Exotic nuclear properties in DRHBc

Youngman Kim CENS/IBS

Introduction of IBS

Introduction of IBS and CENS

Introduction and organization of CENS

- **CENS**
- To become one of the leading research institutions in nuclear physics
 To explore uncharted regions of nuclei and find important discoveries

Center for **Exotic Nuclear Studies**

Nuclear

SETUCIUS

- Nuclearsynthesis
- r-process/rp-process
- Origin of elements
- Nuclear properties of key nuclei
- Direct and indirect measurements

- Nuclear shell evolution
- Shape evolution
- Shape coexistence
- Isospin symmetry

- Reaction mechanism • Spin-isospin collectives • Mass measurements • Transmutation • Dripline and new isotopes
- Compound and Nucleary direct nuclear reaction • Precise numerical quantum many-body calculations Density functional theory

- Interdisciplinary collaborations
- Research using RAON facility with ISOL and IF method
- Detector development

- RCHB (spherical symmetry)
- DRHBc (axial symmetry)
 - Dripline
 - Shape coexistence
 - Bubble
 - Alpha decay
 - Halos

RCHB

Lagrangian density of the point-coupling model

 $\mathcal{L} = \mathcal{L}^{free} + \mathcal{L}^{4f} + \mathcal{L}^{hot} + \mathcal{L}^{der} + \mathcal{L}^{em}$

$$\mathcal{L}^{\text{free}} = \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi,$$

$$\mathcal{L}^{4f} = -\frac{1}{2} \alpha_S(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2} \alpha_V(\bar{\psi}\gamma_\mu\psi)(\bar{\psi}\gamma^\mu\psi) - \frac{1}{2} \alpha_{TS}(\bar{\psi}\vec{\tau}\psi)(\bar{\psi}\vec{\tau}\psi) - \frac{1}{2} \alpha_{TV}(\bar{\psi}\vec{\tau}\gamma_\mu\psi)(\bar{\psi}\vec{\tau}\gamma^\mu\psi),$$

$$\mathcal{L}^{\text{hot}} = -\frac{1}{3}\beta_{S}(\bar{\psi}\psi)^{3} - \frac{1}{4}\gamma_{S}(\bar{\psi}\psi)^{4} - \frac{1}{4}\gamma_{V}[(\bar{\psi}\gamma_{\mu}\psi)(\bar{\psi}\gamma^{\mu}\psi)]^{2},$$

$$\mathcal{L}^{der} = -\frac{1}{2} \delta_S \partial_\nu (\bar{\psi}\psi) \partial^\nu (\bar{\psi}\psi) - \frac{1}{2} \delta_V \partial_\nu (\bar{\psi}\gamma_\mu\psi) \partial^\nu (\bar{\psi}\gamma^\mu\psi) - \frac{1}{2} \delta_{TS} \partial_\nu (\bar{\psi}\vec{\tau}\psi) \partial^\nu (\bar{\psi}\vec{\tau}\psi) - \frac{1}{2} \delta_{TV} \partial_\nu (\bar{\psi}\vec{\tau}\gamma_\mu\psi) \partial^\nu (\bar{\psi}\vec{\tau}\gamma_\mu\psi),$$

 $\mathcal{L}^{\rm em} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - e \frac{1 - \tau_3}{2} \bar{\psi} \gamma^{\mu} \psi A_{\mu}.$

After taking the mean field approximation on the above Lagrangian and performing the Legendre transformation, we obtain the corresponding mean field Hamiltonian:

$$E_{\rm RMF} = \langle \Phi | \mathcal{H}_{\rm RMF} | \Phi \rangle.$$

 $|\Phi
angle$ is the ground state of a nucleus

$$|\Phi\rangle = \prod_{a=1}^{n} c_a^{\dagger} |0\rangle,$$

$$\psi(x) = \sum_{a} \psi_a(x) c_a$$

By minimizing the density functional with respect to the densities,

Relativistic Dirac-Hartree-Bogoliubov equation Kucharek and Ring, Z. Phys. A 339, 23 (1991)

$$\begin{pmatrix} h_D - \lambda & \Delta \\ -\Delta^* & -h_D^* + \lambda \end{pmatrix} \begin{pmatrix} U_k \\ V_k \end{pmatrix} = E_k \begin{pmatrix} U_k \\ V_k \end{pmatrix}$$

