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Šimko et al. Scalable Declarative HEP Workflows

FIGURE 1 | A simplified diagram illustrating typical stages in experimental particle physics data analyses. After data acquisition that is using a multi-tiered trigger
filtering step, the experimental collision data are further reduced in computing processes before they are ready for physics analyses. Events generated following
theoretical models undergo a detector simulation step and are subsequently subject to the same reconstruction and processing steps as the collision data. The
individual analysts then compare collision and simulated data using statistical analysis techniques. Our paper focuses mostly on the computational reproducibility
challenges inherent in the last data analysis stages.

are the same as for the collision data. The first processing
stages usually take place in big compute farms and world-wide
grid computing infrastructures using automatised recipes. The
processing is done by specialised teams and the end result
are collision and simulated data suitable for individual particle
physics analyses. The physics analysis stage uses statistical
analysis techniques and is performed by individual researchers
using a variety of computational approaches (Rizzi et al., 2019),
from personal laptops and desktops up to small compute
batch farms.

In this paper, we are focusing mostly on the latter statistical
data analysis stage as performed by individual researchers. In
contrast to the centralised and largely automated processing
steps discussed above, the data analysis stage typically requires
an iterative approach that is used to understand the data sets
and optimise the overall analysis. The variety of computing
approaches used, combined with a high turnover of young
researchers performing the analyses in their experimental teams,
poses a particular problem for computational reproducibility.
The researchers typically use imperative programming, directly
expressing all the details about the flow of necessary calculations
for the compute platform at hand. This causes several challenges
for possible future rerunning of the original analysis using
different data, different theoretical models, updated software
versions of dependent libraries, or a completely different
compute backend than originally foreseen.

We argue for an alternative declarative data analysis approach
that captures the overall knowledge associated with a particle
physics analysis in a more structured way. The analysis process
is expressed as a series of steps depending on other steps,
each step declaring its precise sets of inputs and outputs. The
structured description of the analysis process focuses first and
foremost on “what” needs to be done in each step without paying

particular attention to “how” the individual computation might
be performed by the computer (Lloyd, 1994). This helps to design
well-defined interfaces in the analysis flow, isolating unnecessary
computational details until they actually matter.

We have developed a reproducible analysis platform called
REANA (Šimko et al., 2019) that allows researchers to express
the computational data analysis steps using such declarative
paradigm. Taking advantage of recent advances of container
technology in the general IT industry, the computations are
isolated from supporting compute environments as much as
possible. This helps with the portability of the analysis process
as a whole. The REANA platform reads the structured analysis
description provided by the researcher and instantiates analysis
steps on containerised compute clouds. The support for various
declarative workflow languages [CWL (Amstutz et al., 2016),
Yadage (Cranmer and Heinrich, 2017)] and various compute
backends [Kubernetes (Burns et al., 2016), HTCondor (Thain
et al., 2005) for high-throughput computations, Slurm (Yoo et al.,
2003) for high-performance computations] aims to ensure the
universal reproducibility of computations on diverse computing
platforms. The cloud-native approach of REANA, together
with allowing researchers to use several high-level workflow
languages or to run different parts of the same workflow on
different compute backends, is whatmakes REANA specific when
compared to other similar workflow management systems used
in scientific research such as HTCondor DAGMan (HTC, 2021)
or Pegasus (Deelman et al., 2015).

The paper is structured as follows. Section 2 of this
paper describes the declarative approach and discusses its
scalability. Section 3 demonstrates the applicability of the
method on two concrete case studies from the ATLAS (ATLAS
Collaboration, 2008) and CMS (CMS Collaboration, 2008)
experiments analysing proton-proton collisions at the Large
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FIGURE 1 | A simplified diagram illustrating typical stages in experimental particle physics data analyses. After data acquisition that is using a multi-tiered trigger
filtering step, the experimental collision data are further reduced in computing processes before they are ready for physics analyses. Events generated following
theoretical models undergo a detector simulation step and are subsequently subject to the same reconstruction and processing steps as the collision data. The
individual analysts then compare collision and simulated data using statistical analysis techniques. Our paper focuses mostly on the computational reproducibility
challenges inherent in the last data analysis stages.

are the same as for the collision data. The first processing
stages usually take place in big compute farms and world-wide
grid computing infrastructures using automatised recipes. The
processing is done by specialised teams and the end result
are collision and simulated data suitable for individual particle
physics analyses. The physics analysis stage uses statistical
analysis techniques and is performed by individual researchers
using a variety of computational approaches (Rizzi et al., 2019),
from personal laptops and desktops up to small compute
batch farms.

