

Pion photo-production and weak production from a nucleon

Based on: arxiv:2502.12074

Reporter: Zhaolong Zhang

Collaborators: Yusheng Gao, Xu Feng, Luchang Jin, Chuan Liu, Ulf.G Meißner

2025.03.03

Background: testing QCD chiral dynamics

• Chiral symmetry breaking is an important feature in QCD

Background: testing QCD chiral dynamics

- Pion photoproduction is an applicable testground to explore the pion physics.
- Long history since 1970s, typical interplay between theory and experiment.

Background: necessary for neutrino experiment

- Future ν oscillation experiment also need high precision pion production data.
- DUNE designed uncertainty, 1) signal: 1%, 2) background: 5%

R. Acciarri et al. (DUNE), (2015)

	Background	Normalization Uncertainty	Correlations
	For $ u_e/ar{ u}_e$ appe	earance:	
$ u_{\mu}N \rightarrow \nu_{\mu}N\pi^{0} \rightarrow \nu_{\mu}Ne^{+}e^{-}$	Beam ν_e	5%	Uncorrelated in $ u_e$ and $\bar{\nu}_e$ samples
	(NC)	5%	Correlated in $ u_e$ and $\bar{\nu}_e$ samples
$ u_{\mu}N ightarrow \mu^{-}N\pi^{0} ightarrow \mu^{-}Ne^{+}e^{-}$	ν_{μ} CC	5%	Correlated to NC
	ν_{τ} CC	20%	Correlated in $ u_e$ and $\bar{\nu}_e$ samples
	For $ u_{\mu}/\bar{\nu}_{\mu} $ disa	ppearance:	
$ u_{\mu}N ightarrow u_{\mu}N\pi^{\pm}$	NC	5%	Uncorrelated to $ u_e/ar{ u}_e$ NC background
	$ u_{ au}$	20%	Correlated to $ u_e/ar{ u}_e \ u_{ au}$ background

• Reducing these background error need precise theoretical input!

Theory framework

• The central object is to calculating the matrix element:

V.Bernard, N.Kaiser, T.S.H.Lee, and U.-G.Meißner, **Phys.Rept**. (1994)

$${\mathcal J}_{\mu}^{em}=\langle N\pi|J_{\mu}^{em}(0)|N
angle, \ \ {\mathcal J}_{\mu}^{W(Z),A}=\langle N\pi|J_{\mu}^{W(Z),A}(0)|N
angle$$

Electromagnetic current

$$\begin{aligned}
\mathbf{Extracting S-wave multipole} \\
\mathbf{mplitudes} \\
\mathbf{L}_{0+}, E_{0+} \\
\mathbf{L}_{0+}, E_{0+} \\
\mathbf{L}_{0+}, H_{0+}, M_{0+} \\
\mathbf{L}_{0+}, M_{0+} \\
\mathbf{L}_{0+} \\
\mathbf{L}_{0+}, M_{0+} \\
\mathbf{L}_{0+} \\
\mathbf{L}_$$

• To calculate these matrix element, one should calculate the relevant correlation function:

$$C_{N\pi JN}(t_{f},t_{J},t_{i})=\left\langle O_{N\pi}^{I'',I_{z}''}ig(ec{0},t_{f}ig) ilde{J}_{\mu}^{I',I_{z}'}ig(ec{k},t_{J}ig)\overline{O}_{N}^{I,I_{z}}ig(ec{p},t_{i}ig)
ight
angle$$

• After spectra decomposition, the correlation function could be related to matrix element $\mathcal{J}_{s',s}$,

$$C_{N\pi JN}\!=\!lpha_{N\pi JN}\sum_{s',s} \xi_{s'}\left[\mathcal{J}
ight]_{s',s}\xi_{s}^{\dagger}$$

• $\alpha_{N\pi JN}$ contains the overlap amplitude of $O_{N\pi}$ and O_N , which could be extracted from two point functions. $C_{N\pi}(t_f, t_i) = \left\langle O_{N\pi}^{I,I_z}(\vec{0}, t_f) \overline{O}_{N\pi}^{I,I_z}(\vec{0}, t_i) \right\rangle, \ C_N(t_f, t_i) = \left\langle O_N^{I,I_z}(-\vec{p}, t_f) \overline{O}_N^{I,I_z}(\vec{p}, t_i) \right\rangle.$

• To extract the multipole amplitudes, one should design projection operator for each. Take L_{0+} for example.