Dirac Hamiltonian

$$h_D = \boldsymbol{\alpha} \cdot \boldsymbol{p} + \beta(M + S(r)) + V(r)$$

where scalar and vector potentials

$$S(r) = \alpha_S \rho_S + \beta_S \rho_S^2 + \gamma_S \rho_S^3 + \delta_S \Delta_{\rho S}$$
$$V(r) = \alpha_V \rho_V + \gamma_V \rho_V^3 + \delta_V \Delta_{\rho V} + eA_0 + \alpha_{TV} \tau_3 \rho_{TV} + \delta_{TV} \tau_3 \Delta_{TV}$$
with local densities

$$\rho_S = \sum_{k>0} \bar{V}_k(r) V_k(r)$$

$$\rho_V = \sum_{k>0} V_k^+(r) V_k(r)$$

$$\rho_{TV} = \sum_{k>0} V_k^+(r) \tau_3 V_k(r)$$

Coupling constant	Value	Dimension
α_s	$-3.96291 imes 10^{-4}$	MeV ⁻²
β_{S}	8.6653×10^{-11}	MeV ⁻⁵
Ys	$-3.80724 imes 10^{-17}$	MeV ⁻⁸
δ_S	-1.09108×10^{-10}	MeV^{-4}
α_V	2.6904×10^{-4}	MeV^{-2}
γ_V	-3.64219×10^{-18}	MeV ⁻⁸
δ_V	-4.32619×10^{-10}	MeV^{-4}
α_{TV}	$2.95018 imes 10^{-5}$	MeV^{-2}
δ_{TV}	-4.11112×10^{-10}	MeV^{-4}
V_n	-349.5	MeV fm ³
V_p	-330.0	MeV fm ³

The point-coupling constants and pairing strengths of PC-PK1 set.

fitted to observables of 60 selected spherical nuclei, including the binding energies, charge radii, and empirical pairing gaps.

The pairing potential reads,

$$\Delta_{kk'}(\mathbf{r},\mathbf{r}') = -\sum_{\tilde{k}\tilde{k'}} \mathbf{V}_{kk',\tilde{k}\tilde{k'}}(\mathbf{r},\mathbf{r}')\kappa_{\tilde{k}\tilde{k'}}(\mathbf{r},\mathbf{r}')$$

with the pairing tensor $\kappa = U^* V^T$ and a density-dependent delta pairing force

$$V^{pp}(\mathbf{r_1}, \mathbf{r_2}) = V_0 \delta(\mathbf{r_1} - \mathbf{r_2}) \frac{1}{4} (1 - P^{\sigma}) (1 - \frac{\rho(\mathbf{r_1})}{\rho_0}).$$

 $V_0 = 685$ MeV fm³: fixed by experimental odd-even mass differences of Ca isotopes, Sn isotopes, N=20 isotones and N=50 isotones.

Figure 1 402 nuclei from O to Ti predicted to be bound by the RCHB theory with the covariant density functional PC-PK1. For 234 nuclei with the available data, the binding energy differences $E_b^{\text{Exp.}} - E_b^{\text{Cal.}}$ between the data [63] and present calculations are shown as different color. Furthermore, the nucleon drip-lines predicted by the mass tables TMA, HFB-21, FRDM and WS3 are plotted for comparison.

Mostly, due to consistent treatment of pairing correlations in the continuum, the neutron drip line predicted by RCHB theory are more neutron-rich than other mass models.

