Progress of Perturbative Quantum Monte Carlo Calculations

Bing-Nan Lu 吕炳楠

Graduate School of China Academy of Engineering Physics

基于第一性原理的手征核力与核物理研究研讨会 2025-02-22,北京航空航天大学

Contents

- Brief introduction to nuclear lattice EFT
- Nuclear force with Wigner-SU(4) symmetry
- Perturbative quantum Monte Carlo method
- Summary and perspective

What is a nuclear EFT?

- Modern nuclear force constructions are based on the Effective Field Theory
- Theoretical foundation of EFT is the Wilsonian renormalization group:
 - High-momentum details can be integrated out & hidden in LECs
 - Low-momentum physics kept invariant under ren. group transformations

Lattice EFT: A many-body EFT solver

Lattice EFT = Chiral EFT + Lattice + Monte Carlo

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009), Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019)

- Discretized chiral nuclear force
- Lattice spacing $a \approx 1$ fm = 620 MeV (~chiral symmetry breaking scale)
- Protons & neutrons interacting via short-range, δ-like and long-range, pion-exchange interactions

• Exact method, polynomial scaling ($\sim A^2$)

Solve the non-perturbative nuclear many-body problem by sampling all configurations

Lattice EFT: A many-body EFT solver

Get *interacting g. s.* from imaginary time projection:

 $|\Psi_{g.s.}
angle \propto \lim_{ au
ightarrow \infty} \exp(- au H) |\Psi_A
angle$

with $|\Psi_A\rangle$ representing *A free* nucleons.

● Expectation value of any operator *O*:

$$\langle O
angle = \lim_{ au
ightarrow \infty} rac{\langle \Psi_A | \exp(- au H/2) \mathscr{O} \exp(- au H/2) | \Psi_A
angle}{\langle \Psi_A | \exp(- au H) | \Psi_A
angle}$$

• τ is discretized into time slices:

$$\exp(- au H) \simeq \left[:\exp(-\frac{ au}{L_t}H):
ight]^{L_t}$$

All possible configurations in $\tau \in [\tau_i, \tau_f]$ are sampled. Complex structures like nucleon clustering emerges naturally.

Lattice EFT: A many-body EFT solver

 Quantum correlations between nucleons are represented by fluctuations of the auxiliary fields.

$$\exp\left[-\frac{a_t C}{2}(\psi^{\dagger}\psi)^2\right] := \frac{1}{\sqrt{2\pi}}\int ds : \exp\left[-\frac{s^2}{2} + \sqrt{-a_t C}s(\psi^{\dagger}\psi)\right] :$$

- Long-range interactions such as OPEP or more complex interactions can be represented similarly.

In lattice EFT, solving a general Hamiltonian consists of 5 steps:

- 1. Rewrite expectation value as a path integral using auxiliary field transformation.
- 2. For each field configuration, calculate the amplitude.
- Integrate over the field variables using Monte Carlo algorithms.
- 4. Take the limit $\tau \rightarrow \infty$ to find the true ground state.
- 5. Take the limit $L \rightarrow \infty$ to eliminate the finite volume effects.

Compare Lattice EFT and Lattice QCD

	LQCD	LEFT		
degree of freedom	quarks & gluons	nucleons and pions		
lattice spacing	${\sim}0.1~\text{fm}$	${\sim}1~{\sf fm}$		
dispersion relation	relativistic	non-relativistic		
renormalizability	renormalizable	effective field theory		
continuum limit	yes	no		
Coulomb	difficult	easy		
accessibility	high ${\cal T}$ / low $ ho$	low ${\cal T}$ / $ ho_{ m sat}$		
sign problem	severe for $\mu > 0$	moderate		
Accessible by	0	Quarks		
Lattice QCD	quark-gluon	LQCD		
100 - hadronic	plasma	Clusters		
gas	Accessible by Lattice EFT	EFT		
E 10 - nuclear	quark nuclear MI			
gas nucl liquid	car liquid + gas			
and and supervised an	exotic quark er fluid v nuclear phases? Super fluid			
10^{-3} 10^{-2} ρ [f	10^{-1} 1 10^{-3} $\rho_{\rm N}$	Atom		

- Lattice EFT share a lot of common features with Lattice QCD. However,
 - Non-rel. \rightarrow particle number conservation
 - Quadratic dispersion relation
 → no Fermion doubling problem
 - EFT contains non-renormalizable terms
 → no continuum limit

Nuclear binding near a quantum phase transition

- The nuclear force can be either local (position-dependent) or non-local (velocity-dependent).
- Locality is an essential element for nuclear binding.