$$\frac{1}{N_R} \sum_{\hat{k} \in O_h} \frac{1}{2} Tr \Big[\mathcal{P}_{L_{0+}} \cdot C_{N\pi VN}^0 \Big] \Big|_{\hat{k}\vec{k}} = \alpha_{N\pi JN} \alpha_m L_{0+} \quad \text{Trace in } 2 \times 2 \text{ spin space}$$
Momentum average in group O_h

$$\mathcal{P}_{L_{0+}} = \frac{k_0}{|\vec{k}|} (\hat{k} \cdot \vec{\sigma})$$
Improve the signal !

$${\mathcal P}_{\scriptscriptstyle L_{0+}}\!=\!rac{k_0}{|ec k|}ig(\hat k\cdotec\sigmaig), \hspace{0.2cm} ec{\mathcal P}_{\scriptscriptstyle E_{0+}}\!=\!rac{1}{2}ig(ec\sigma-ig(\hat k\cdotec\sigmaig)\hat kig),$$

• Similarly for other multipoles

$$ec{\mathcal{P}}_{_{H_{0+}}}\!=\!rac{m}{|ec{k}|}\hat{k}, \quad {\mathcal{P}}_{_{L_{0+}^{(W)},H_{0+}}}\!=\!1\,, \quad ec{\mathcal{P}}_{_{M_{0+}}}\!=\!rac{i}{2}ig(ec{\sigma}\! imes\!\hat{k}ig).$$

Control systematics: Finite volume effects

• Given finite volume state $|N\pi\rangle_V$, and infinite volume state $|N\pi\rangle_\infty$.

$$1 = \sum_{n} |N\pi_{n}\rangle_{V} \langle N\pi_{n}|_{V} = \int dE \frac{dn}{dE} |N\pi_{n}\rangle_{V} \langle N\pi_{n}|_{V} = \int dE |N\pi_{n}\rangle_{\infty} \langle N\pi_{n}|_{\infty}$$

- The two states are related by the density of state $|N\pi\rangle_{\infty} = \left(\frac{dn}{dE}\right)^{1/2} |N\pi\rangle_{V}$
- From finite volume quantization condition

L. Lellouch and M. Lüscher, Commun. Math. Phys, (2001)

$$\frac{dn}{dE} = \frac{1}{\pi} \frac{d(\delta_1 + \phi_{\mathbf{P}}^{\Gamma})}{dE} = \frac{E}{4\pi k^2} \left(k \frac{\partial \delta_1}{\partial k} + q \frac{\partial \phi_{\mathbf{P}}^{\Gamma}}{\partial q} \right)$$

Derivative of phase shift

Analytical known zeta function

Need scattering length as input!

Control systematics: Finite volume effects

M. Lüscher, Commun. Math. Phys. (1986)

• Calculate the S-wave scattering length by Lüsher method, at $\vec{p} = 0$.

$$R^{I}(t) = \frac{C_{N\pi}^{I}(t_{f}, t_{i})}{C_{N}(t_{f}, t_{i})C_{\pi}(t_{f}, t_{i})} \approx A_{I}(1 - \delta E_{I} t) \longrightarrow \delta E_{I} \xrightarrow{\text{Lüsher method}} a_{0}^{I}$$

	Ensemble	24D	32Dfine	Combined fit
	$\chi^2/{ m dof}$	0.26	0.47	0.34
$I = \frac{1}{2}$	$\delta E_I \; [\text{MeV}]$	-3.78(79)	-3.9(1.2)	-3.80(66)
	$M_{\pi}a_0^I$	0.157(37)	0.157(56)	0.157(31)
	$\chi^2/{ m dof}$	0.26	0.51	0.38
$I = \frac{3}{2}$	$\delta E_I \; [\text{MeV}]$	2.91(80)	3.40(90)	3.13(60)
-	$M_\pi a_0^I$	-0.098(25)	-0.111(27)	-0.104(18)

Only one previous LQCD at physical point: $M_{\pi}a^{3/2} = -0.13(4)$

Data driven analysis: $M_{\pi}a^{3/2} = -0.087(2), \ M_{\pi}a^{1/2} = 0.170(2)$

M. Hoferichter et al, PLB (2023)

C. Alexandrou et al, **PRD** (2024) < 8 /22 >

Control systematics: Finite volume effects

- The influence of finite volume correction is around 10%
- Shift the central value about $1 \sim 2\sigma$

• The operator $O_{N\pi}$ and O_N could couple to any states with same quantum number

$$O_{N(0)\pi(0)} \implies |N(p)\pi(-p)\rangle, \ p \in \left\{0, \ \frac{2\pi}{L}, \sqrt{2}\frac{2\pi}{L}, \sqrt{3}\frac{2\pi}{L}\right\}$$

$$O_{N(p)} \longrightarrow |N(p)\rangle, |N(p)\pi(0)\rangle, |N(0)\pi(p)\rangle$$