QU XiaoYing, CHEN Ying, ZHANG ShuangQuan, ZHAO PengWei, SHIN Ik Jae, LIM Yeunhwan, KIM Youngman & MENG Jie

		1		1		1		1	
Element	ΔN	Element	ΔN	Element	ΔN	Element	ΔN	Element	ΔN
(Z)		(Z)		(Z)		(Z)		(Z)	
O (8)	2	Ni (28)	6	Rh (45)	11	Dy (66)	25	Fr (87)	29
Ne (10)	10	Cu (29)	6	Pd (46)	13	Ho (67)	23	Ra (88)	28
Na (11)	10	Zn (30)	1	Ag (47)	9	Er (68)	24	Ac (89)	28
Mg(12)	6	Ga (31)	1	Cd (48)	6	Tm (69)	26	Th (90)	37
Al (13)	8	Ge (32)	2	In (49)	4	Yb (70)	20	Pa (91)	43
Si (14)	6	As (33)	1	Sn (50)	6	Lu (71)	21	U (92)	39
P (15)	8	Se (34)	6	Sb (51)	8	Hf (72)	21	Np (93)	38
S (16)	6	Br (35)	7	Te (52)	2	Ta (73)	19	Pu (94)	44
K (19)	14	Kr (36)	9	I (53)	1	W (74)	13	Am (95)	45
Ca (20)	10	Rb (37)	10	Xe (54)	1	Re (75)	16	Cm (96)	38
Sc (21)	10	Sr (38)	14	Pr (59)	20	Os (76)	6	Bk (97)	38
Ti (22)	12	Y (39)	21	Nd (60)	16	Ir (77)	6	Cf (98)	37
V (23)	10	Zr (40)	19	Pm (61)	15	Pt (78)	6	Es (99)	35
Cr (24)	10	Nb (41)	12	Sm (62)	19	Au (79)	2	Fm (100)	36
Mn (25)	8	Mo (42)	12	Eu (63)	22	Hg (80)	2	Md (101)	28
Fe (26)	5	Tc (43)	13	Gd (64)	25	Tl (81)	2	No (102)	28
Co (27)	4	Ru (44)	10	Tb (65)	27	Rn (86)	31	Lr (103)	28

Number of neutron-rich nuclei predicted to be bound by the RCHB, but unbound in the FRDM.

9035 bound nuclei in O(Z=8) to Z=120 region predicted by RCHB theory with PC-PK1. For 2231 observed nuclei, the relative binding energy differences between the data and present calculations are shown in different colors. For measured nuclei, the root of relative square deviation:

$$\delta = \sum_{i}^{N} \sqrt{\frac{(E_{b}^{Exp.} - E_{b}^{Cal.})^{2} / (E_{b}^{Exp})^{2}}{N}} \text{ is } 0.70\%.$$

Atomic Data and Nuclear Data Tables 121-122 (2018) 1-215

Contents lists available at ScienceDirect

Atomic Data and Nuclear Data Tables

journal homepage: www.elsevier.com/locate/adt

The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory

X.W. Xia^a, Y. Lim^{b,c}, P.W. Zhao^{d,e}, H.Z. Liang^f, X.Y. Qu^{a,g}, Y. Chen^{d,h}, H. Liu^d, L.F. Zhang^d, S.Q. Zhang^d, Y. Kim^c, J. Meng^{d,a,i,*}

^a School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China

^b Cyclotron Institute, Texas A&M University, College Station, TX 77843, USA

- ^c Rare Isotope Science Project, Institute for Basic Science, Daejeon 305-811, Republic of Korea
- ^d State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
- ^e Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA
- ¹ RIKEN Nishina Center, Wako 351-0198, Japan
- 8 School of Mechaeronics Engineering, Guizhou Minzu University, China
- h Institute of materials, China Academy of Engineering Physics, Sichuan, 621907, China
- ¹ Department of Physics, University of Stellenbosch, Stellenbosch, South Africa

