

Carbon and Oxygen isotopes in Nuclear Lattice Effective Field Theory

Young-Ho Song (IRIS, IBS)

NLEFT collaboration (Myungkuk Kim, Youngman Kim, Kihyeon Cho,

Serdar Elhatisari, Dean Lee, Yuan-Zhuo Ma, Ulf-G. Meißner)

2025.03.01.-03., Frontiers in NLEFT, Beijing

Ab-initio method

Dream: Lattice QCD

- → NN , NNN interaction
- ➔ Effective interactions/models (shell model, DFT, optical potential, collective excitation)

- ab-initio Nuclear Physics
 - (1) nucleon degrees of freedom
 - (2) nucleon-nucleon interaction

Goal: predict wide range of nuclear phenomena (without parameter fitting, model assumption) from nuclear interaction (for 2-body,3-body, manybody, based on QCD)

- Direct connection between
 Nuclear Force ↔ Nuclear Phenomena
- Consistent approach :
- NN scattering, bound nuclei, reaction, nuclear matter

Ab initio Quantum many-body

- Challenge to ab initio quantum many-body problem.
- Requires:
- 1. Reliable theoretical tools
 - NLEFT : Auxiliary field Monte Carlo Method
 - \rightarrow Sign problem !
 - Goal 1 : reduce the sign problem in NLEFT calculation
- 2. Nuclear interaction which explain simultaneously scattering, binding energies, charge radius of wide range of nuclei and nuclear matter, neutron matter
 - Goal 2: find out what properties of nuclear interactions are necessary.

Nuclear Lattice Effective Field Theory

One of ab initio method for many fermion system

Path integral

Correlator function for A Nucleons $Z_A(t) = \langle \Psi_A | \exp(-tH) | \Psi_A \rangle$ Slater Determinants for A free Nucleons

Ground state energy by time derivative of the correlator

$$E(t) = -\frac{d}{dt} \ln Z_A(t)$$

At large time only ground states survive

$$\implies E_A^0 = \lim_{t \to \infty} E_A(t)$$

$$\begin{aligned} |\Psi_A\rangle &= \sum_n c_n |n\rangle_A, \\ Z_A(t) &= \langle \Psi_A | e^{-tH} | \Psi_A \rangle = \sum_n c_n e^{-tE_n} \end{aligned}$$

Transfer matrix

Transfer matrix operator formalism $\hat{M} =: \exp(-H_{\text{LO}} a_t) :$

: O : represent Normal ordering.

$$Z(L_t) = \langle \psi_I | \hat{M}(L_t - 1) \, \hat{M}(L_t - 2) \, \dots \hat{M}(1) \, \hat{M}(0) \, | \, \psi_I \rangle$$

$$\lim_{L_t \to \infty} \frac{Z(L_t + 1)}{Z(L_t)} = e^{-E_0 a_t}$$

$$\lim_{L_t \to \infty} \frac{\langle \psi_I | \hat{M}^{L_t/2} H_{\text{LO}} \hat{M}^{L_t/2} | \psi_I \rangle}{\langle \psi_I | \hat{M}^{L_t} | \psi_I \rangle} = E_0$$

Auxiliary Field Monte Carlo

$$\exp\left[-\frac{C}{2}(N^{\dagger}N)^{2}\right] \qquad \left| \bigvee (N^{\dagger}N)^{2} \right|$$
$$= \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} ds \exp\left[-\frac{1}{2}s^{2} + \sqrt{-C}s(N^{\dagger}N)\right] \qquad \right\rangle \ sN^{\dagger}N$$

Euclidean time projection

Interacting nucleons
 → Nucleons interacts with auxiliary fields
 (no direct interaction between nucleons)

computing fermion
 Correlator amplitude
 → Integration
 over auxiliary fields
 → M.C. integral
 (sampling auxiliary field)

Applications of NLEFT

- Has been successfully applied to
 - Nuclear matter, Cold atom, dilute fermion system
 - Finite nuclei (A<=50)
 - First ab-initio calculation of Hoyle state
 - Cluster structure of ¹²C and ¹⁶O
 - NN scattering, N-D scattering
 - Alpha-alpha scattering
 - radiative capture, fusion
 - Etc.

