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Ab initio nuclear theory

□ Nuclear structure and nuclear reactions from the first

princibles, without relying on any adjustable parameters.
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and the original angular distributions are not reported.
Differential cross section measurements below Sp are avail-
able only for the ground state transition and only in the limited
energy range around the broad lowest energy 1− resonance
that corresponds to the level at Ex ¼ 9.59 MeV (Dyer and
Barnes, 1974; Redder et al., 1987; Ouellet et al., 1996; Fey,
2004; Assunção et al., 2006; Makii et al., 2009). These data
are used to determine the relative interference between the E1
and E2 components of the cross section, but it is possible that
measurements over other regions, where the two components
are closer in magnitude, would provide better constraint.
Above Sp, measurements are available in Larson and Spear
(1964) and Kernel, Mason, and Wimmersperg (1971) over the
broad states at Ex ¼ 12.45 (1−), 12.96 (2þ), and 13.10 (1−)
MeV. The Q coefficients (Rose, 1953; Longland et al., 2006)
used to correct for the extended geometry of the γ-ray
detectors are listed in Table VIII.
The best fit to the 12Cðα; γ0Þ16O angle-integrated data of

Brochard et al. (1973), Dyer and Barnes (1974), Kettner et al.
(1982), Redder et al. (1987), Kremer et al. (1988), Ouellet
et al. (1996), Roters et al. (1999), Gialanella et al. (2001),
Kunz et al. (2001), Fey (2004), Assunção et al. (2006), Makii
et al. (2009), Schürmann et al. (2011), and Plag et al. (2012) is
shown in Fig. 9. The simultaneous fit to the ground state
angular distribution differential cross section data (Dyer and
Barnes, 1974; Redder et al., 1987; Fey, 2004; Assunção et al.,
2006) is shown in Fig. 10 and the differential excitation curves
of Ouellet et al. (1996) and Makii et al. (2009) are shown
in Fig. 11.

C. Cascade transitions

While the cascade cross sections make a small contribution
to the total low-energy cross section (≈5% at Ec:m: ¼
300 keV), at higher energies they can dominate as shown
in Figs. 6 and 7. However, another compelling reason for their
accurate measurement would be to constrain the ANCs of the
subthreshold states, in particular, those of the Ex ¼ 6.92 and

7.12 MeV states, through their external capture contributions.
The Ex ¼ 6.13 MeV transition capture cross section, which is
external capture dominated, is also connected to the β-delayed
α emission spectrum through its ANC as discussed further in
Sec. VI.D.
Cascade transition excitation curves for the 12Cðα; γÞ16O

reaction have been measured by Kettner et al. (1982), Redder
et al. (1987), Matei et al. (2006), and Schürmann et al. (2011).
The measurements of these transitions are complicated exper-
imentally by the close energy spacing of the bound states at
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FIG. 9. Fit to the 12Cðα; γ0Þ16O cross section. (a) The E1
contribution from Dyer and Barnes (1974), Redder et al.
(1987), Kremer et al. (1988), Ouellet et al. (1996), Roters
et al. (1999), Gialanella et al. (2001), Kunz et al. (2001), Fey
(2004), Assunção et al. (2006), Makii et al. (2009), Schürmann et
al. (2011), and Plag et al. (2012). (b) The E2 contribution from
Redder et al. (1987), Ouellet et al. (1996), Roters et al. (1999),
Kunz et al. (2001), Fey (2004), Assunção et al. (2006), Makii
et al. (2009), Schürmann et al. (2011), and Plag et al. (2012).
(a) The angle-integrated cross section data of Brochard et al.
(1973) are also shown at high energy for comparison as they are
dominated by E1 capture. Note that the data have been subjected
to overall normalizations as determined by the fitting procedure.

TABLE VIII. Summary of Q coefficients for extended detector geometry corrections. In cases where the coefficients
were not reported they have been approximated using a GEANT4 simulation and the details of the geometry presented in the
reference; the source for these cases is indicated as “this work.”

Reference Detector Q1 Q2 Q3 Q4 Source

Larson and Spear (1964) 0.897 0.719 0.509 0.311 This work
Kernel, Mason, and Wimmersperg (1971) 0.989 0.968 0.937 0.896 This work
Dyer and Barnes (1974) 0.955 0.869 0.750 0.610 Table 5.5 of

Sayre (2011)
Ophel et al. (1976) 0.990 0.969 0.948 0.900 This work
Ouellet et al. (1996) 28° 0.9719 0.9173 0.8395 0.7431 Table 1

60° 0.9675 0.9047 0.8162 0.7061
90° 0.9541 0.8670 0.7474 0.6068
90° 0.9543 0.8675 0.7486 0.6091
120° 0.9762 0.9296 0.8672 0.7787
143° 0.9831 0.9500 0.9017 0.8400