DRHBc mass table project

- ✓ To develop the DRHBc theory and extend it to provide a unified description of all even-even, odd-A, and odd-odd nuclei in the nuclear chart by overcoming all possible challenges.
- To construct the first relativistic nuclear mass table with the deformation and continuum effects by the DRHBc theory.
- To explore novel phenomena in nuclear physics by the DRHBc theory and various applications of the DRHBc mass table in nuclear astrophysics.
- ✓ To promote and strengthen an active scientific collaboration in the fields of nuclear physics and nuclear astrophysics between the parties.

https://drhbctable.jcnp.org/

Dripline v.s. deformation

Element (Z)	neutron	number (N)
Element (Z)	RCHB	DRHBc
O (8)	20	20
Ne (10)	32	28
Mg(12)	34	34
Si (14)	38	38
S(16)	40	40
Ar (18)	44	52
Ca~(20)	60	60

•

Eun Jin In, YK et al, Int.J.Mod.Phys.E 30 (2021) 2150009

Shape coexistence

In density functional theory, shape coexistence is closely linked to the existence of degenerate vacua. This raises the question: How small is "small" in the context of degenerate vacua? We can roughly estimate this small energy difference using the uncertainty principle. Taking $\Delta x \cdot \Delta p \approx \hbar/2$ with a nuclear diameter $\Delta x \approx 2.5A^{1/3}$ fm, we can estimate the energy uncertainty as $\Delta E \approx (\Delta p)^2/2m \approx 3.3/A^{2/3}$ MeV $\approx 100 - 300$ keV for most nuclei. Therefore, in the context of density functional theory, we can consider an energy difference of a few hundred keV to be "small".

Missing protons

Bubble nuclei

The calculated proton density for silicon-34 (right) and, for comparison, sulfur-36 (left), as a function of the distance from the center of the nucleus. At its center, silicon-34 has about half the proton density of a comparable nucleus.

The unstable isotope <u>silicon-34 has a</u> <u>bubblelike center</u> with a paucity of protons, scientists report October 24 in *Nature Physics*.

J.-P. EBRAN

OCTOBER 24, 2016

proton depletion fraction

$$\mathcal{B}_p \equiv \left(1 - \frac{\rho_{p,c}}{\rho_{p,\max}}\right) \times 100 \,[\%].$$

$$\bar{\rho}_{p,\max} = \frac{\int \rho_p(r,\theta)\delta(r-r_{\max}(\theta))dV}{\int \delta(r-r_{\max}(\theta))dV}$$

$$\mathcal{B}_{p}^{\star} \equiv \left(1 - \frac{\rho_{p,c}}{\bar{\rho}_{p,\max}}\right) \times 100\%$$

	DR	DRHBc						
Nucleus	β_2	\mathcal{B}_p^\star [%]	$\mathcal{B}_p^{\star}(=\mathcal{B}_p)$ [%]					
²⁵⁶ Hf	0.000	29.2	27.4					
²⁵⁸ W	0.000	28.3	26.6					
²⁶⁰ Os	0.000	27.2	25.5					
²⁵⁶ W	0.000	26.7	25.1					
²⁵⁸ Os	0.000	26.0	24.3					
²⁵⁴ Hf	0.057	25.7	25.7					
²⁰⁰ Hf	0.000	25.6	24.8					
¹⁹⁸ Hf	0.000	25.3	24.5					
²⁶² Pt	0.000	25.2	23.5					
^{202}W	0.000	25.1	24.3					

TABLE III. List of the isotopes with both bubble structure and shape coexistence. $|\Delta E|$ is the absolute value of the energy difference between prolate and oblate shapes.

