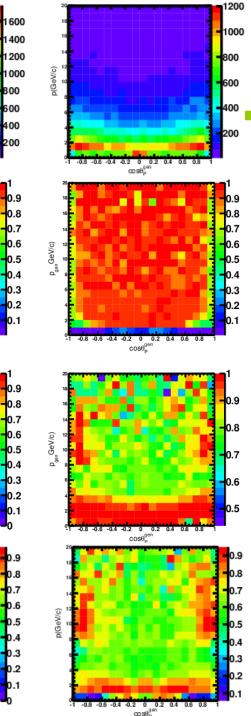
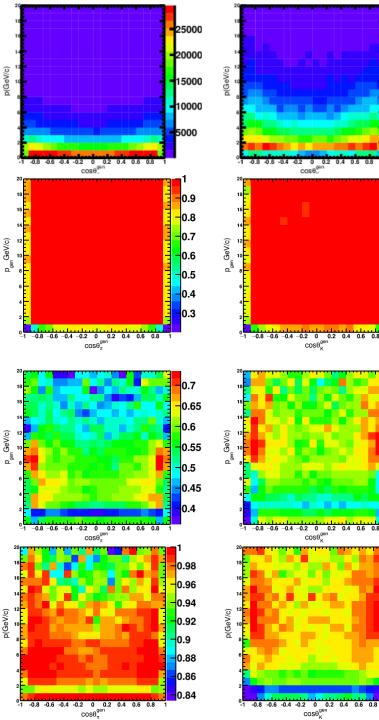
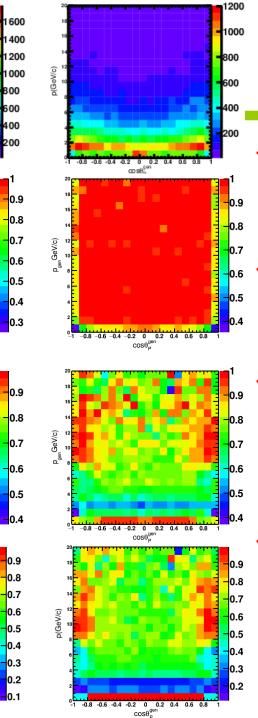

PID efficiency study -- Status


- Summary of efficiency study in physical process $Z \rightarrow qq$
 - Analysis package "AnalysisPIDAIg" is ready for PID studies with more info.
 - Usage: ./run.sh AnalysisPID.py (waiting for being merged to master)
 - Input: track.toot ("CompleteTracks", "CompleteTracksParticleAssociation", "DndxTracks", "RecTofCollection")
 - Output: pid.root

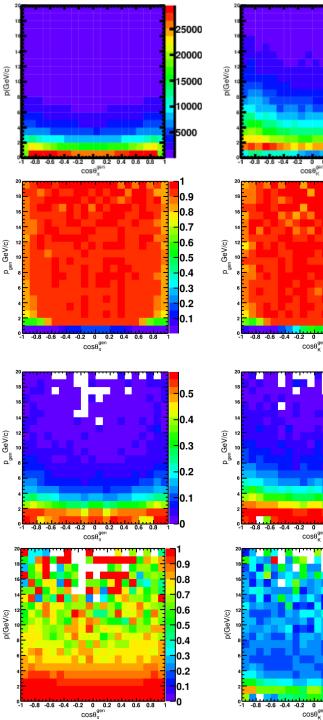
	recoPDG		tofrecoPD	*	tpcrecoPD	*	PDG		genp	*
**	*******	****	*********	***	********	***	*******	***	*******	*>
*	13		11	*	13	*	-211	*	2.0160632	×
*	-211		-2212	*	-211	*	-211	*	12.237938	×
*	-321		11		-2212		-2212		7.4308529	
*	-211		11		-211		-211		1.4640836	×
*	321		9999	*	321		211	*	0.9093410	×

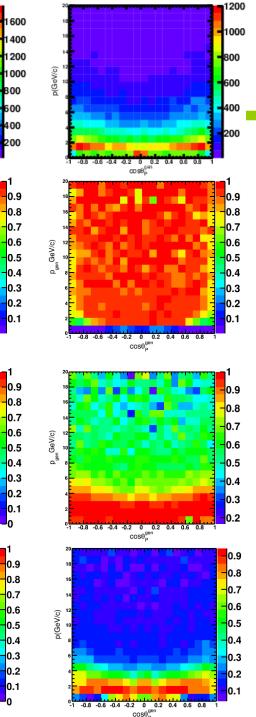
tpc_chi2s * tof_chi2s * tot_chi2s ************************************	
58.271472 * 0.0041644 * 58.27563	1 * 1 *
1.738e-05 * 0.0726111 * 0.0726285	5 1 * 1 *
0.9978665 * 0.1780346 * 1.1759012	
16.148244 * 20.041910 * 36.19015	
6.2707228 * 238.66332 * 244.93404	¹ <u>0</u> * <u>1</u> *