Zeroth order Hamiltonian (perturbative order)

We use a zeroth order lattice Hamiltonian that respects the Wigner-SU(4) symmetry

$$H_0 = K + rac{1}{2}C_{\mathrm{SU4}}\sum_{\boldsymbol{n}}: \tilde{
ho}^2(\boldsymbol{n}):$$

The smeared density operator $\tilde{\rho}(\boldsymbol{n})$ is defined as

$$\tilde{\rho}(\boldsymbol{n}) = \sum_{i} \tilde{a}_{i}^{\dagger}(\boldsymbol{n}) \tilde{a}_{i}(\boldsymbol{n}) + s_{L} \sum_{|\boldsymbol{n}'-\boldsymbol{n}|=1} \sum_{i} \tilde{a}_{i}^{\dagger}(\boldsymbol{n}') \tilde{a}_{i}(\boldsymbol{n}'), \qquad (1)$$

where *i* is the joint spin-isospin index

$$\tilde{a}_i(\boldsymbol{n}) = a_i(\boldsymbol{n}) + s_{NL} \sum_{|\boldsymbol{n}' - \boldsymbol{n}| = 1} a_i(\boldsymbol{n}').$$
(2)

In this work we use a lattice spacing a = 1.32 fm and the parameter set

Essential elements for nuclear binding

Charge density and neutron matter equation of state are impotant in element creation, neutron star merger, etc.

Lu, Li, Elhatisari, Lee, Epelbaum, Meissner, Phys. Lett. B 797 (2019) 134863

To better describe shell evolution, we introduce the **spin-orbit coupling interaction** without the problem.

$$H = H_{\text{free}} + \frac{1}{2!} C_2 \sum_{\vec{n}} \tilde{\rho}(\vec{n})^2 + \frac{1}{3!} C_3 \sum_{\vec{n}} \tilde{\rho}(\vec{n})^3 + \frac{C_{sl} V_{\frac{i}{2}(\mathbf{q} \times S) \cdot \mathbf{k}}}{\sum_{|n' - \vec{n}| = 1} \tilde{a}_i^{\dagger}(\vec{n}) \tilde{a}_i(\vec{n}) + s_L \sum_{|n' - \vec{n}| = 1} \sum_{i} \tilde{a}_i^{\dagger}(\vec{n}') \tilde{a}_i(\vec{n}')$$

$$\tilde{a}_i(\vec{n}) = a_i(\vec{n}) + s_{NL} \sum_{|\vec{n}' - \vec{n}| = 1} a_i(\vec{n}')$$

With **small coupling constants** and appropriate auxiliary field transformations, the introduction of the spin-orbit coupling term does not lead to sign problems.

Experimental data is required to determine five fitting parameters.

$$H = H_{\text{free}} + \frac{1}{2!} C_2 \sum_{\vec{n}} \tilde{\rho}(\vec{n})^2 + \frac{1}{3!} C_3 \sum_{\vec{n}} \tilde{\rho}(\vec{n})^3 + \frac{C_{sl} V_{\frac{i}{2}(\mathbf{q} \times S) \cdot \mathbf{k}}}{\sum_{\vec{n}} (\mathbf{q} \times S) \cdot \mathbf{k}}$$

Loss function : $\chi^2 = \chi^2(s_L, s_{NL}, C_2, C_3, C_{sl}) = \sum_A \left(\frac{E(A) - E(A)_{\text{exp}}}{\epsilon} \right)^2$

Determine the parameters by **minimizing** the loss function.

Difficulties: 1.Each calculation consumes a lot of computing resources.
2.The order of magnitude of parameters varies greatly.
3.Monte Carlo calculations involve statistical errors.

we consider using the gradient descent method.

Implementation: We implemented the Gradient Descending algorithm simply by introducing strategies such as **feature scaling** and **adaptive learning rates**.