Redder et al. (1987) 0.92 0.75 In text
Assunção et al. (2006) 0.989(2) 0.968(4) 0.936(8) 0.895(14) In text
Makii et al. (2009) 40° 0.980 0.947 0.898 0.837 Table VI

90° 0.980 0.946 0.897 0.835
130° 0.980 0.948 0.901 0.841

Plag et al. (2012) 0.948 0.927 0.862 0.775 Eq. (2)

R. J. deBoer et al.: The 12Cðα; γÞ16O …

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035007-41

deBoer et al., Rev. Mod. Phys. 89, 035007

12C(α,γ)16O astrophysical S factor

Stellar nucleosynthesis
(Formation of heavier elements in stars)

□ Ab-initio theory: describing nuclear systems di-

rectly from fundamental interactions.

■ Challenges:

→ Complex nature of nuclear forces.

→ Scaling effectively to handle systems across

the entire nuclear chart

Avik’s talk
Bing-nan’s talk

Helen’s talk
Shuang’s talk

Young-Ho’s talk
Zhengxue’s talk
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Ab initio nuclear theory: Towards neutron stars and hypernuclei

□ Nuclear systems involving quarks beyond up

and down quarks.

■ Challenges: “Hyperon puzzle”.

J. Weber (arXiv:astro-ph/0008376)

Logoteta, Vidana, Bombaci (Eur. Phys. J. A (2019) 55: 207 ) source://people.physics.anu.edu.au/ ecs103/chart3d/

Fabian’s talk
Hui’s talk
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Outline

■ Introduction

■ Nuclear forces from QCD

■ Lattice effective field theory

■ Wavefunction matching method

■ Alpha-carbon scattering

■ Neutron-alpha scattering

■ Three-nucleon forces

■ Nuclear thermodynamics

■ Summary
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Chiral EFT for nucleons: nuclear forces

Chiral effective field theory organizes the nuclear interactions as an expansion in
powers of momenta and other low energy scales such as the pion mass (Q/Λχ).

The nuclear interactions as a series of increasing complexity:
Rep. Prog. Phys. 75 (2012) 016301 N Kalantar-Nayestanaki et al

2N LO

N LO3

NLO

LO
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Figure 4. Hierarchy of nuclear forces in chiral EFT based on Weinberg’s power counting. Solid and dashed lines denote nucleons and
pions, respectively. Solid dots, filled circles and filled squares refer, respectively, to the leading, subleading and sub-subleading vertices in
the effective Lagrangian. The crossed square denotes 2N contact interactions with 4 derivatives.

1 GeV, respectively. A recent review on the methodology and
applications of chiral perturbation theory in the Goldstone–
boson and single-nucleon sectors can be found in [66].

Chiral EFT, however, cannot be directly applied to
low-energy few-nucleon scattering. The strong nature of
the nuclear force that manifests itself in the appearance of
self-bound atomic nuclei invalidates a naive application of
perturbation theory. Weinberg pointed out that the breakdown
of perturbation theory can be traced back to the infrared
enhancement of reducible diagrams that involve few-nucleon
cuts [67, 68]. The irreducible part of the amplitude that gives
rise to the nuclear force is, however, not affected by the infrared
enhancement and is thus accessible within chiral EFT. These
important observations have triggered intense research activity
towards the systematic derivation of the nuclear forces in chiral
EFT and their applications to the nuclear few- and many-body
problem.

It should also be emphasized that an EFT can be
formulated that is only valid at typical momenta well below
the pion mass. This framework allows one to take into
account the unnaturally large NN scattering lengths but loses
the connection with the chiral symmetry of QCD. It has
been used with great success not only for nuclear systems
[69, 14]. This so-called pion-less EFT requires a 3NF in
leading order. The corresponding hard scale is given by
the pion mass and, therefore, intermediate-energy observables
cannot be predicted within this framework. In the following,
we restrict ourselves to chiral EFT.

The EFT expansion of the nuclear force based on
the standard chiral power counting (i.e. assuming that all
operators in the effective Lagrangian scale according to a naive
dimensional analysis) is visualized in figure 4.

It provides a natural qualitative explanation of the
observed hierarchy of two-, three- and more-nucleon forces
with 〈V2N〉 � 〈V3N〉 � 〈V4N〉 . . .. The expansion of the 2NF
has the form

V2N = V
(0)

2N + V
(2)

2N + V
(3)

2N + V
(4)