- TPC/ToF PID performance of stable $\pi/K/p$ identification
 - Asymmetry in dndx fixed by G. Z.
 - PID chi2 comparison include e/mu instead of pi/K/p only
- Samples used under CEPCSW_tdr24.12.0 -- master
 - $Z \rightarrow qq$ 100000 events (truth π : *K*: p = 1717145: 226778: 93635)
 - stable π: K: p = 1494874: 167837: 93635 (simulatorStatus==0)
 2024/12/26 X.Ma, C.Zhang



Efficiency and purity in $Z \rightarrow qq$


- Track truth phase space (p_{gen} , $\cos \theta_{gen}$)
- TPC + ToF Track
 efficiency in reco
 tracks
- PID efficiency distribution (minimum TPC + ToF χ^2)
- Purity distribution of
 track π/K/p (have
 TPC + ToF hit) 2

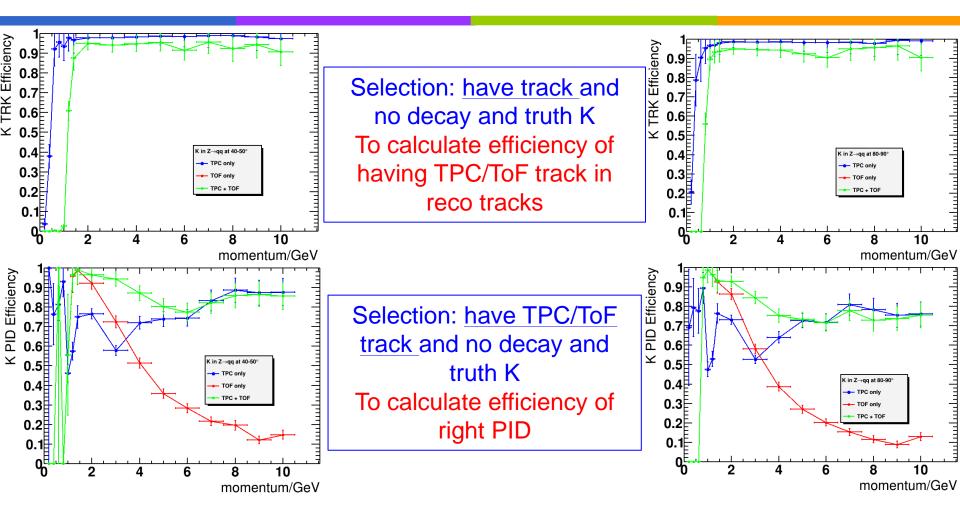


Efficiency and purity in $Z \rightarrow qq$ TPC only

- Track truth phase
 - space ($p_{\text{gen}}, \cos\theta_{\text{gen}}$)
- TPC Track efficiency in reco tracks
 - PID efficiency distribution (minimum TPC χ^2)
- Purity distribution of
 track π/K/p (have
 TPC hit)