Target nucleus

 $^4\mathrm{He},\,^{12}\mathrm{C},\,^{16}\mathrm{O},\,^{28}\mathrm{Si},\,^{32}\mathrm{S},\,\mathrm{and}$ $^{40}\mathrm{Ca}$

$$\chi^2 = \sum_A (rac{E(A) - E(A)_{exp}}{arepsilon})^2$$

The plot shows a **significant decrease** in the loss function with successive iterations.

Nuclear binding energies with spin-orbit term (preliminary)

- Spin-orbit term is essential for shell evolutions. (proper SL term do not induce sign problem)
- SU(4) + SL Hamiltonian, **5 parameters** optimized with masses of ⁴He, ¹⁶O, ²⁴Mg, ²⁸Si, ⁴⁰Ca, etc.

- Average error for 76 even-even nuclei: 2.932 MeV Applicable to light/medium mass nuclei Zhong-Wang Niu, B.L., in preparation
- Errors in other models
 - Relativistic mean field (PC-PK1): 2.258 MeV Peng-Wei Zhao et al., PRC82, 054319 (2010)
 - Non-rel. mean field (UNDEF1): 3.380 MeV Kortelainen et al., PRC 85, 024304 (2012).
 - Finite range droplet model: 1.142 MeV
 P. Moller et al., Atom. Data Nucl. Data Tables 109, 1 (2016)

Precision lattice chiral nuclear forces

Implementation in lattice calculations:

unitary

transformation

easily

computable

 $\psi'_0(r)$

- Wave function matching method Elhatisari et al., Nature 630, 59 (2024)
- Perturbative quantum Monte Carlo method Lu et al., PRL 128, 242501 (2022)
- Rank-one operator method Ma et al., PRL 132, 232502 (2024)

Perturbative quantum Monte Carlo

- Projection QMC targets the ground states, excited states are expensive
- Conventional Rayleigh-Schrodinger perturbation theory requires
 excited states

PRL 128, 242501 (2022) propose a novel perturbative QMC algorithm (ptQMC) that efficiently calculate the Second-order corrections.

In some cases, the second-order corrections are unexpectedly large!

Perturbative QMC for chiral forces

- We generate a chain of chiral Hamiltonian with progressively increasing precision
- The Hamiltonian converge and their difference are suppressed by powers of the momentum scale
 J. Liu, T. Wang, B.L., arXiv:2502.13565 (2025)

$$\begin{split} H_{\rm LO} &= K + V_{\rm 2N}^{(0)}, \\ H_{\rm NLO} &= K + V_{\rm 2N}^{(0)} + V_{\rm 2N}^{(2)} + V_{\rm CSB}^{\rm nn} + V_{\rm CSB}^{\rm pp} + V_{\rm GIR}, \\ H_{\rm N3LO} &= K + V_{\rm 2N}^{(0)} + V_{\rm 2N}^{(2)} + V_{\rm 2N}^{(4)} + V_{\rm CSB}^{\rm nn} \\ &+ V_{\rm CSB}^{\rm pp} + V_{\rm GIR}, \end{split}$$

Double expansion for N3LO chiral forces

$$H_{\rm N3LO} = H_{\rm SU4} + \lambda (H_{\rm NLO} - H_{\rm SU4}) + \mu (H_{\rm N3LO} - H_{\rm NLO})$$

$$E_{\rm N3LO}(\lambda,\mu) = \sum_{n,m=0}^{\infty} E_{\lambda^n \mu^m} \lambda^n \mu^m$$

The true wave function can be expanded into a series in correction term $V_C = H - H_0$

The partial amplitudes can be calculated efficiently with complexification of the field Variables.