2N + · · · , (1)

with the superscripts referring to the power of the expansion
parameter Q/�χ . The long-range part of the nuclear
force is dominated by 1π -exchange with the 2π -exchange
contributions starting at next-to-leading order (NLO). The
expressions for the potential up to next-to-next-to-leading
order (N2LO) in the heavy-baryon formulation [70, 71] are
rather compact and have been independently derived by several
authors using a variety of different methods [72–75]. 2π - and
3π -exchange contributions at next-to-next-to-next-to-leading
order (N3LO) have been worked out by Kaiser [76–79] and
are considerably more involved, see also [80]. While the
2π -exchange at NLO and, especially, at N2LO generates a
rather strong potential at distances of the order of the inverse
pion mass [74], the leading 3π -exchange contributions turn out
to be negligible. The N3LO contributions to the 2π -exchange
potential were also derived in the covariant formulation of
chiral EFT [81] by Higa et al [82, 83]. The LECs entering
the pion-exchange contributions up to N3LO are known from
pion–nucleon scattering and related processes [84–86]. We
note that some of them, especially the ones from L(3)

πN , are
presently not very accurately determined. In the isospin
limit, the short-range part of the potential involves 2, 9, 24
independent terms at LO, NLO/N2LO, N3LO, respectively.
The corresponding LECs were fixed from the two-nucleon
data leading to the accurate N3LO potentials of Entem and
Machleidt (EM) [87] and Epelbaum, Glöckle and Meißner
(EGM) [88]. These two potentials differ in the treatment of
relativistic corrections (including the form of the employed
dynamical equation), IB terms and the form of the regulator
functions. There are also differences in the adopted values
of certain pion–nucleon LECs. Finally, EGM provide an
estimation of the theoretical uncertainty by means of the
variation of the cutoffs in some natural ranges. This important
issue is not addressed in [87], where a single excellent
fit to neutron–proton (proton–proton) scattering data with
χ2/datum = 1.10 (χ2/datum = 1.50) in the energy range
from 0 to 290 MeV is given. We refer the reader to [87, 88] for
more details. In figure 5, we compare NN phase shifts obtained
with these models with predictions from phenomenological

5
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Lattice formulation of chiral EFT

■ Lattice formulation of nuclear forces in the framework of chiral EFT:

□ a simpler decomposition into spin channels

□ accurate phase shifts and binding energies.

V S,I,J
L,L′ (n) = ∑

Iz ,Jz

∑
Sz ,Lz

∑
S′

z ,L′
z

(
⟨SSz ,LLz |JJz ⟩

[
a(n) ∇2M R∗

L,Lz
(∇) a(n)

]sNL

S,Sz ,I,Iz

)†

× ⟨SS′
z ,L

′L′z |JJz ⟩
[
a(n) ∇2M R∗

L′,L′
z
(∇) a(n)

]sNL

S,S′
z ,I,Iz

[a(n) a(n′)]sNL
S,Sz ,I,Iz

= ∑
i,j,i ′,j ′

asNL
i,j (n)Mii ′ (S,Sz )Mjj ′ (I, Iz ) asNL

i,j (n′)

Li, SE, Epelbaum, Lee, Lu, Meißner Phys. Rev. C 98, 044002 (2018)
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Chiral EFT for nucleons: NN scattering phase shifts
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Figure 4. Hierarchy of nuclear forces in chiral EFT based on Weinberg’s power counting. Solid and dashed lines denote nucleons and
pions, respectively. Solid dots, filled circles and filled squares refer, respectively, to the leading, subleading and sub-subleading vertices in
the effective Lagrangian. The crossed square denotes 2N contact interactions with 4 derivatives.

1 GeV, respectively. A recent review on the methodology and
applications of chiral perturbation theory in the Goldstone–
boson and single-nucleon sectors can be found in [66].

Chiral EFT, however, cannot be directly applied to
low-energy few-nucleon scattering. The strong nature of
the nuclear force that manifests itself in the appearance of
self-bound atomic nuclei invalidates a naive application of
perturbation theory. Weinberg pointed out that the breakdown
of perturbation theory can be traced back to the infrared
enhancement of reducible diagrams that involve few-nucleon
cuts [67, 68]. The irreducible part of the amplitude that gives
rise to the nuclear force is, however, not affected by the infrared
enhancement and is thus accessible within chiral EFT. These
important observations have triggered intense research activity
towards the systematic derivation of the nuclear forces in chiral
EFT and their applications to the nuclear few- and many-body
problem.

It should also be emphasized that an EFT can be
formulated that is only valid at typical momenta well below
the pion mass. This framework allows one to take into
account the unnaturally large NN scattering lengths but loses
the connection with the chiral symmetry of QCD. It has
been used with great success not only for nuclear systems
[69, 14]. This so-called pion-less EFT requires a 3NF in
leading order. The corresponding hard scale is given by
the pion mass and, therefore, intermediate-energy observables
cannot be predicted within this framework. In the following,
we restrict ourselves to chiral EFT.

The EFT expansion of the nuclear force based on
the standard chiral power counting (i.e. assuming that all
operators in the effective Lagrangian scale according to a naive
dimensional analysis) is visualized in figure 4.