- Only contribution from ground state $|N(p)\rangle$, $|N(0)\pi(0)\rangle$ is needed.
- To remove the excited state contribution, we design optimized operator

$$\tilde{O}_{N(0)\pi(0)} = O_{N(0)\pi(0)} + c_2 O_{N(1)\pi(-1)} + c_3 O_{N(\sqrt{2})\pi(-\sqrt{2})} + c_4 O_{N(\sqrt{3})\pi(-\sqrt{3})}$$
$$\tilde{O}_{N(p)} = O_{N(p)} + d_2 O_{N(p)\pi(0)} + d_3 O_{N(0)\pi(p)}$$

• They're expected to have suppressed overlap with excited states.

• The coefficients c_2 , c_3 , c_4 and d_2 , d_3 are solved by generalized eigenvalue problem (GEVP) method separately.

$$C_{ij} = \left\langle O_i(t) \overline{O}_j(0) \right\rangle, \ i, j \in \left\{ N(p) \pi(-p) | \ p = 0, \ \frac{2\pi}{L}, \sqrt{2} \frac{2\pi}{L}, \sqrt{3} \frac{2\pi}{L} \right\} \xrightarrow{\text{GEVP}} c_2, \ c_3, \ c_4$$
$$C_{ij} = \left\langle O_i(t) \overline{O}_j(0) \right\rangle, \ i, j \in \{N(p), \ N(p) \pi(0), \ N(0) \pi(p)\} \xrightarrow{\text{GEVP}} d_2, \ d_3$$

• The GEVP has non-negligible influence to both scattering length and matrix element.

• The contribution of different states for the operators.

• Comparing the multipole extracted by optimize operator $\tilde{O}_{N(0)\pi(0)}$, and original operator $O_{N(0)\pi(0)}$.

• Shift the central value around $1 \sim 3\sigma$

• Comparing the multipole extracted by optimize operator $\tilde{O}_{N(p)}$, and original operator $O_{N(p)}$.

• Shift the central value around $3 \sim 6\sigma$

• Better plateau behaviour

¹T. Blum et al. (RBC, UKQCD), **PRD**,

93, 074505

• We use two DWF gauge ensembles with physical pion mass¹.

Ensemble	m_{π} [MeV]	L/a	T/a	a^{-1} [GeV]	$N_{\rm conf}$
$24\mathrm{D}$	142.6(3)	24	64	1.023(2)	207
32Dfine	143.6(9)	$\overline{32}$	$\overline{64}$	1.378(5)	69

- The two ensemble has the same physical size (L=4.6fm) and different lattice spacing, where we could check the lattice artifacts of the result.
- The relevant nucleon four point functions are calculated using random sparse field technique.
 Y. Li, S.-C. Xia, X. Feng, L.-C. Jin, and C. Liu,

Numerical analysis: Data generating

• Wick contraction: 22 topologies are considered.

Numerical analysis: Data generating

• Note that one five point correlation function is used in analysing excited state effects of *N*(*p*), in which only 7 disconnected diagrams is calculated.

Numerical analysis: Result of multipoles

Numerical analysis: Result of multipoles

Vector multipoles

• The multipoles given in isospin basis.

V.Bernard, N.Kaiser, T.S.H.Lee, and U.-G.Meißner, **Phys.Rept**. (1994)

Axial multipoles

Numerical analysis: Result of multipoles

• The pion photoproduction multipoles in $\gamma^* p \rightarrow p\pi^0$, $\gamma^* p \rightarrow n\pi^+$, $\gamma^* n \rightarrow p\pi^-$ reactions.

• The LQCD data shows good agreement with Low energy theorem and experiment.

V.Bernard, N.Kaiser, T.S.H.Lee, and U.-G.Meißner, **Phys.Rept**. (1994)

M. Mai, J. Hergenrather, M. Döring, T. Mart, U. G. Meißner, D. Rönchen, and R. Workman, **EPJA**, (2023)

• In this work, we use two isospin symmetric ensembles with the same volume, which is impossible to explore the isospin breaking effects and volume dependence.

- Future work could be move forward to the DIS region of scattering:
 - $N\pi$ production with higher invariant mass and different partial waves.
 - Multi-pions production process, even for $N\pi\pi$, the finite volume quantization formulism is absent.
 - Resonance production process, most promising $\Delta(1232)$ resonance, with almost the total branch ratio decay to p-wave $N\pi$.

Thank you for listening!