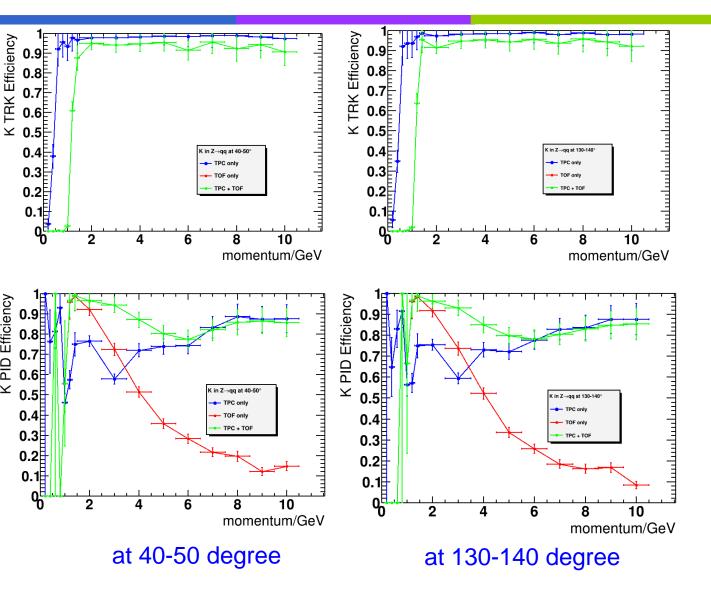
0.2 0.4 0.6

02 04


Efficiency and purity in $Z \rightarrow qq$ ToF only

Track truth phase

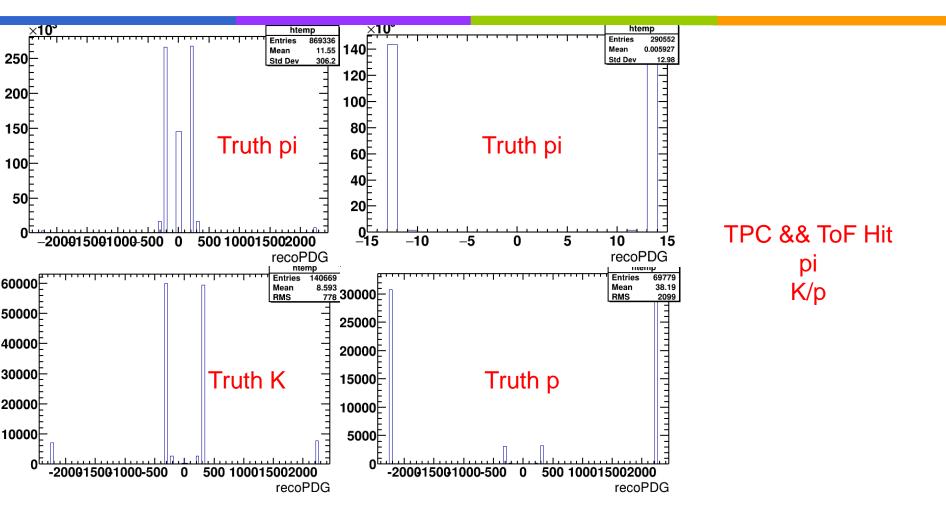
space ($p_{\text{gen}}, \cos\theta_{\text{gen}}$)


- ToF Track efficiency in reco tracks
- PID efficiency distribution (minimum ToF χ^2)
- Purity distribution of
 track π/K/p (have
 ToF hit)

TPC/ToF TRK/PID efficiency at 40-50 / 80-90 degree for K in $Z \rightarrow qq$

 $K \text{ in } Z \rightarrow qq$ efficiency at 40-50 / 80-90 degree

Efficiency asymmetry in $Z \rightarrow qq$



PID efficiency almost the same at 40-50 degree and 130-140 degree

Backup

$$\begin{split} \chi_{\mathrm{TPC}}(i) &= \frac{(dN/dx)_{\mathrm{meas}} - (dN/dx)_{\mathrm{exp}}^{i}}{\sigma_{(dN/dx)_{\mathrm{meas}}}}, i = \pi/K/p \\ \chi_{\mathrm{ToF}}(i) &= \frac{t_{\mathrm{meas}} - t_{\mathrm{exp}}^{i}}{\sigma_{t_{\mathrm{meas}}}}, \sigma_{t_{\mathrm{meas}}} = \sqrt{0.05^{2} + 0.02^{2}} \\ \chi^{2}(i) &= \chi_{\mathrm{TOF}}^{2}(i) + \chi_{\mathrm{TPC}}^{2}(i) \\ \chi(i) &= \sqrt{\chi^{2}(i)} \end{split}$$
Efficiency_{tot}(i) &= Efficiency_{\mathrm{trk}}(\mathrm{TPC}/\mathrm{ToF}) \times Efficiency_{\mathrm{PID}}(i) \\ \mathrm{Efficiency_{\mathrm{trk}}}(i) &= Efficiency_{\mathrm{trk}}(\mathrm{TPC}) = \frac{N_{\mathrm{trk}}^{\mathrm{TPC}}}{N_{\mathrm{trk}}^{\mathrm{reco}}} \\ \mathrm{Efficiency_{\mathrm{PID}}}(i) &= \frac{N_{\mathrm{trk}}^{\mathrm{TPC}}(\chi^{2}(i) < \chi^{2}(j))}{N_{\mathrm{trk}(i)}^{\mathrm{TPC}}} (j \neq i) \\ \mathrm{purity}(K) &= \frac{N_{\mathrm{K} \to K}}{N_{K \to K} + N_{\pi \to K} + N_{p \to K}} \\ \mathrm{Efficiency_{\mathrm{opti.\,PID}}}(i) &= \frac{N_{\mathrm{trk}(i)}^{\mathrm{TPC}}(a < \chi(i \to i) < b)}{N_{\mathrm{trk}(i)}^{\mathrm{TPC}}} \\ \mathrm{purity}_{\mathrm{opti.\,PID}}(K) \end{split}

Truth pi/K/p and no decay