It provides a natural qualitative explanation of the
observed hierarchy of two-, three- and more-nucleon forces
with 〈V2N〉 � 〈V3N〉 � 〈V4N〉 . . .. The expansion of the 2NF
has the form

V2N = V
(0)

2N + V
(2)

2N + V
(3)

2N + V
(4)

2N + · · · , (1)

with the superscripts referring to the power of the expansion
parameter Q/�χ . The long-range part of the nuclear
force is dominated by 1π -exchange with the 2π -exchange
contributions starting at next-to-leading order (NLO). The
expressions for the potential up to next-to-next-to-leading
order (N2LO) in the heavy-baryon formulation [70, 71] are
rather compact and have been independently derived by several
authors using a variety of different methods [72–75]. 2π - and
3π -exchange contributions at next-to-next-to-next-to-leading
order (N3LO) have been worked out by Kaiser [76–79] and
are considerably more involved, see also [80]. While the
2π -exchange at NLO and, especially, at N2LO generates a
rather strong potential at distances of the order of the inverse
pion mass [74], the leading 3π -exchange contributions turn out
to be negligible. The N3LO contributions to the 2π -exchange
potential were also derived in the covariant formulation of
chiral EFT [81] by Higa et al [82, 83]. The LECs entering
the pion-exchange contributions up to N3LO are known from
pion–nucleon scattering and related processes [84–86]. We
note that some of them, especially the ones from L(3)

πN , are
presently not very accurately determined. In the isospin
limit, the short-range part of the potential involves 2, 9, 24
independent terms at LO, NLO/N2LO, N3LO, respectively.
The corresponding LECs were fixed from the two-nucleon
data leading to the accurate N3LO potentials of Entem and
Machleidt (EM) [87] and Epelbaum, Glöckle and Meißner
(EGM) [88]. These two potentials differ in the treatment of
relativistic corrections (including the form of the employed
dynamical equation), IB terms and the form of the regulator
functions. There are also differences in the adopted values
of certain pion–nucleon LECs. Finally, EGM provide an
estimation of the theoretical uncertainty by means of the
variation of the cutoffs in some natural ranges. This important
issue is not addressed in [87], where a single excellent
fit to neutron–proton (proton–proton) scattering data with
χ2/datum = 1.10 (χ2/datum = 1.50) in the energy range
from 0 to 290 MeV is given. We refer the reader to [87, 88] for
more details. In figure 5, we compare NN phase shifts obtained
with these models with predictions from phenomenological
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Chiral EFT for nucleons: NN scattering phase shifts

a = 1.97 fm and pmax = π/a = 314 MeV

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  50  100  150  200

δ(
1 S

0)
 [

de
gr

ee
s]

p  [MeV]

LO
NLO

N3LO

 40

 60

 80

 100

 120

 140

 160

 180

 0  50  100  150  200
δ(

3 S
1)

 [
de

gr
ee

s]
p  [MeV]

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0  50  100  150  200

ε 1
  [

de
gr

ee
s]

p  [MeV]

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0  50  100  150  200

ε 2
  [

de
gr

ee
s]

p  [MeV]

-15

-10

-5

 0

 5

 10

 0  50  100  150  200

δ(
1 P

1)
 [

de
gr

ee
s]

p  [MeV]

 0

 5

 10

 15

 20

 0  50  100  150  200

δ(
3 P

0)
 [

de
gr

ee
s]

p [MeV]

-15

-10

-5

 0

 5

 0  50  100  150  200

δ(
3 P

1)
 [

de
gr

ee
s]

p [MeV]

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0  50  100  150  200

δ(
3 P

2)
 [

de
gr

ee
s]

p [MeV]

-2

 0

 2

 4

 6

 8

 10

 0  50  100  150  200

δ(
1 D

2)
 [

de
gr

ee
s]

p [MeV]

-12

-10

-8

-6

-4

-2

 0

 2

 0  50  100  150  200

δ(
3 D

1)
  [

de
gr

ee
s]

p  [MeV]

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  50  100  150  200

δ(
3 D

2)
  [

de
gr

ee
s]

p  [MeV]

-2

-1

 0

 1

 2

 3

 4

 5

 0  50  100  150  200

δ(
3 D

3)
  [

de
gr

ee
s]

p  [MeV]

SE FB22 2018. Springer Proceedings in Physics, (2020)
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Lattice Monte Carlo calculations: Euclidean time projection

Non-perturbative leading order calculations

A given initial state, |ψI⟩, as a Slater determinant of free-particle standing waves on
the lattice, is projected to evaluate a product of a string of transfer matrices M̂ .

lim
Lt→∞

⟨ψI | M̂ M̂ . . . HLO . . . M̂ M̂ |ψI⟩
⟨ψI | M̂ M̂ . . . M̂ M̂ |ψI⟩

= ELO

In the limit of large Euclidean time the evolution operator the signal beyond the
low-lying states is suppressed, and the ground state energy can be extracted.