In this paper, we are focusing mostly on the latter statistical
data analysis stage as performed by individual researchers. In
contrast to the centralised and largely automated processing
steps discussed above, the data analysis stage typically requires
an iterative approach that is used to understand the data sets
and optimise the overall analysis. The variety of computing
approaches used, combined with a high turnover of young
researchers performing the analyses in their experimental teams,
poses a particular problem for computational reproducibility.
The researchers typically use imperative programming, directly
expressing all the details about the flow of necessary calculations
for the compute platform at hand. This causes several challenges
for possible future rerunning of the original analysis using
different data, different theoretical models, updated software
versions of dependent libraries, or a completely different
compute backend than originally foreseen.

We argue for an alternative declarative data analysis approach
that captures the overall knowledge associated with a particle
physics analysis in a more structured way. The analysis process
is expressed as a series of steps depending on other steps,
each step declaring its precise sets of inputs and outputs. The
structured description of the analysis process focuses first and
foremost on “what” needs to be done in each step without paying

particular attention to “how” the individual computation might
be performed by the computer (Lloyd, 1994). This helps to design
well-defined interfaces in the analysis flow, isolating unnecessary
computational details until they actually matter.

We have developed a reproducible analysis platform called
REANA (Šimko et al., 2019) that allows researchers to express
the computational data analysis steps using such declarative
paradigm. Taking advantage of recent advances of container
technology in the general IT industry, the computations are
isolated from supporting compute environments as much as
possible. This helps with the portability of the analysis process
as a whole. The REANA platform reads the structured analysis
description provided by the researcher and instantiates analysis
steps on containerised compute clouds. The support for various
declarative workflow languages [CWL (Amstutz et al., 2016),
Yadage (Cranmer and Heinrich, 2017)] and various compute
backends [Kubernetes (Burns et al., 2016), HTCondor (Thain
et al., 2005) for high-throughput computations, Slurm (Yoo et al.,
2003) for high-performance computations] aims to ensure the
universal reproducibility of computations on diverse computing
platforms. The cloud-native approach of REANA, together
with allowing researchers to use several high-level workflow
languages or to run different parts of the same workflow on
different compute backends, is whatmakes REANA specific when
compared to other similar workflow management systems used
in scientific research such as HTCondor DAGMan (HTC, 2021)
or Pegasus (Deelman et al., 2015).

The paper is structured as follows. Section 2 of this
paper describes the declarative approach and discusses its
scalability. Section 3 demonstrates the applicability of the
method on two concrete case studies from the ATLAS (ATLAS
Collaboration, 2008) and CMS (CMS Collaboration, 2008)
experiments analysing proton-proton collisions at the Large
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FIGURE 1 | A simplified diagram illustrating typical stages in experimental particle physics data analyses. After data acquisition that is using a multi-tiered trigger
filtering step, the experimental collision data are further reduced in computing processes before they are ready for physics analyses. Events generated following
theoretical models undergo a detector simulation step and are subsequently subject to the same reconstruction and processing steps as the collision data. The
individual analysts then compare collision and simulated data using statistical analysis techniques. Our paper focuses mostly on the computational reproducibility
challenges inherent in the last data analysis stages.

are the same as for the collision data. The first processing
stages usually take place in big compute farms and world-wide
grid computing infrastructures using automatised recipes. The
processing is done by specialised teams and the end result
are collision and simulated data suitable for individual particle
physics analyses. The physics analysis stage uses statistical
analysis techniques and is performed by individual researchers
using a variety of computational approaches (Rizzi et al., 2019),
from personal laptops and desktops up to small compute
batch farms.