The first ab-initio calculation of Hoyle state

Epelbaum, Krebs, Lähde, Lee, Meißner: Phys. Rev. Lett. 109, 252501 (2012)

Ab initio alpha-alpha scattering (Nature 528, 111-114(2015))

Lattice Hamiltonian

- We need to introduce a lattice scale in space and time:
- momentum space cutoff ~ 150 MeV → lattice spacing a= 1.316 fm
- Time cutoff ~ 1000 MeV
- We need to determine coefficients of interaction for the lattice size. (regularization scale.)
- Two-body interaction coefficients can be determined from phase shifts of np scattering.
- Three-body interaction can be fixed from binding energy of A>=3.

Chiral Effective Field Theory

Lattice chiral Hamiltonian at Leading order

• At Leading order, kinetic energy + contact interaction + one pion exchange

$$\begin{split} H &= H_{\rm free} + V_{\rm 2N}^{\rm short} + V_{\rm 2N}^{\rm long}.\\ H_{\rm free} &= \frac{49}{12m} \sum_{\mathbf{n}} a^{\dagger}(\mathbf{n}) a(\mathbf{n}) - \frac{3}{4m} \sum_{\mathbf{n},i} \sum_{\langle \mathbf{n}' \, \mathbf{n} \rangle_i} a^{\dagger}(\mathbf{n}') a(\mathbf{n}) \quad \bullet \quad \text{Kinetic} \\ &+ \frac{3}{40m} \sum_{\mathbf{n},i} \sum_{\langle \langle \mathbf{n}' \, \mathbf{n} \rangle \rangle_i} a^{\dagger}(\mathbf{n}') a(\mathbf{n}) - \frac{1}{180m} \sum_{\mathbf{n},i} \sum_{\langle \langle \langle \mathbf{n}' \, \mathbf{n} \rangle \rangle_i} a^{\dagger}(\mathbf{n}') a(\mathbf{n}).\\ V_{\rm OPE} &= -\frac{g_A^2}{8F_{\pi}^2} \sum_{\mathbf{n}',\mathbf{n},S',S,I} : \rho_{S',I}(\mathbf{n}') f_{S'S}(\mathbf{n}'-\mathbf{n}) \rho_{S,I}(\mathbf{n}) :, \quad \bullet \quad \text{Long range OPE} \end{split}$$

$$V = \frac{C}{2} \int d^3 \mathbf{r} : [\rho(\mathbf{r})]^2 :, \qquad \bullet \quad \text{Contact}$$

$$V_{I^2} = \frac{C_{I^2}}{2} \sum_{I=1,2,3} \int d^3 \mathbf{r} : [\rho_I(\mathbf{r})]^2 :,$$

Sign problem in NLEFT

• However, there is a difficulty in auxiliary MC calculation

$$Z(t) = \int \mathcal{D}sZ(s,t), \quad Z(s,t) = e^{-\frac{s^2}{2}} \det X(s,t),$$
$$= \int \mathcal{D}se^{i\theta(s,t)} |Z(s,t)|$$

$$\langle O \rangle = \frac{\langle O e^{i\theta} \rangle_{pq}}{\langle e^{i\theta} \rangle_{pq}}, \quad \langle O \rangle_{pq} \equiv \frac{\int ds |\det X(s)|O}{\int ds |\det X(s)|}.$$

- We needs a large Euclidean time extrapolation
- If the denominator's sign oscillates rapidly
- \rightarrow large uncertainty in the expectation value
- \rightarrow sign problem
- SU(4) symmetric interaction in isospin symmetric system
- \rightarrow No sign problem

