jobs 1620 jobs
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EoS for hyper B-stable nuclear matter

300 | ! | ! | ! | ! | ! | y
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(1) The presence of protons slightly softens the HNM EoS, and the
proton fractions depend on both the symmetry energy and the

density.
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Summary and Outlook 3

(1) A novel auxiliary field quantum Monte Carlo algorithm is
introduced, allowing us to simulate for different number of
hyperons and neutrons.

(2) For the first time in ab initio calculations, not only include NA
two-body and NNA three-body forces, but also AA and NAA
interactions are involved.

(3) Both the static and rotating neutron star properties are studied.

(1) Include protons in our simulations. ( )
@) Include other hyperons in our simulations.
(3) Use the recently developed hi-fidelity chiral interactions at N3LO.

Thanis for your attention !
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EOS from different information channels -
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Fig. 1| Overview of constraints on the EOS from different information channels.
We show a set of possible EOSs (blue lines) that are constrained up to 1.5n,, by
Quantum Monte Carlo calculations using chiral EFT interactions™’ and extended to
higher densities using a speed of sound model'*". Different regions of the EOS can
then be constrained by using different astrophysical messengers, indicated by
rectangulars: GWs from inspirals of NS mergers, data from radio and X-ray pulsars,
and EM signals associated with NS mergers. Note that the boundaries are not strict
but depend on the EOS and properties of the studied system.
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I-Love-Q_(Il)

r —— Fit r —— Fit 1

I PNM 25 F PNM -

LA HNM(I : HNM(IIT) .

10F o HNM(I y 20 HNM(I1) 7

[ o HNM(I : HNM() ]

@] " =15} .
5 . 10 | .

.%10'2' = 10

o107 %—10_3 3
I _ |: _4 ~
10 10 5

I GW170817 |
™

Q

TABLE III. Numerical coefficients for the fit formula of the /-Love, /-QQ, and (Q-Love relations.

Yi | T; a; b; Ci d; e;
I[A] 1.49093 x 10" [5.93880 x 10~%[2.24914 x 10~ *|—6.93727 x 10~ *[7.78146 x 10~ °
Q| A|1.97175 x 1071 [9.19620 x 107%[4.93555 x 10™%|—4.56214 x 107°|1.39647 x 10~
I1Q] 1.40269 x 10° |5.25610 x 10™*|4.07856 x 10™2| 1.85656 x 10™2 |1.00574 x 10~*

1t J. J. Li, A. Sedrakian, and F. Weber, Phys. Rev. C 108, 025810 (2023).
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Finite volume
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Gerstung et al’s work R

Next, we compare our work with the one of Gerstung et al. [17]. For the AN interaction, they consider two next-to-leading
order chiral EFT representations, called NLO13 [95] and NLO19 [96]. For the three-body forces, they use the leading AN N
representation based on chiral EFT (contact terms, one-pion and two-pion exchanges) with the inclusion of the ANN <+ XNN
transition [97] in an effective density-dependent two-body approximation [98]. The pertinent LECs are given in terms of decuplet
resonance saturation and leave one with two B* BB B couplings, where B denotes the baryon octet and B* the decuplet. If one
only considers the ANN force as we do, these two LECs appear in the combination H" = H; + H,. No AAN force was
considered in [17]. The two LECs H;, Hs where constrained in[17] so that the A single-particle potential in infinite matter is
Unr(p =~ po) = —30 MeV [5]. Due to numerical instabilities in calculation of the Brueckner G-matrix, the computation can
only be done up to densities p ~ 3.5p9. The authors of Ref. [17] then use a quadratic polynomial to extrapolate to higher
densities. They calculate the chemical potential for the neutrons and As from the Gibbs-Duhem relation using a microscopic
EoS computed from a chiral nucleon-meson field theory in combination with functional renormalization group methods. The
parameter combinations (H,, Hs) were chosen so that the A single-particle potential becomes maximally repulsive at higher
densities. The resulting chemical potentials are displayed in Fig. 10 for the NLO19 AN forces. These agree well with the
HNM(III) chemical potentials up to p ~ 2.5p, but show, different to what we find, no crossing. Note that the forces discussed
in [17] have not been applied to finite nuclei.