In this paper, we are focusing mostly on the latter statistical
data analysis stage as performed by individual researchers. In
contrast to the centralised and largely automated processing
steps discussed above, the data analysis stage typically requires
an iterative approach that is used to understand the data sets
and optimise the overall analysis. The variety of computing
approaches used, combined with a high turnover of young
researchers performing the analyses in their experimental teams,
poses a particular problem for computational reproducibility.
The researchers typically use imperative programming, directly
expressing all the details about the flow of necessary calculations
for the compute platform at hand. This causes several challenges
for possible future rerunning of the original analysis using
different data, different theoretical models, updated software
versions of dependent libraries, or a completely different
compute backend than originally foreseen.

We argue for an alternative declarative data analysis approach
that captures the overall knowledge associated with a particle
physics analysis in a more structured way. The analysis process
is expressed as a series of steps depending on other steps,
each step declaring its precise sets of inputs and outputs. The
structured description of the analysis process focuses first and
foremost on “what” needs to be done in each step without paying

particular attention to “how” the individual computation might
be performed by the computer (Lloyd, 1994). This helps to design
well-defined interfaces in the analysis flow, isolating unnecessary
computational details until they actually matter.

We have developed a reproducible analysis platform called
REANA (Šimko et al., 2019) that allows researchers to express
the computational data analysis steps using such declarative
paradigm. Taking advantage of recent advances of container
technology in the general IT industry, the computations are
isolated from supporting compute environments as much as
possible. This helps with the portability of the analysis process
as a whole. The REANA platform reads the structured analysis
description provided by the researcher and instantiates analysis
steps on containerised compute clouds. The support for various
declarative workflow languages [CWL (Amstutz et al., 2016),
Yadage (Cranmer and Heinrich, 2017)] and various compute
backends [Kubernetes (Burns et al., 2016), HTCondor (Thain
et al., 2005) for high-throughput computations, Slurm (Yoo et al.,
2003) for high-performance computations] aims to ensure the
universal reproducibility of computations on diverse computing
platforms. The cloud-native approach of REANA, together
with allowing researchers to use several high-level workflow
languages or to run different parts of the same workflow on
different compute backends, is whatmakes REANA specific when
compared to other similar workflow management systems used
in scientific research such as HTCondor DAGMan (HTC, 2021)
or Pegasus (Deelman et al., 2015).

The paper is structured as follows. Section 2 of this
paper describes the declarative approach and discusses its
scalability. Section 3 demonstrates the applicability of the
method on two concrete case studies from the ATLAS (ATLAS
Collaboration, 2008) and CMS (CMS Collaboration, 2008)
experiments analysing proton-proton collisions at the Large
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FIGURE 1 | A simplified diagram illustrating typical stages in experimental particle physics data analyses. After data acquisition that is using a multi-tiered trigger
filtering step, the experimental collision data are further reduced in computing processes before they are ready for physics analyses. Events generated following
theoretical models undergo a detector simulation step and are subsequently subject to the same reconstruction and processing steps as the collision data. The
individual analysts then compare collision and simulated data using statistical analysis techniques. Our paper focuses mostly on the computational reproducibility
challenges inherent in the last data analysis stages.

are the same as for the collision data. The first processing
stages usually take place in big compute farms and world-wide
grid computing infrastructures using automatised recipes. The
processing is done by specialised teams and the end result
are collision and simulated data suitable for individual particle
physics analyses. The physics analysis stage uses statistical
analysis techniques and is performed by individual researchers
using a variety of computational approaches (Rizzi et al., 2019),
from personal laptops and desktops up to small compute
batch farms.