Essential elements for nuclear binding

Bing-Nan Lu^a, Ning Li^a, Serdar Elhatisari^{b,c}, Dean Lee^{a,*}, Evgeny Epelbaum^d, Ulf-G. Meißner^{b,e,f}

$$H_{\mathrm{SU}(4)} = H_{\mathrm{free}} + \frac{1}{2!} C_2 \sum_{\boldsymbol{n}} \tilde{\rho}(\boldsymbol{n})^2 + \frac{1}{3!} C_3 \sum_{\boldsymbol{n}} \tilde{\rho}(\boldsymbol{n})^3$$
$$\tilde{\rho}(\boldsymbol{n}) = \sum_i \tilde{a}_i^{\dagger}(\boldsymbol{n}) \tilde{a}_i(\boldsymbol{n}) + s_L \sum_{|\boldsymbol{n}'-\boldsymbol{n}|=1} \sum_i \tilde{a}_i^{\dagger}(\boldsymbol{n}') \tilde{a}_i(\boldsymbol{n}'),$$

$$\tilde{a}_i(\boldsymbol{n}) = a_i(\boldsymbol{n}) + s_{NL} \sum_{|\boldsymbol{n}' - \boldsymbol{n}| = 1} a_i(\boldsymbol{n}')$$

Only Four

parameters

Minimal nuclear interaction Which reproduce (1) Light nuclei (2) medium mass nuclei (3) neutron matter simultaneously up to few percent error in binding energy and charge radius

- 1. Strength of the two-nucleon S-wave interaction
- 2. Range of the two-nucleon S-wave interaction
- 3. Strength of three-nucleon contact interaction
- 4. Range of the local part of the two-nucleon interaction

Except for the Coulomb potential, the interaction is invariant under Wigner's SU(4) symmetry.

No sign problem

	B	Exp.	$R_{ m ch}$	Exp.
$^{3}\mathrm{H}$	8.48(2)(0)	8.48	1.90(1)(1)	1.76
³ He	7.75(2)(0)	7.72	1.99(1)(1)	1.97
⁴ He	28.89(1)(1)	28.3	1.72(1)(3)	1.68
^{16}O	121.9(1)(3)	127.6	2.74(1)(1)	2.70
²⁰ Ne	161.6(1)(1)	160.6	2.95(1)(1)	3.01
^{24}Mg	193.5(02)(17)	198.3	3.13(1)(2)	3.06
²⁸ Si	235.8(04)(17)	236.5	3.26(1)(1)	3.12
⁴⁰ Ca	346.8(6)(5)	342.1	3.42(1)(3)	3.48

Can we improve the agreement by Including higher order corrections?

Lattice chiral Hamiltonian (N3LO)

Full N3LO Hamiltonian includes

- Free Hamiltonian(Kinetic term)
- Short range (nonlocal smeared) contact interactions up to Q^4 order
- Isospin-breaking short range interactions
- One pion exchange potential
- Two pion exchange potential up to Q^4 order
- Coulomb interaction
- Long range isospin breaking interaction(isospin dependence in OPE)
- Galilean Invariance Restoration (GIR) term (because of non-local interaction.)
- Three nucleon interaction

Difficulty with full chiral interaction

• Sign problem

- NLEFT suffers sign problems at large Euclidean time limit
- Large cancellation between positive and negative contributions→ large uncertainty.
- SU(4) symmetric interaction does not have sign problem
- One pion exchange and higher order chiral interaction, short range repulsion
- Difficulty with Asymmetric nuclei
- Needs a remedy to extend to neutron rich isotopes.
- A new approach to reduce the sign problem.
- \rightarrow Wave function matching

H and H' are fully equivalent to twobody observables

The goal is to make the perturbation expansion from "simple" wave function gives a good convergence

 $V_A(r)$

Phase shifts from two interactions are different

Introduce short range Unitary transformation

- $U:P\left|\psi_{A}^{0}\right\rangle / \|P\left|\psi_{A}^{0}\right\rangle\| \rightarrow P\left|\psi_{B}^{0}\right\rangle / \|P\left|\psi_{B}^{0}\right\rangle\|$
- $U: H_A \to H_A' = U^{\dagger} H_A U$

$$V'_A = H'_A - K = U^{\dagger} H_A U - K$$

Two potentials V_A and V'_A are unitarily equivalent.