Perturbative higher order calculations

ho = NLO, NNLO, · · ·

The higher order corrections to the ground state energy can be computed as,

lim
Lt→∞

⟨ψI | M̂ M̂ . . . Hho . . . M̂ M̂ |ψI⟩
⟨ψI | M̂ M̂ . . . M̂ M̂ |ψI⟩

= ∆Eho
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Chiral EFT for nucleons: NN scattering phase shifts

a = 1.97 fm and pmax = π/a = 314 MeV

-450

-360

-270

-180

-90

 0

3H4He 6He 8Be 10Be 12C 14C 16O 18O 20Ne 22Ne 24Mg 28Si 40Ca

E
(M

eV
)

Experiment
ELO

EN3LO (only NN forces)

-12

-9.6

-7.2

-4.8

-2.4

 0

3H 4He 6He 8Be 10Be 12C 14C 16O 18O 20Ne 22Ne 24Mg 28Si 40Ca

E
/A

(M
eV

)

Experiment
ELO

EN3LO

SE FB22 2018. Springer Proceedings in Physics, (2020)



11/43

Chiral EFT for nucleons: NN scattering phase shifts

a = 1.97 fm and pmax = π/a = 314 MeV
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Perturbative calculations
Toy model:

0 5 10 15
r (fm)
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6.206769197086 6.118307106128
12.776191791947 12.667625238436
21.337188185570 21.213065578266

Perturbative energies
q ⟨ψ(0) |H ′ |ψ(q)⟩
0 −2.43080610
1 −2.44610114
2 −2.44574140
3 −2.44575370
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Perturbative calculations
Toy model:
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Wavefunction Matching

□ Hχ : –severe sign oscillation, –derived from the underlying theory.
□ Hsoft : –tolerable sign oscillation, –many-body observables with a fair agreement.

Can unitary transformation create a new chiral
Hamiltonian which is (first order) perturbation
theory friendly?

H ′
χ = U† Hχ U

□ Let |ψ0
χ⟩ be the normalized lowest eigenstate of Hχ.

□ Let |ψ0
soft⟩ be the normalized lowest eigenstate of Hsoft.

UR′,R = θ(r − R) δR′,R + θ(R′ − r ) θ(R − r ) |ψ⊥
χ ⟩ ⟨ψ⊥

soft|

SE et al. Nature 630, 8015, 59-63 (2024)
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Wavefunction Matching
□ Hsoft : –tolerable sign oscillation, –many-body observables with a fair agreement.
□ Hχ : –severe sign oscillation, –derived from the underlying theory.

Unitary transformation can create a new chiral Hamiltonian which is (first
order) perturbative friendly

H ′
χ = U† Hχ U → H ′

χ = Hsoft + (H ′
χ − Hsoft)

SE et al. Nature 630, 8015, 59-63 (2024)
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Three-nucleon forces
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Wavefunction Matching: Perturbative calculations
Toy model:
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21.786534446 21.786534446

q ⟨ψ(0)
S |H ′ |ψ(q)

S ⟩
R = 0.00 R = 1.32 R = 1.86 R = 2.28 R = 3.22 fm

0 −1.747230 −2.055674 −2.226685 −2.312220 −2.402507
1 −2.899573 −2.558509 −2.477194 −2.457550 −2.446214
2 −2.100368 −2.389579 −2.430212 −2.439585 −2.443339
3 −2.263765 −2.414809 −2.437676 −2.441072 −2.443233
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Ab initio nuclear theory: recent progress in NLEFT
a = 1.32 fm and pmax = π/a = 471 MeV
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a = 1.32 fm and pmax = π/a = 471 MeV

Nuclei BQ0 MeV BQ2 MeV BQ4 MeV Experiment
Eχ,d 1.7928 2.1969 2.2102 2.2246
⟨ψ0

soft|Hχ,d |ψ0
soft⟩ 0.4494 0.3445 0.6208

⟨ψ0
soft|H ′

χ,d |ψ0
soft⟩ 1.6496 1.9772 2.0075

 22

 24

 26

 28

 30

 32

 5  6  7  8  9

B
4 

(M
eV

)

B3 (MeV)

 22

 24

 26

 28

 30

 32

 5  6  7  8  9

B
4 

(M
eV

)

B3 (MeV)

R = 0.00 (fm)
R = 1.32 (fm)
R = 1.86 (fm)
R = 2.28 (fm)
R = 2.63 (fm)
R = 2.94 (fm)
R = 3.22 (fm)
R = 3.72 (fm)

 22

 24

 26

 28

 30

 32

 5  6  7  8  9

B
4 

(M
eV

)

B3 (MeV)

 22

 24

 26

 28

 30

 32

 5  6  7  8  9

B
4 

(M
eV

)