In this paper, we are focusing mostly on the latter statistical
data analysis stage as performed by individual researchers. In
contrast to the centralised and largely automated processing
steps discussed above, the data analysis stage typically requires
an iterative approach that is used to understand the data sets
and optimise the overall analysis. The variety of computing
approaches used, combined with a high turnover of young
researchers performing the analyses in their experimental teams,
poses a particular problem for computational reproducibility.
The researchers typically use imperative programming, directly
expressing all the details about the flow of necessary calculations
for the compute platform at hand. This causes several challenges
for possible future rerunning of the original analysis using
different data, different theoretical models, updated software
versions of dependent libraries, or a completely different
compute backend than originally foreseen.

We argue for an alternative declarative data analysis approach
that captures the overall knowledge associated with a particle
physics analysis in a more structured way. The analysis process
is expressed as a series of steps depending on other steps,
each step declaring its precise sets of inputs and outputs. The
structured description of the analysis process focuses first and
foremost on “what” needs to be done in each step without paying

particular attention to “how” the individual computation might
be performed by the computer (Lloyd, 1994). This helps to design
well-defined interfaces in the analysis flow, isolating unnecessary
computational details until they actually matter.

We have developed a reproducible analysis platform called
REANA (Šimko et al., 2019) that allows researchers to express
the computational data analysis steps using such declarative
paradigm. Taking advantage of recent advances of container
technology in the general IT industry, the computations are
isolated from supporting compute environments as much as
possible. This helps with the portability of the analysis process
as a whole. The REANA platform reads the structured analysis
description provided by the researcher and instantiates analysis
steps on containerised compute clouds. The support for various
declarative workflow languages [CWL (Amstutz et al., 2016),
Yadage (Cranmer and Heinrich, 2017)] and various compute
backends [Kubernetes (Burns et al., 2016), HTCondor (Thain
et al., 2005) for high-throughput computations, Slurm (Yoo et al.,
2003) for high-performance computations] aims to ensure the
universal reproducibility of computations on diverse computing
platforms. The cloud-native approach of REANA, together
with allowing researchers to use several high-level workflow
languages or to run different parts of the same workflow on
different compute backends, is whatmakes REANA specific when
compared to other similar workflow management systems used
in scientific research such as HTCondor DAGMan (HTC, 2021)
or Pegasus (Deelman et al., 2015).

The paper is structured as follows. Section 2 of this
paper describes the declarative approach and discusses its
scalability. Section 3 demonstrates the applicability of the
method on two concrete case studies from the ATLAS (ATLAS
Collaboration, 2008) and CMS (CMS Collaboration, 2008)
experiments analysing proton-proton collisions at the Large
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The answer — Jet tagging!
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Key question: 
      What type of particle initiates the jet?

Jet: a collimated spray of particles
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ATLAS-FTAG-2023-01

Evolution of algorithms from Run 1 to Run 3

25

Figure 13: Evolution of the 
light- (udsg, yellow bars) 
and c-jet (red bars) 
rejection for a fixed b-jet 
identification efficiency of 
70% for taggers from Run 1 
to Run 3. The BvsAll 
discriminator is used to 
derive all numbers but the 
last one, where the 
weighted BvsAll 
discriminator with a factor 
of kc = 0.14 is used, yielding 
a good trade-off between 
light- and c-jet rejection.

CMS-DP-2024-066

Tremendous progress in jet tagging in the past few years 

more than an order of magnitude improvement in light jet rejection 

A driving force — advanced machine learning (ML) techniques

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
https://cds.cern.ch/record/2904702
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“Shallow” ML 

• Inputs: O(10) hand-
crafted features 

• tracks, SVs, (soft 
leptons) 

• Model: BDTs or 
feedforward NNs

2015 2017 2019 2021 2023



To
w

ar
ds

 a
 F

ou
nd

at
io

n 
M

od
el

 fo
r J

et
 P

hy
sic

s 
- D

ec
. 3

0,
 2

02
4 

- H
ui

lin
 Q

u 
(C

ER
N

)

THE EVOLUTION OF JET TAGGERS

8

“Shallow” ML 
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• Model: BDTs or 
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• O(10-100) particles 

• O(1-10) SVs 

• O(~1000) low-level 
features in total 

• Model: sequence-based 
deep NNs 

• 1D CNNs, RNNs, …
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“Shallow” ML 