- \rightarrow Same phase shifts.
- \rightarrow H'_A has eigenvectors of H_B, but eigenvalues of H_A

Two potentials V_A and V'_A are unitarily equivalent.

- \rightarrow Same phase shifts.
- \rightarrow H'_A has eigenvectors of H_B, but eigenvalues of H_A

R = 2.6 fm

$E_{A,n} = E'_{A,n}$ (MeV)	$\langle \psi_{B,n} H_A \psi_{B,n} \rangle$ (MeV)	$\langle \psi_{B,n} H'_A \psi_{B,n} \rangle$ (MeV)
-1.2186	3.0088	-1.1597
0.2196	0.3289	0.2212
0.8523	1.1275	0.8577
1.8610	2.2528	1.8719
3.2279	3.6991	3.2477
4.9454	5.4786	4.9798
7.0104	7.5996	7.0680
9.4208	10.0674	9.5137
12.1721	12.8799	12.3163
15.2669	16.0458	15.4840

Energy from Perturbation theory with H'_A works better. Difference H_A- H'_A can be treated as a correction.

Wave function matching Hamiltonian

• "Simple" Hamiltonian

$$H^{S} = K + \frac{c_{SU(4)}}{2} \sum_{\vec{n}} : \left[\tilde{\rho}^{(1)}(\vec{n}) \right]^{2} : + \frac{c_{I}}{2} \sum_{I,\vec{n}} : \left[\tilde{\rho}^{(1)}_{I}(\vec{n}) \right]^{2} : + V_{OPE}^{\Lambda_{\pi}},$$

$$\tilde{\rho}^{(d)}(\vec{n}) = \sum_{i,j=0,1} \tilde{a}_{i,j}^{\dagger}(\vec{n}) \,\tilde{a}_{i,j}(\vec{n}) + s_{\mathrm{L}} \sum_{|\vec{n}-\vec{n}'|^2=1}^{d} \sum_{i,j=0,1} \tilde{a}_{i,j}^{\dagger}(\vec{n}') \,\tilde{a}_{i,j}(\vec{n}') \,,$$

$$\tilde{\rho}_{I}^{(d)}(\vec{n}) = \sum_{i,j,j'=0,1} \tilde{a}_{i,j}^{\dagger}(\vec{n}) \ [\tau_{I}]_{j,j'} \ \tilde{a}_{i,j'}(\vec{n}) + s_{\mathrm{L}} \sum_{|\vec{n}-\vec{n}'|^{2}=1}^{d} \sum_{i,j,j'=0,1} \tilde{a}_{i,j}^{\dagger}(\vec{n}') \ [\tau_{I}]_{j,j'} \ \tilde{a}_{i,j'}(\vec{n}').$$

 $\tilde{a}_{i,j}(\vec{n}) = a_{i,j}(\vec{n}) + s_{\text{NL}} \sum_{|\vec{n}' - \vec{n}| = 1} a_{i,j}(\vec{n}'). \quad \text{(local,non-local smeared operators)}$

Wave function matching Hamiltonian

• N3LO Hamiltonian

$$H = K + V_{\text{OPE}}^{\Lambda_{\pi}} + V_{C_{\pi}}^{\Lambda_{\pi}} + V_{\text{Coulomb}} + V_{3N}^{Q^3} + V_{2N}^{Q^4} + W_{2N}^{Q^4} + V_{2N,\text{WFM}}^{Q^4} + W_{2N,\text{WFM}}^{Q^4},$$

$$V_{3N}^{Q^3} = V_{c_E}^{(l)} + V_{c_E}^{(l)} + V_{c_E}^{(d)} + V_{c_D}^{(d)} + V_{3N}^{(\text{TPE})},$$

V_2N : short range NN interactions
W_2N: GIR restoration term for V_2N
V_2N,WFM : difference from H'-H
W_2N,WFM: GIR restoration correction to V_2N,WFM
V_3N : contains short range 3N interaction parameters(to be fitted) and two pion exchange correction to 3N

NN phase shifts from N3LO interaction

Original Chiral Hamiltonian, H, is fitted to phase shifts. (up to N3LO)

H' is computed : equivalent to original Hamiltonian(gives the same phase shifts).