	Prolate	shape	Oblate		
Nucleus	β_2	\mathcal{B}_p^\star [%]	β_2	\mathcal{B}_p^\star [%]	$ \Delta E $ [MeV]
²⁰² Hf	+0.100	23.7	-0.072	22.4	0.214
²³⁴ Hf	+0.272	20.5	-0.234	2.4	0.263
²³⁶ Hf	+0.262	20.4	-0.227	2.2	0.318
²⁴⁰ Hf	+0.241	21.0	-0.192	3.5	0.468
²⁵⁰ Hf	+0.091	24.0	-0.086	18.3	0.171
^{194}W	+0.136	23.1	-0.126	12.1	0.155
^{204}W	+0.080	23.8	-0.060	22.8	0.087
^{254}W	+0.068	24.2	-0.060	21.7	0.401
¹⁹⁶ Os	+0.123	23.6	-0.119	11.0	0.096
²⁰⁶ Os	+0.044	24.1	-0.042	23.5	0.006
²⁰⁸ Os	+0.112	22.4	-0.079	20.4	0.447
²⁵⁶ Os	+0.058	24.0	-0.065	20.6	0.141
²¹⁰ Pt	+0.072	22.5	-0.061	21.4	0.016
²¹² Pt	+0.113	21.0	-0.080	19.6	0.404

Y.-B. Choi, C.-H. Lee, M.-H. Mun, YK, *Bubble nuclei with shape coexistence in even-even isotopes of Hf to Hg*, Phys. Rev. C 105 (2022) 024306

Alpha decay

$$T_{1/2} = \frac{\hbar \ln 2}{\Gamma},$$

$$\Gamma = P_{\alpha} N_{\rm f} \frac{\hbar^2}{4\mu} P_{\rm total},$$

$$P_{\alpha} = \frac{2S_{\rm p} + 2S_{\rm n} - S_{\alpha}}{S_{\alpha}}$$

$$S_{\rm p}(Z,N) = E_{\rm b}(Z,N) - E_{\rm b}(Z-1,N),$$

$$S_{\rm n}(Z,N) = E_{\rm b}(Z,N) - E_{\rm b}(Z,N-1),$$

$$S_{\alpha}(Z,N) = E_{\rm b}(Z,N) - E_{\rm b}(Z-2,N-2)$$

total penetration probability with the WKB approximation

Preformation factor from cluster-formation model

Preformation factor from NLEFT?

Halos

³⁷Mg was identified as a halo nucleus in 2014 and remains the heaviest nuclear halo system to date, its description has been still challenging afterwards.

K.Y. Zhang, S.Q. Yang, J.L. An, S.S. Zhang, P. Papakonstantinou, M.-H. Mun, YK, H. Yan, PLB 844 (2023) 138112