• Inputs: O(10) hand-
crafted features 
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• Model: BDTs or 
feedforward NNs

“Deep” ML 

• Inputs: 

• O(10-100) particles 

• O(1-10) SVs 

• O(~1000) low-level 
features in total 

• Model: sequence-based 
deep NNs 

• 1D CNNs, RNNs, …

Particle Cloud / GNNs 
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• O(1-10) SVs 

• but viewed as an 
unordered “cloud” 

• Model: 

• Graph Neural 
Networks (e.g., 
ParticleNet)

Transformers 

• Inputs: 

• O(10-100) particles 

• O(1-10) SVs 

• Model:

Figure 1: The Transformer - model architecture.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1,
respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum

3
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

⇤Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

†Work performed while at Google Brain.
‡Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

⇤Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

†Work performed while at Google Brain.
‡Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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Unified Tagger

s-tagging performance

CMS-BTV 13

Figure 4: s-tagging ROC curves. It’s the first time a specific s-node is added to a 
jet tagging algorithm in the CMS experiment. Performances indicates we can 

achieve a low efficiency s-tagger.

s-tagging

τ-tagging performance

CMS-BTV 14

Figure 5: τ-tagging ROC curves. ParticleNet and UParT show similar 
performances. ParticleNet performs better at high misidentification rate and 

UParT at lower rate.

τ identification 

Jet energy regression

CMS-BTV 16

Figure 6: Median of the raw regressed jet energy response. UParT shows a constant 
improvement compared to ParticleNet, especially in the most extreme |η| bin. ParticleNet being 
trained with Run 2 MC samples, the combination of the new training algorithm and the usage of 
Run3 MC samples lead to a better response estimation. First studies on the calibration of the jet 

energy regression for PNet where performed in Ref. [21].

jet energy regression

quark/gluon tagger
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a proof-of-concept “Sophon”: Particle Transformer trained on a wide range of boosted jet signatures (QCD + 2-, 3-, 
and 4-prong, 188 classes in total), decay modes, and resonance masses (up to 500 GeV)
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12

TABLE I. Summary of the 188 jet labels in the JetClass-II dataset.

Major types Index range Label names

Resonant jets:

X ! 2 prong

0–14 bb, cc, ss, qq, bc, cs, bq, cq, sq, gg, ee, µµ, ⌧h⌧e, ⌧h⌧µ, ⌧h⌧h

Resonant jets:

X ! 3 or 4 prong

15–160 bbbb, bbcc, bbss, bbqq, bbgg, bbee, bbµµ, bb⌧h⌧e, bb⌧h⌧µ, bb⌧h⌧h, bbb, bbc, bbs, bbq, bbg, bbe, bbµ, cccc,
ccss, ccqq, ccgg, ccee, ccµµ, cc⌧h⌧e, cc⌧h⌧µ, cc⌧h⌧h, ccb, ccc, ccs, ccq, ccg, cce, ccµ, ssss, ssqq, ssgg,
ssee, ssµµ, ss⌧h⌧e, ss⌧h⌧µ, ss⌧h⌧h, ssb, ssc, sss, ssq, ssg, sse, ssµ, qqqq, qqgg, qqee, qqµµ, qq⌧h⌧e,
qq⌧h⌧µ, qq⌧h⌧h, qqb, qqc, qqs, qqq, qqg, qqe, qqµ, gggg, ggee, ggµµ, gg⌧h⌧e, gg⌧h⌧µ, gg⌧h⌧h, ggb,
ggc, ggs, ggq, ggg, gge, ggµ, bee, cee, see, qee, gee, bµµ, cµµ, sµµ, qµµ, gµµ, b⌧h⌧e, c⌧h⌧e, s⌧h⌧e,
q⌧h⌧e, g⌧h⌧e, b⌧h⌧µ, c⌧h⌧µ, s⌧h⌧µ, q⌧h⌧µ, g⌧h⌧µ, b⌧h⌧h, c⌧h⌧h, s⌧h⌧h, q⌧h⌧h, g⌧h⌧h, qqqb, qqqc, qqqs,
bbcq, ccbs, ccbq, ccsq, sscq, qqbc, qqbs, qqcs, bcsq, bcs, bcq, bsq, csq, bce⌫, cse⌫, bqe⌫, cqe⌫, sqe⌫,
qqe⌫, bcµ⌫, csµ⌫, bqµ⌫, cqµ⌫, sqµ⌫, qqµ⌫, bc⌧e⌫, cs⌧e⌫, bq⌧e⌫, cq⌧e⌫, sq⌧e⌫, qq⌧e⌫, bc⌧µ⌫, cs⌧µ⌫,
bq⌧µ⌫, cq⌧µ⌫, sq⌧µ⌫, qq⌧µ⌫, bc⌧h⌫, cs⌧h⌫, bq⌧h⌫, cq⌧h⌫, sq⌧h⌫, qq⌧h⌫