Tjon line from WFM method

Realistic two-body interaction
→ Correlation between 3-body and 4-body binding energy
→ Tjon Line

WFM approach gives binding e nergy lies on the Tjon line.

→ Accurate reproduction of B.
E. requires 3-body force.

Tale of two interactions

Nearly identical two interactions can give quite different phase: sensitivity to range and locality of interaction

Nucleus	A (LO)	B(LO)	A (LO + Coulomb)	B (LO + Coulomb)	Experiment
⁸ Be	-58.61(14)	-59.73(6)	-56.51(14)	-57.29(7)	-56.591
^{12}C	-88.2(3)	-95.0(5)	-84.0(3)	-89.9(5)	-92.162
^{16}O	-117.5(6)	-135.4(7)	-110.5(6)	-126.0(7)	-127.619
20 Ne	-148(1)	-178(1)	-137(1)	-164(1)	-160.645

$$\frac{E_{8_{Be}}}{E_{4_{He}}} = 1.997(6)$$

$$\frac{E_{12_{C}}}{E_{4_{He}}} = 3.00(1)$$

$$\frac{E_{16_{O}}}{E_{4_{He}}} = 4.00(2)$$

$$\frac{E_{20_{Ne}}}{E_{4_{He}}} = 5.03(3)$$
PRL 117, 132501 (2016)

From presentation file by Dean Lee

Tale of two interactions

From presentation file by Dean Lee

3-body force

 $V_{3N}^{Q^3} = V_{cE}^{(l)} + V_{cE}^{(d)} + V_{cD}^{(d)} + V_{3N}^{(\text{TPE})},$ $V_{cE}^{(d)} = \frac{1}{6} \frac{c_E^{(d)}}{2f_\pi^4 \Lambda_\chi} : \sum_{\vec{n}} \left[\rho^{(d)}(\vec{n}) \right]^3 :,$ $V_{cD}^{(d)} = -\frac{c_D^{(d)} g_A}{4f_\pi^4 \Lambda_\chi} \sum_{\vec{n}, S, I \vec{n}', S'} : \rho_{S', I}^{(0)}(\vec{n}') f_{S', S}(\vec{n}' - \vec{n}) \rho_{S, I}^{(d)}(\vec{n}) \rho^{(d)}(\vec{n}) :,$ $V_{cE}^{(l)} = c_E^{(l)} \sum_{\vec{n}} \rho^{(0)}(\vec{n}) \rho^{(0)}(\vec{n}') \rho^{(0)}(\vec{n}'') \delta_{|\vec{n} - \vec{n}'|, 1} \delta_{|\vec{n} - \vec{n}''|, 2},$

At N3LO: TPE and Adjustments to cD and cE terms.

NNLO

$$V_{c_E}^{(t)} = c_E^{(t)} \sum_{\vec{n} \ \vec{n}' \ \vec{n}''} \rho^{(0)}(\vec{n}) \rho^{(0)}(\vec{n}') \rho^{(0)}(\vec{n}'') \delta_{|\vec{n} - \vec{n}'|,\sqrt{2}} \,\delta_{|\vec{n} - \vec{n}''|,\sqrt{2}} \,\delta_{|\vec{n}' - \vec{n}''|,\sqrt{2}}.$$