										²⁶ P	²⁷ P	²⁸ P	²⁹ P	³⁰ P	³¹ P	³² P	³³ P	³⁴ P	³⁵ P	³⁶ P	³⁷ P	³⁸ P	³⁹ P	⁴⁰ P	⁴¹ P	⁴² P	⁴³ P	⁴⁴ P	⁴⁵ P	⁴⁶ P	⁴⁷ P
								²³ Si	²⁴ Si	²⁵ Si	²⁶ Si	27 Si	²⁸ Si	²⁹ Si	³⁰ Si	³¹ Si	³² Si	³³ Si	³⁴ Si	³⁵ Si	³⁶ Si	³⁷ Si	³⁸ Si	³⁹ Si	⁴⁰ Si	⁴¹ Si	⁴² Si	⁴³ Si	⁴⁴ Si	⁴⁵ Si	
								²² Al	²³ Al	²⁴ Al	²⁵ Al	²⁶ Al	²⁷ Al	²⁸ Al	²⁹ Al	³⁰ Al	³¹ Al	³² Al	³³ Al	³⁴ Al	³⁵ Al	³⁶ Al	³⁷ Al	³⁸ Al	³⁹ Al	⁴⁰ Al	⁴¹ Al	⁴² Al	⁴³ Al		
							²⁰ Mg	²¹ Mg	²² Mg	²³ Mg	²⁴ Mg	²⁵ Mg	²⁶ Mg	²⁷ Mg	²⁸ Mg	²⁹ Mg	³⁰ Mg	³¹ Mg	³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	³⁶ Mg	³⁷ Mg	³⁸ Mg		⁴⁰ Mg				
								²⁰ Na	²¹ Na	²² Na	²³ Na	²⁴ Na	²⁵ Na	²⁶ Na	²⁷ Na	²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na	³² Na	³³ Na	³⁴ Na	³⁵ Na		³⁷ Na		³⁹ Na				
						¹⁷ Ne	¹⁸ Ne	¹⁹ Ne	²⁰ Ne	²¹ Ne	²² Ne	²³ Ne	²⁴ Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne		³⁴ Ne				ł				
							¹⁷ F	¹⁸ F	¹⁹ F	²⁰ F	²¹ F	²² F	²³ F	²⁴ F	²⁵ F	²⁶ F	27 F		²⁹ F		³¹ F						n	ewly	disc	over	ed
				¹³ O	¹⁴ O	¹⁵ O	¹⁶ O	¹⁷ O	¹⁸ O	¹⁹ O	²⁰ O	²¹ O	²² 0	²³ 0	²⁴ O			-		-	((D. S.	Ahn	et al	. Phys	5. Rev	. Lett	. 129,	2125	502, 2	2022)
				¹² N	¹³ N	¹⁴ N	¹⁵ N	¹⁶ N	¹⁷ N	¹⁸ N	¹⁹ N	²⁰ N	²¹ N	²² N	²³ N																
		⁹ C	¹⁰ C	¹¹ C	¹² C	¹³ C	¹⁴ C	¹⁵ C	¹⁶ C	¹⁷ C	¹⁸ C	¹⁹ C	²⁰ C		²² C											Stal	ble n	uclei	i		
		⁸ B		$^{10}\mathrm{B}$	¹¹ B	^{12}B	^{13}B	¹⁴ B	¹⁵ B		¹⁷ B		¹⁹ B													Pro	ton h	nalo 1	nucle	i	
		⁷ Be		⁹ Be	¹⁰ Be	¹¹ Be	¹² Be		¹⁴ Be					1												Pro	ton ł	nalo c	candi	dates	S
	Ì	⁶ Li	⁷ Li	⁸ Li	9Li		¹¹ Li																			Net	ıtron	halc	nuc	lei	
³ He ⁴	He		⁶ He		⁸ He			I																		Neı	ıtron	halc	can	didat	es

K.Y. Zhang, P. Papakonstantinou, M.-H. Mun, Y. Kim, H. Yan et al. Phys. Rev. C 107 (2023) 4, L041303

Atomic Data and Nuclear Data Tables

Volume 144, March 2022, 101488

Nuclear mass table in deformed relativistic Hartree–Bogoliubov theory in continuum, I: Even–even nuclei

Atomic Data and Nuclear Data Tables

Volume 158, July 2024, 101661

Nuclear mass table in deformed relativistic Hartree–Bogoliubov theory in continuum, II: Even-Z nuclei