QCD jets 161–187 bbccss, bbccs, bbcc, bbcss, bbcs, bbc, bbss, bbs, bb, bccss, bccs, bcc, bcss, bcs, bc, bss, bs, b, ccss, ccs,
cc, css, cs, c, ss, s, others

troduced above, and a list of the matched particles with
their type and kinematic features included.

Appendix B: Supplementary details on trained
models

1. Sophon model

The Sophon model adopts the Particle Transformer ar-
chitecture following Ref. [36] with the fully connected
multilayer perception (MLP) extended to a two layers
with dimensions of (512, 188). The main body of the
Sophon model includes 6 particle attention blocks and
2 class attention blocks, with an embedding dimension
of 128, and the number of heads equals 8. The ini-
tial particle features are embedded with a 3-layer MLP
with (128, 512, 128) nodes, and the pairwise particle fea-
tures are embedded with a 4-layer elementwise MLP with
(64, 64, 64, 8) nodes. The GELU nonlinearity is used
throughout the model. The Sophon model includes 2.3M
parameters in total.

The model takes input from all jet constituents, includ-
ing the kinematic features, particle identification, and
impact parameter features. It adopted the scaled kine-
matics inputs, where features related to the constituent
or jet four-momentum are all scaled by a parameter such
that the jet pT after scaling is 500GeV.

The procedure of sampling-based reweighting from the
training dataset to decorrelate the tagger score with
jet pT and mSD is introduced as follows. The train-
ing samples are selected into the training pool with a
predefined probability during the on-the-fly data load-
ing process. These probabilities serve as reweighting fac-
tors that reweight the two-dimensional histograms bin
by bin, constructed by jet pT and mSD within the range
of 200 < pT < 2500GeV and 20 < mSD < 500GeV.
The target is to yield the same normalized distributions
for several specific reweighting classes. The reweighting
classes are formed by merging 188 finely classified cat-
egories to some extent: classes with only quark flavor

di↵erences have been merged, and all 27 QCD jet classes
have been merged into one. This results in 30 reweight-
ing classes. In addition, the relative weights of the 30
reweighting classes are properly chosen to weigh the num-
ber of samples in the training pool for each classes.
The model is trained with a batch size of 512 with an

initial learning rate (LR) of 5⇥10�4. The full JetClass-

II dataset is split into 80/20% for each file to serve as the
training/validation set. It is trained over 80 epochs, with
each epoch iterating over 10M samples. The optimizer
and the LR scheduler are the same as the ParT train-
ing [36]. We use the Lookahead optimizer [74] with
k = 6 and ↵ = 0.5 and the inner optimizer is RAdam [75]
with �1 = 0.95, �2 = 0.999, and ✏ = 10�5. The LR re-
mains constant for the first 70% of the iterations, and
then decays exponentially, changing at the beginning of
every following epoch, down to 1% of the initial value at
the end of the training. A model checkpoint is saved in
every epoch, and the checkpoint with the highest accu-
racy on the validation set is chosen.