$$\rho^{(d)}(\vec{n}) = \sum_{i,j=0,1} a_{i,j}^{\dagger}(\vec{n}) a_{i,j}(\vec{n}) + s_{L} \sum_{|\vec{n}-\vec{n}'|^{2}=1}^{d} \sum_{i,j=0,1} a_{i,j}^{\dagger}(\vec{n}') a_{i,j}(\vec{n}').$$

$$V_{c_{E}}^{(0)} \text{ and } V_{c_{D}}^{(0)} = V_{c_{E}}^{(1)} \text{ and } V_{c_{E}}^{(1)} = V_{c_{E}}^{(1)} \text{ and } V_{c_{D}}^{(1)} = V_{c_{E}}^{(2)} \text{ and } V_{c_{D}}^{(2)}.$$

3-body force

Tune 3-body interaction to minimize errors in binding energy

Just one additional parameter, RMSD for the E/A drops from 1.2 MeV to 0.4 MeV

Energies

→ Significant sensitivity to the locality of 3N interactions.

We interpret they are related with effective interactions between alphas and nucleons.

 $E_{12,0_1^+}^6 - 3E_4^2, E_{16}^8 - 4E_4^2, E_6^2 - E_4^2, E_9^4 - E_8^4, E_{13}^6 - E_{12}^6$, and $E_{14}^6 - E_{12}^6$

Significantly high w/o additional 3-body terms : alpha-alpha should be more attractive.

Determine 3-body force parameters

RMSD (MeV/nucleon): $1.2 \rightarrow 0.3 \rightarrow 0.109 \rightarrow 0.079$

BE/A from WFM

RMSD ~ 0.1 MeV per nucleon

Pinhole Algorithm

Charge density from WFM (Pinhole algorithm)

Charge Radius

No fitting! RMSD~ 0.03 fm

Nuclear/Neutron Matter

Neutron matter: A=4~80 box size 6.6 ~ 13.2 fm.

Nuclear matter: A=4 ~ 160 Box size 7.92~9.24 fm.

• Uncertainties from finite system size correction

Carbon and Oxygen

Carbon and Oxygen

А

Finite Volume Effect

Lt=200	L=10		L=11			Exp		
	E	err	S2n	E	err	S2n	E	S2n
240	-167.600	1.126		-171.880	0.501		-168.952	6.920
250	-168.790	0.424		-169.670	0.551		-168.195	3.453
260	-171.530	0.587	4.430	-172.380	0.459	0.500	-168.934	-0.018
270	-169.960	0.450	1.170	-166.930	0.566	-2.740	-166.995	-1.200

- Lt=200 result. (Not extrapolated results.)
- Systematic Error from finite volume effects need to be studied.

Preliminary

• L=11 improved Separation energy of 26O.

Carbon isotopes (Lt=200)

Oxygen isotopes (Lt=200)

Partial waves contributions (Lt=200)

Partial waves contributions (Lt=200)

V_{1S0}(Z=8, Q^0)

Partial waves contributions (Lt=200,Z=8)

Partial waves contributions (Lt=200)

Measure of correlation among extra neutrons

$$f(T_z) = \langle \Psi_{(1/2,-1/2)} | A_{(1,T_z)}^{\dagger} A_{(1,T_z)} | \Psi_{(1/2,-1/2)} \rangle.$$

A(1,Tz) is a two nucleon annihilation operator which gives isospin change by (1, Tz)

f(-1): two proton operators (two-body interaction) expectation value f(0): proton-neutron two-body interaction expectation value f(1): two neutron operators (two-body interaction) expectation value

 $f(-1) = f_{3/2}$ $f(0) = \frac{2}{3}f_{3/2} + \frac{1}{3}f_{1/2} \qquad f(1) = 2f(0) - f(-1).$ $f(1) = \frac{1}{3}f_{3/2} + \frac{2}{3}f_{1/2}$

Measure of correlation among extra neutrons

$$f(T_z) = \langle \Psi | A_{(1,T_z)}^{\dagger} A_{(1,T_z)} | \Psi \rangle \,.$$

If each of extra neutrons are uncorrelated with each other

→ Additional correlations produced by extra neutrons will be additive. (only correlation with core neutrons)

$$f(1) = 2f(0) - f(-1).$$

→ Difference between left and right is a measure of correlation between additional neutrons.