B3 (MeV)

R = 0.00 (fm)
R = 1.32 (fm)
R = 1.86 (fm)
R = 2.28 (fm)
R = 2.63 (fm)
R = 2.94 (fm)
R = 3.22 (fm)
R = 3.72 (fm)

 22

 24

 26

 28

 30

 32

 5  6  7  8  9

B
4 

(M
eV

)

B3 (MeV)

 22

 24

 26

 28

 30

 32

 5  6  7  8  9

B
4 

(M
eV

)

B3 (MeV)

R = 0.00 (fm)
R = 1.32 (fm)
R = 1.86 (fm)
R = 2.28 (fm)
R = 2.63 (fm)
R = 2.94 (fm)
R = 3.22 (fm)
R = 3.72 (fm)
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Chiral interactions at N3LO – 2NFs + 3NFs

Work Constraints Predictions

NCSM, Barrett et al., Nogga et al. BE of 3H and 4He Spectrum of 6Li and 7Li

NCSM, Navratil et al. 3H, 6Li, 10B, 12C 4He, 6Li, 10,11B, 12,13C

NCSM, Maris et al., Roth et al. BE of 3H and 3H β decay Structures of A = 7,8. 4He, 6Li, 12C and 16O

CC, Hagen et al. BE of 3H and 3H β decay EoS of nucleonic matter

BMBPT, Tichai et al. BE of 3H and 3H β decay BE of 16−26O, 36−60Ca and 50−78Ni

IT-NCSM, Roth et al. BE of 3H and 4He, and 3H β decay BE of 4He, 16O, 40Ca

CC, Roth et al. BE of 3H and 4He, and 3H β decay BE of 16,24O, 40,48Ca

SCGF, Cipollone et al. BE of 3H and 4He, and 3H β decay BE of 13,27N, 14,28O and 15,29F

AFDMC, Lynn et al.
BE of 3H and n-4He P-wave phase

shifts
EoS of nucleonic matter

MBPT, Bogner et al., Hebeler et al.,

Drischler et al., Wienholtz et al., Si-

monis et al.

BE 3H and Rc of 4He

symmetric and asymmetric NM, BE of 48−58Ca, spectrum of

sd-shell nuclei with 8 ≤ Z ,N ≤ 20, BE and Rc of open- and

closed-shell nuclei up to A = 78

NCCI, Epelbaum et al., Maris et al.

BE of 3H, nd spin-doublet scatter-

ing length and the pd differential

cross section

the spectrum of light nuclei with A = 3–16, elastic nd scattering

and in the deuteron breakup reactions, properties of the A = 3, 4

nuclei, and for spectra of p-shell nuclei up to A = 16, BE and Rc
of the oxygen and calcium isotope chains

CC, Carlsson et al., Ekström et al.,

Hagen et al.

BE of 3H, 3,4He, 14Li and
16,22,24,25O

Rc and BE of nuclei up to 40Ca, symmetric nuclear matter, neu-

tron skin of 48Ca, structure of 78Ni

NCSM, IM-SRC, IM-NCSM,

Hüther et al.
BE of 3H and 16O

Rc and BE of 4He, 14−26O, 36−52Ca and 48−78Ni, the spec-

trum of 7Li, 8Be, 9Be and 10B

CC, Jiang et al. properties of A ≤ 4 properties of nuclei from A = 16 − 132
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a = 1.32 fm and pmax = π/a = 471 MeV

a b c

d e f g h

SE et al. Nature 630, 8015, 59-63 (2024)
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Scattering on the lattice
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Lüscher’s finite volume method:
Lüscher, Comm. Math. Phys. 105 (1986) 153; NPB 354 (1991) 531

p cot δ0(p) = 1
π L

[
∑Λ

n⃗
θ(Λ2−n⃗2)

n⃗2−(Lp/2π)2 − 4π Λ
]

Borasoy, Epelbaum, Krebs, Lee, Meißner, EPJA 34 (2007) 185  

Scattering phase shifts from finite volumes 

𝜓ℓ 𝑟 = 𝑁 [cos 𝛿ℓ 𝑝 𝐹ℓ 𝑝 𝑟 + sin 𝛿ℓ 𝑝 𝐺ℓ(𝑝 𝑟)] 

𝑅wall 

Spherical wall method:

R(p)
ℓ (r ) = Nℓ(p)×

{
cot δℓ(p) jℓ(p r )− nℓ(p r )
cot δℓ(p)Fℓ(p r ) + Gℓ(p r )

Nucl. Phys. A 424, 47-59 (1984), Eur. Phys. J. A 34, 185-196 (2007).
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Scattering and reactions: Adiabatic projection method
The method constructs a low energy effective theory for the clusters

Use initial states parameterized by the
relative spatial separation between
clusters, and project them in Euclidean
time.

|ψR
I ⟩ = ∑

r⃗
|⃗r + R⃗⟩1 ⊗ |⃗r ⟩2

𝑅 

𝑛𝑥, 𝑛𝑦  

𝑛𝑥
′ , 𝑛𝑦

′   

|ψR
I ⟩τ = e−H τ |ψR

I ⟩ dressed cluster state

The adiabatic projection in Euclidean time gives a
systematically improvable description of the low-
lying scattering cluster states.
In the limit of large Euclidean projection time the
description becomes exact.