2. Sophon model* (42-class)

This model adopted the same Sophon model config-
uration except that the classification node dimension is
modified to 42. It is trained to classify a subset of jet
signatures, which covers all the final states from 2-prong
resonant jets and the QCD jets. The training dataset
then corresponds to the 2-prong resonant and QCD jets,
summed up to 40M jets.
Compared to the Sophon model training, it is trained

over 80 epochs, with each epoch iterating 2.5M samples.
The other training configurations are the same as the
Sophon model case.

3. ParT model for X ! bb (bs) vs. QCD

This binary classifier with the ParT architecture [36] is
used to benchmark the current state-of-the-art discrimi-

C. Li (李聪乔) et. al., 
 arXiv:2405.12972

(a) Pre-training

(b) Usage

Sophon model
(main structure)

Nlatent = 128  classesNout = 188

resonant jets 
(2 prongs)

resonant jets 
(3, 4 prongs)

QCD jets

Transfer learning
Constructing 
discriminantsInput Layer ∈ ℝ¹⁰

⃗g

discr. = ∑ g
∑ g + ∑ g

Input Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ¹⁴ Output Layer ∈ ℝ¹⁰

Input Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ¹⁰ Hidden Layer ∈ ℝ¹⁰ Output Layer ∈ ℝ²

Train new layers
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A few observations: 

larger dataset helps — even if not directly adding the target classes
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of the current tagging capability within the CMS experi-
ment [27, 29, 62]. These models are trained as binary
classifiers to distinguish X ! bb (bs) jets against the
QCD jets, applying similar training settings. The per-
formance of the Sophon model in X ! bb tagging and its
transfer learning version in X ! bs tagging already sur-
passes that of dedicated ParT or ParticleNet trainings.
This demonstrates the ability of the method to adapt to
various model-specific jet tagging tasks 1.

FIG. 2. Benchmark of Sophon model’s performance in the
X ! bb and X ! bs jet tagging tasks, with the signal orig-
inated from a BSM resonance X0 with mX0 = 200GeV that
decays to bb and bs, and backgrounds corresponding to the
40 fb�1 of the full SM processes. The performance of vari-
ous DNN models is compared in terms of the search’s discov-
ery significance versus SM background e�ciency calculated
within the mass window 150 < mSD < 230GeV. A major
conclusion is that the Sophon model’s direct tagging discrim-
inant (for X ! bb tagging) and its transfer learning version
(forX ! bs tagging) both outperform the current best results
achievable in the LHC experiment using a ParT or ParticleNet
tagger. It also confirms that the model improves performance
when trained by large-scale classification.

Additional comparisons are presented in Fig. 2. First,
to study whether the Sophon model gained superior
X ! bb vs. QCD jet tagging performance from the
large-scale classification task, we conduct an ablation
study by training the model only on 42 classes (denoted
Sophon*), including all 2-prong resonant-jet classes and
the QCD classes. These results show that the Sophon

1
Note that the absolute tagging performance does not necessarily

match real experiments due to the discrepancies between the

delphes modeling and real detector conditions. Our purpose is

to compare methods and draw conclusions about the capabilities

of di↵erent models. This will remain valid for real experimental

conditions.

model trained on 188 classes significantly improves the
discovery significance at a fixed background e�ciency,
highlighting the importance of pre-training on a large
and comprehensive dataset. Second, to confirm that the
high performance in X ! bs vs. QCD jet tagging relies
on knowledge transferred from the latent space instead
of recycling the tagging ability from existing classifica-
tion nodes, we identify the output node for X ! bq jets
that shares the closest similarity with X ! bs jets and
check the performance when using Sophon’s X ! bq vs.
QCD jet tagging discriminant. The latter significantly
underperforms, confirming the important role of transfer
learning.