Phase Shift Changes (1 percent)

Z= 6

- <pp1S0>
- \rightarrow near constant
- <nn1S0>

→ strong correlation a mong paired neutrons

- Adding unpaired one neutron gives similar slope for
 - <nn> and <2pn-pp>
- → Unpaired neutron correlation with core nucleons.

Z= 8

 <pp 3P0> decrease faster than <pp 1S0>

→ Correlation between alpha clu sters may become weaker

Z= 6

Z= 8

Slope change in 220
 → closure of 1d5/2 subshell

Summary

- Wave function matching method seems to be promising
- Carbon, Oxygen isotope up to dripline shows good agreement with experimental data
 - systematic error(finite volume effects) estimation may be necessary.
- Additional neutrons in 1S0 have strong pairing correlation
- Unpaired neutrons correlated primarily to the nuclear core.

two neutrons in 6He

How two neutrons are distributed in 6He?

6He spatial correlations

3 body model calculations

	⁶ He		
J	0+	2+	
E (MeV)	-0.70	0.88	
E^{expt} (MeV) B_{Λ} (MeV) B_{Λ}^{expt} (MeV)	-0.98	0.83	
$\overline{r_{\text{core-}n}}$ (fm)	4.55		
$\overline{r_{\text{core-}2n}}$ (fm)	3.79		
$\overline{r_{n-n}}$ (fm)	4.68		
			1

Fig. 4. Correlation density plot for the ground state of ⁶He in the (nn) and (nn) α variables.

Zhukov et al. (1993)

Hiyama et al.(1996)

Hagino, Sagawa (2005)

Total S=0 S=1

AMD 6-body calculation Kanada-Enyo et al. (2011)

total two-neutron density

6He pinhole calculation(WFM)

6He pinhole calculation(WFM)

6He pinhole calculation(SU4 "essential")

6He pinhole calculation(SU4 "essential")

6He pinhole calculation(SU4 "essential")

⁶He spatial correlations

Fig. 4. Correlation density plot for the ground state of ⁶He in the (nn) and (nn)α variables.

Charge radii

2	He	3	1.9661	0.0030
		4	1.6755	0.0028
		6	2.0660	0.0111
		8	1.9239	0.0306
6	С	12	2.4702	0.0022
		13	2.4614	0.0034
		14	2.5025	0.0087
8	0	16	2,6991	0.0052
		17	2.6932	0.0075
		18	2.7726	0.0056
10	Ne	20	3.0055	0.0021
10	inc	21	2.9695	0.0033
		22	2.9525	0.0040

Alpha clusters + neutrons Unfortunately, NURION machine is too slow to use full WFM interaction For pinhole calculations Of O, Ne isotopes.

Charge radii: SU(4) interaction

	LO	LO+Coul	Essential	Exp.
4He	1.7168(5)	1.7239(5)	1.72(1)(3)	1.6755(28)
6He	2.0667(9)	2.0731(10)		2.0660(111)
12C	2.7987(12)	2.8379(13)		2.4702(22)
13C	2.7517(12)	2.7868(13)		2.4614(34)
14C	2.7043(11)	2.7359(11)		2.5025(87)
160	2.7054(9)	2.7481(9)	2.74(1)(1)	2.6991(52)
170				2.6932(75)
180	2.7807(12)	2.8247(13)		2.7726(56)
20Ne	3.0674(12)	3.1250(14)	2.95(1)(1)	3.0055(21)
21Ne	3.0742(15)	3.1308(17)		2.9695(33)
22Ne	3.0876(17)	3.1431(19)		2.9525(40)

- "Essential" binding Interaction(2N+3N)
- Lt=300 results
- → SU(4) is
 Not accurate enough.
 May need WFM.
- → Euclidean time extrapolation?