SE & Lee. PRC 90 064001 (2014).

SE, Lee, Rupak, Epelbaum, Krebs, Lähde, Luu, & Meißner. Nature 528, 111-114 (2015).

SE, Lee, Meißner & Rupak EPJA 52, 6, 174 (2016).

.
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Adiabatic projection method

Euclidean Time

⟨ψR
I | |ψR′

I ⟩
τ = 0 τ = Lt at

Hamiltonian matrix

[Hτ ]
J,Jz
R,R′ =

J,Jz
τ ⟨ψR

I |H |ψR′

I ⟩J,Jz
τ

Norm matrix

[Nτ ]
J,Jz
R,R′ =

J,Jz
τ ⟨ψR

I |ψR′

I ⟩J,Jz
τ

[Ha
τ ]

J,Jz

R⃗,R⃗′ =
[
N−1/2

τ Hτ N−1/2
τ

]J,Jz

R⃗ R⃗′
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Ab initio nuclear theory: alpha-Carbon scattering

γ

𝑅!Ψ!
	

"#" =$
# 

𝑅
!Ψ!

	
"#" =$

# 

|Ψi⟩
|Ψ16O

i ⟩

|Ψ16A
i ⟩

|Ψi⟩ = θ(R − r ) |Ψ16O
i ⟩

+θ(r − R) |Ψ16A
i ⟩

22/42

Adiabatic projection method

Euclidean Time

→ψR

I
| |ψR↑

I
↓

τ = 0 τ = Lt at

Hamiltonian matrix

[Hτ ]
J,Jz

R,R↑ =
J,Jz

τ →ψR

I
|H |ψR↑

I
↓J,Jz

τ

Norm matrix

[Nτ ]
J,Jz

R,R↑ =
J,Jz

τ →ψR

I
|ψR↑

I
↓J,Jz

τ

[Ha
τ ]

J,Jz

ωR,ωR↑ =
[
N
↔1/2
τ Hτ N

↔1/2
τ

]J,Jz

ωR ωR↑
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Ab initio nuclear theory: alpha-Carbon scattering

γ

a = 1.32 fm and pmax = π/a = 471 MeV
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Ab initio nuclear theory: neutron-alpha scattering

a = 1.32 fm and pmax = π/a = 471 MeV
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6

TABLE II. Calculated 4He g.s. energy (in MeV), point-proton radius (in fm) and charge radius (in fm), obtained using the
chiral interaction models of Table I with the optimal values for cD and cE , compared to experiment. Chiral uncertainties
obtained in the naive approach described in Sec. II A are shown after the ± sign, whereas estimates of the model errors are
in parentheses. For the charge radius the error in parenthesis also includes the uncertainties from Rn and Rp (see text for
additional details).

Chiral Model coptD coptE Eg.s.(
4He) rpp(

4He) rch(
4He)

LO - - �40.0873(6)± 10.02 1.0869(1) 1.344(2)± 0.22

NLO - - �27.542(1)± 3.44 1.475(1) 1.674(2)± 0.171

N2LO+3Nlnl �0.37 �0.189 �27.827(5)± 1.74 1.457(2) 1.658(2)± 0.085

N3LO+3Nlnl �1.33 �0.413 �27.90(2)± 0.87 1.472(2) 1.671(2)± 0.043

N4LO+3Nlnl �1.32 �0.248 �28.14(2)± 0.44 1.468(2) 1.668(2)± 0.021

N4LO+3Nb
lnl �1.32 �0.627 �27.84(2)± 0.44 1.492(2) 1.689(2)± 0.021

Expt. - - �28.296 1.6755 (28)

partial waves, the convergence is fairly rapid, yielding a
reasonably good description of the empirical phase shifts
from an accurate R-matrix analysis of A = 5 reaction
data [39] at low energies in all but the 2

P3/2 ground-
state resonance of 5He. Figure 4, showing the results of
the Bayesian estimate of the chiral uncertainty discussed
in Sec. II C, suggests that such disagreement between em-
pirical phase shifts and the NCSMC predictions using the
N4LO+3Nlnl interaction cannot be attributed to chiral
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FIG. 3. Evolution of the n-↵ phase shifts (lines) from third to
fifth order of the chiral expansion compared to the empirical
phase shifts obtained from an accurate R-matrix analysis of
A = 5 reaction data [39] (symbols).

truncation uncertainties. While in the present parame-
terization of the N2LO 3N force we adopt the e↵ective
↵N LECs recommended in Ref. [1] in an e↵ort to account
for missing higher-order terms, we cannot exclude that
the inconsistency between the chiral expansion for the
NN and 3N forces may be at the root of such disagree-
ment. In particular, the insu⇤cient splitting between the
2
P3/2 and 2

P1/2 partial waves points to the need for ad-
ditional spin-orbit strength in the 3N force, which could
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FIG. 4. Bayesian estimation of the uncertianty induced by the
truncation of the chiral expasnsion. The bands correpsond to
a 90% degree of belief interval estastimate at the fifth order
in the chiral expansion.