$$\begin{split} |\Psi\rangle &= \lim_{L_t \to \infty} M^{L_t/2} |\Psi_T\rangle = |\Psi_0\rangle + |\Psi_1\rangle + \mathscr{O}(V_C^2) \\ \langle O\rangle &= \lim_{\tau \to \infty} \frac{\langle \Psi_T | \exp(-H\tau/2)O\exp(-H\tau/2) |\Psi_T\rangle}{\langle \Psi_T | \exp(-H\tau) |\Psi_T\rangle} \\ &= O_0 + 2\operatorname{Re}\left(\frac{\langle \Psi_0 | O | \Psi_1 \rangle}{\langle \Psi_0 | \Psi_0 \rangle} - O_0 \frac{\langle \Psi_0 | \Psi_1 \rangle}{\langle \Psi_0 | \Psi_0 \rangle}\right) + \mathscr{O}(V_C^2) \end{split}$$

$$\mathcal{M}_k(O) = \int \mathcal{D}c P(c + \bar{c}) \langle \cdots O \cdots M(s_k, c + \bar{c}) \cdots \rangle_T$$

$$= \mathcal{M}(s) \exp\left(\frac{\bar{c}^2}{2}\right) \int \mathcal{D}c \exp\left(-\frac{c^2}{2} + \epsilon\right)$$

N2LO ptQMC calculation with 3NF

N2LO calculation with three-body interaction Phys. Rev. Lett. 128, 242501 (2022)

	E_0	δE_1	E_1	δE_2	E_2	$E_{\rm exp}$
$^{3}\mathrm{H}$	-7.41(3)	+2.08	-5.33(3)	-2.99	-8.32(3)	-8.48
⁴ He	-23.1(0)	-0.2	-23.3(0)	-5.8	-29.1(1)	-28.3
⁸ Be	-44.9(4)	-1.7	-46.6(4)	-11.1	-57.7(4)	-56.5
12 C	-68.3(4)	-1.8	-70.1(4)	-18.8	-88.9(3)	-92.2
$^{16}\mathrm{O}$	-94.1(2)	-5.6	-99.7(2)	-29.7	-129.4(2)	-127.6
$^{16}\mathrm{O}^{\dagger}$	-127.6(4)	+24.2	-103.4(4)	-24.3	-127.7(2)	-127.6
$^{16}\mathrm{O}^{\ddagger}$	-161.5(1)	+56.8	-104.7(2)	-22.3	-127.0(2)	-127.6

NLO ptQMC calculation for ²H in a 7 fm box

Deuteron energy can be expanded using Cauchy integral formula

-5

-6

-7 (MeV)

-2

-3

-4

-5 -6

Comparison with Rayleigh-Schrodinger scheme

Perturbative expansion from random initial Hamiltonians

- The strength of the SU4 Interaction is rescaled by a constant kappa
- The convergence is universal, exact binding energies can be recovered with any initial guess!
- The precision can be enhanced by carefully finding a optimized H0

Tjon line from ptQMC calculations at N3LO

J. Liu, T. Wang, B.L., arXiv:2502.13565 (2025)

- He4 energies are calculated with ptQMC
- H3 energies are calculated with exact diagonalization
- Cancellations of various perturbative corrections locate the He4 energies on the Tjon line

300,	350	and	400	denotes	the	momentum	cutoff i	n MeV
------	-----	-----	-----	---------	-----	----------	----------	-------

	E _{tot}	E _{SU4}	E_{λ^1}	E_{λ^2}	E_{μ^1}	$E_{\lambda^1\mu^1}$
NLO (300)	-25.5(1)	-23.36(4)	3.0	-5.1(1)	0	0
N ³ LO (300)	-23.4(1)	-23.36(4)	3.0	-5.1(1)	2.7	-0.6
NLO (350)	-26.1(1)	-23.36(5)	3.2	-5.9(1)	0	0
N ³ LO (350)	-22.9(1)	-23.36(5)	3.2	-5.9(1)	4.4	-1.2
NLO (400)	-25.3(1)	-23.37(4)	7.0	-9.0(1)	0	0
N ³ LO (400)	-20.9(1)	-23.37(4)	7.0	-9.0(1)	6.3	-1.9

Summary and Perspective

- Perturbative Quantum Monte Carlo method is an efficient tool for solving nuclear many-body problems.
 - We need a high-quality zeroth order Hamiltonian without the sign problem, which can be constructed by fitting to finite nuclei.
 - We need a careful decomposition of the interaction, either by power counting or the feasibility for the Monte Carlo calculations.
- Things to do:
 - Uncertainty quantifications
 - Higher order perturbative corrections, especially for shallow bound states
 - Higher order corrections for density, radius, etc.
 - Benchmark with other *ab initio* methods
 - • • •

Thank you for you attention!