2B and 3B interaction in AFDMC

For the hyperon sector, we adopted the phenomenological
hyperon-nucleon potential that was first introduced by
Bodmer, Usmani, and Carlson in a similar fashion to the
Argonne and Urbana interactions [44]. It has been employed
in several calculations of light hypernuclei [45-51] and,
more recently, to study the structure of light and medium
mass A hypernuclei [34,35]. The two-body AN interaction,
v;;, includes central and spin-spin components and it
has been fitted on the available hyperon-nucleon scattering
data. A charge symmetry breaking term was introduced
in order to describe the energy splitting in the mirror A
hypernuclei for A = 4 [34.47]. The three-body ANN force,
v,ij» includes contributions coming from P- and S-wave 2x
exchange plus a phenomenological repulsive term. In this

work we have considered two different parametrizations of

the ANN force.

The authors of Ref. [49] reported a parametri-
zation, hereafter referred to as parametrization (I), that
simultaneously reproduces the hyperon separation energy
of 3He and 'O obtained using variational Monte Carlo
techniques. In Ref. [34], a diffusion Monte Carlo study
of a wide range of A hypernuclei up to A = 91 has been
performed. Within that framework, additional repulsion
has been included in order to satisfactorily reproduce the
experimental hyperon separation energies. We refer to this
model of ANN interaction as parametrization (II).

No AA potential has been included in the calculation.
Its determination is limited by the fact that AA scattering
data are not available and experimental information
about double A hypernuclei is scarce. The most advanced
theoretical works discussing AA force [52,53], show that it
is indeed rather weak. Hence, its effect is believed to be
negligible for the purpose of this work. Self-bound multi-
strange systems have been investigated within the relativ-
istic mean field framework [54-56]. However, hyperons
other than A have not been taken into account in the present
study due to the lack of potential models suitable for
quantum Monte Carlo calculations.



Parameterization in AFDMC -

2, = xp are the neutron and hyperon densities, respec-
tively. The energy per particle can be written as

Eynm(p, x) = [Epnm((1 — x)p) + m,](1 — x)
+ [Epam(xp) + mpJx + flp. x).  (2)

We parametrized the energy of pure lambda matter Epy
with the Fermi gas energy of noninteracting A particles.
Such a formulation is suggested by the fact that in the
Hamiltonian of Eq. (1) there is no AA potential. The reason
for parametrizing the energy per particle of hyperneutron
matter as in Eq. (2) lies in the fact that, within AFDMC
calculations, Eynm(p, x) can be easily evaluated only for a
discrete set of x values. They correspond to a different
number of neutrons (N, = 66,54,38) and hyperons
(Np = 1,2,14) in the simulation box giving momentum
closed shells. Hence, the function f(p,x) provides an
analytical parametrization for the difference between
Monte Carlo energies of hyperneutron matter and pure
neutron matter in the (p, x) domain that we have consid-
ered. Corrections for the finite-size effects due to the
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Many body calculations and NN Interactions -

(1) Density functional theories (DFTs) with effective nucleon—nucleon

(NN) interactions

2) ab initio methods with realistic ones
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AV18, CD-Bonn,

XEFT, LQCD...
N A /
Many-body method\

MBPT, NCSM, CC,
QMC, IM-SRG, BBG,

E/A [MeV]

70

T T T
—O—PAR:Paris

—®— A:BonnA
| —m— B:BonnB
_—@&— C:BonnC

50

[ —A— R93:Reid93

40

| —+—N3:N3LO
—X—IS

30

[ —CO— PAR+TNF
20 | —w—V18+TNF
—BE—B+TNF

[ —W¥— N93+TNF
10 | —h—V18+UIX
A(DBHF)
0k B(DBHF)
C(DBHF)

\_ NLEFT... -

v' EoS with (without)
hyperons from

NLEFT q
9®

10 b

20+

[ —O— V14:Argonne V14
——— V18:Argonne V18

—C—CD:CD-Bonn
_—W¥— N93:Nijmegen93

—4— NI:Nijmegen |
[ —P— Nll:Nijmegen I

—¥— V18+3V+UIX*(VCS)

1t G. F. Burgio, et al.

03 04 05 06
n [fm™]

, arXiv 1804, 03020 (2018)

(¢,



From EoS to Neutron Star -

# The equation of state (EoS) for dense nuclear matter constitutes
the basic input quantity for the theoretical reconstruction of a

neutron star.
#t R. C. Tolman, Phys. Rev. 55, 364 (1939)

it J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939)
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