Peng Guo¹, Xiaojie Cao², Kangmin Chen³, Zhihui Chen⁴, Myung-Ki Cheoun⁵, Yong-Beom Choi⁶, Pak Chung Lam⁴, Wenmin Deng⁷, Jianmin Dong⁸⁹, Pengxiang Du¹⁰, Xiaokai Du¹¹, Kangda Duan⁸, Xiaohua Fan¹¹, Wei Gao¹², Lisheng Geng^{13 14 15 16}, Eunja Ha¹⁷, Xiao-Tao He¹⁸, Jinniu Hu¹⁹, Jingke Huang¹², Kun Huang¹⁸, Yanan Huang²⁰, Zidan Huang¹², Kim Da Hyung⁴, Hoi Yat Chan⁴, Xiaofei Jiang¹, Seonghyun Kim⁵, Youngman Kim²¹, Chang-Hwan Lee⁶, Jenny Lee⁴, Jian Li¹⁰, Minglong Li²², Zhipan Li¹¹, Zhengzheng Li¹, Zhanjiang Lian²³, Haozhao Liang ^{22 24}, Lang Liu ²⁵, Xiao Lu ²⁶, Zhi-Rui Liu ¹⁸, Jie Meng ¹ $\stackrel{?}{\sim}$ \boxtimes , Ziyan Meng ¹, Myeong-Hwan Mun⁵, Yifei Niu²⁰, Zhongming Niu²⁷, Cong Pan²⁸¹, Jing Peng⁷, Xiaoying Qu³, Panagiota Papakonstantinou²⁹, Tianshuai Shang¹⁰, Xinle Shang⁸⁹, Caiwan Shen³⁰, Guofang Shen ¹³, Tingting Sun ¹², Xiang-Xiang Sun ^{31 26}, Sibo Wang ³², Tianyu Wang ³³, Yiran Wang², Yuanyuan Wang³⁴, Jiawei Wu¹⁸, Liang Wu¹², Xinhui Wu³⁵, Xuewei Xia³⁶, Huihui Xie¹⁰, Jiangming Yao^{37 38}, Kwan Yau Ip⁴, To Chung Yiu⁴, Jianghan Yu³⁰, Yangyang Yu³, Kaiyuan Zhang ^{39 1}, Shijie Zhang ¹², Shuangquan Zhang ¹, Wei Zhang ¹², Xiaoyan Zhang ²⁷, Yanxin Zhang ³⁷, Ying Zhang ², Yingxun Zhang ^{23 40}, Zhenhua Zhang ³⁴, Qiang Zhao ²¹, Yingchun Zhao¹, Ruyou Zheng¹³, Chang Zhou¹, Shan-Gui Zhou²⁶ 4¹³¹ ¹⁴, Lianjian Zou¹⁹, DRHBc Mass Table Collaboration

DRHBc mass table project

Nuclear mass table in deformed relativistic Hartree–Bogoliubov theory in continuum, II: Even-Z nuclei

4829 bound even-Z nuclei from O(Z=8) to Z=120 predicted by the DRHBc theory with PC-PK1. For the 620 even-Z nuclei ($8 \le Z \le 120$) with charge radius measured, the deviations between the DRHBc calculations with PC-PK1 and the data are scaled by colors.

Atom.Data Nucl.Data Tabl. 158 (2024) 101661

For the1244 even-Z nuclei with mass measured, the binding energy differences between the data and the DRHBc calculations are scaled bycolors.

It may be interesting if one can clearly pin down the location of the neutron dripline and describe exotic nuclear shapes in NLEFT.

✓ Clustering (d, t, ³He, alpha) in NLEFT? right after this meeting with M. Kim and S. Shen@BUAA

ONOKORO project

- ✤ A new project ONOKORO (RCNP, RIKEN, HIMAC)
- To investigate clustering in medium-to heavy mass nuclei with cluster knock-out reactions

 $(p,pX) @ E/A = 200 - 300 MeV (X: d, t, 3He, \alpha)$

기초과학연구원

- ***** Relative abundances of d,t,³He, α clusters and their isotopic dependences
- Surface α formation in heavy nuclei \rightarrow understanding of α -decay
- Discovery of deuteron clusters in heavy nuclei
- First determination of the ratio of t/³He clusters

A new detector array, TOGAXSI - GAGG:Ce scintillators and silicon-strip detectors

High light output & ligh energy resolution & Non hygroscopic nature

GAGG scintillator has high light output high energy resolution and high density ong oxide scintillators. GAGG has n oscopic and no self radiation nature

4-inch-diameter GAGG bulk single crystal was achieved.

We can supply the variety of the GAGG shane Cube, array, plate, cylinder, rod, wafer etc. are available

The first generation of the TOGAXSI will be ready by the end of 2024, including the 10 GAGG:Ce scintillators provided by CENS.