Kravvaris et al. PRC 102, 024616 (2020)
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Ab initio nuclear theory: neutron-alpha scattering

a = 1.32 fm and pmax = π/a = 471 MeV
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Ab initio nuclear theory: neutron-alpha scattering

a = 1.32 fm and pmax = π/a = 471 MeV
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Shen et al. arXiv:2411.14935 (2024)
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Ab initio nuclear theory: neutron-alpha scattering
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Ab initio nuclear theory: neutron-alpha scattering
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Ab initio nuclear theory: neutron-alpha scattering
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Ab initio nuclear theory: neutron-alpha scattering
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Ab initio nuclear theory: three-nucleon forces
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Ab initio nuclear theory: three-nucleon forces

The likelihood for the our model to be maximized is

L(β⃗, σ2) = ∏
n∈Strn

1
(2πσ2

n )1/2
exp

− 1
2σ2

n

zn − ztheory
n,NP − ∑

k ∈Fp

βk
∂ztheory

n
∂βk

2
 ,

Objective is to determine the optimal subsets Strn and Fp , as well as regression coefficients β⃗.

The acceptance probabilities for the new configurations Strn and Fp ,

αS = min

(
1,

L(β⃗′, σ2)q(S ′
trn,Fp |Strn,Fp)

L(β⃗, σ2)q(Strn,Fp |S ′
trn,Fp)

)
, αFp = min

(
1,

L(β⃗′, σ2)q(Strn,F ′
p |Strn,Fp)

L(β⃗, σ2)q(Strn,Fp |Strn,F ′
p)

)
.

Then, evaluate the Root Mean Square Deviation (RMSD) as follows,

RMSD(S) =

√√√√ 1
MS

∑
i ∈S

(
ztheory

i − zexp
i

Ai

)2

.
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Ab initio nuclear theory: three-nucleon forces

a = 1.32 fm, pmax = π/a = 471 MeV, and 2 three-nucleon forces
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Ab initio nuclear theory: three-nucleon forces

a = 1.32 fm, pmax = π/a = 471 MeV, and 3 three-nucleon forces
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Ab initio nuclear theory: three-nucleon forces

a = 1.32 fm, pmax = π/a = 471 MeV, and 4 three-nucleon forces
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Ab initio nuclear theory: recent progress in NLEFT

a = 1.32 fm, and pmax = π/a = 471 MeV
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The Equation of State (EoS) of nuclear matter:

■ Plays a fundamental role in understanding the structure and dynamics of neutron stars, the
early universe, and heavy-ion collisions.

■ Governs the behavior of nuclear matter under extreme conditions of density and
temperature.

The challenge is to accurately capture strong correlations and nuclear clustering while
overcoming sign problems and computational limitations, particularly at finite temperature.
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Ab initio nuclear theory: nuclear clustering
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Ab-initio nuclear thermodynamics using NLEFT

■ Pinhole Trace Algorithm (PTA): A novel approach enabling simulations of nuclear matter at
nonzero temperature with a computational speed-up by orders of magnitude over grand
canonical methods.
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Lu et al. Phys. Rev. Lett. 125, 192502 (2020)

■ First-principles calculations of nuclear
thermodynamics using NLEFT.

■ First-principles study of nuclear clustering
in hot dilute nuclear matter.
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Ab initio nuclear theory: recent progress in NLEFT

Work in progress.
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Ab initio nuclear theory: recent progress in NLEFT

Work in progress.
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Summary

■ Nuclear forces in the framework of chiral effective field theory are well-established,
and it is very important time for ab initio methods to make predictions in many-
nucleon system using these forces.

■ The wave function matching method offers rapid convergence in perturbation the-
ory for many-body nuclear systems. It enables accurate calculations of nuclear
binding energies, neutron matter, symmetric nuclear matter, and charge radii, all
in excellent agreement with experimental data.

■ The collaboration is advancing nuclear theory by performing calculations for nu-
clear structure, scattering and reactions.

■ Our recent calculations will be complemented by improvements to nuclear forces
on the lattice, such as including the explicit incorporation of the two-pion exchange
potentials and more.

Thanks!