IV. IMPLICATIONS FOR RESONANCE
SEARCH

After demonstrating the high performance of the
Sophon model, we discuss how this approach, once de-
ployed on LHC experiments, will help to accelerate the
search for BSM resonances. We discuss two scenarios to
combine the Sophon model with resonance search.
The first method leverages the all-inclusive classifica-

tion nodes of the Sophon model. Since we are unsure
about the exact final state of the resonant, we can use
these 188 scores to make certain combinations, build-
ing the numerator and denominator as shown in Fig. 1
(b), to create a discriminant for jet selection. A typi-
cal bump hunt strategy can then be performed on the
mass spectrum to search for potential resonances. This
method utilizes the extensive classification ability of the
Sophon model to distinguish various jet signatures op-
timally. The second method embeds Sophon’s transfer
learning into fast-evolving model-agnostic search strate-
gies. Formally, this only involves replacing the existing
method’s input jet feature space with the Sophon model’s
latent feature space. Yet, the extensive knowledge of
jet signatures encoded in the feature space is expected
to yield improved signal-finding performance for a broad
class of signal models.
We evaluate the methods above in the single-jet and

the dijet topologies. The first topology aims to identify
resonance structure in a single jet mSD spectrum. Utiliz-
ing the above techniques, we aim to reveal the existence
of SM particles amidst the overwhelming QCD multijet
backgrounds. The second experiment performs a stan-
dard dijet resonance search to find the resonance peak
at the TeV mass scale in the dijet invariant mass mJJ .
This serves as a benchmark for the proposed methods by
comparing them with established model-agnostic strate-
gies.
First, in the single-jet resonance search, we consider

the following discriminant to veto QCD jets while puri-
fying certain signal processes,

discr (A vs. QCD) =
gA

gA +
P27

l=1 gQCDl

. (5)

188 classes, 134M jets
~48M jets

better

C. Li et. al., 
 arXiv:2405.12972

https://arxiv.org/abs/2405.12972
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4

of the current tagging capability within the CMS experi-
ment [27, 29, 62]. These models are trained as binary
classifiers to distinguish X ! bb (bs) jets against the
QCD jets, applying similar training settings. The per-
formance of the Sophon model in X ! bb tagging and its
transfer learning version in X ! bs tagging already sur-
passes that of dedicated ParT or ParticleNet trainings.
This demonstrates the ability of the method to adapt to
various model-specific jet tagging tasks 1.

FIG. 2. Benchmark of Sophon model’s performance in the
X ! bb and X ! bs jet tagging tasks, with the signal orig-
inated from a BSM resonance X0 with mX0 = 200GeV that
decays to bb and bs, and backgrounds corresponding to the
40 fb�1 of the full SM processes. The performance of vari-
ous DNN models is compared in terms of the search’s discov-
ery significance versus SM background e�ciency calculated
within the mass window 150 < mSD < 230GeV. A major
conclusion is that the Sophon model’s direct tagging discrim-
inant (for X ! bb tagging) and its transfer learning version
(forX ! bs tagging) both outperform the current best results
achievable in the LHC experiment using a ParT or ParticleNet
tagger. It also confirms that the model improves performance
when trained by large-scale classification.

Additional comparisons are presented in Fig. 2. First,
to study whether the Sophon model gained superior
X ! bb vs. QCD jet tagging performance from the
large-scale classification task, we conduct an ablation
study by training the model only on 42 classes (denoted
Sophon*), including all 2-prong resonant-jet classes and
the QCD classes. These results show that the Sophon

1
Note that the absolute tagging performance does not necessarily

match real experiments due to the discrepancies between the

delphes modeling and real detector conditions. Our purpose is

to compare methods and draw conclusions about the capabilities

of di↵erent models. This will remain valid for real experimental

conditions.

model trained on 188 classes significantly improves the
discovery significance at a fixed background e�ciency,
highlighting the importance of pre-training on a large
and comprehensive dataset. Second, to confirm that the
high performance in X ! bs vs. QCD jet tagging relies
on knowledge transferred from the latent space instead
of recycling the tagging ability from existing classifica-
tion nodes, we identify the output node for X ! bq jets
that shares the closest similarity with X ! bs jets and
check the performance when using Sophon’s X ! bq vs.
QCD jet tagging discriminant. The latter significantly
underperforms, confirming the important role of transfer
learning.

IV. IMPLICATIONS FOR RESONANCE
SEARCH

After demonstrating the high performance of the
Sophon model, we discuss how this approach, once de-
ployed on LHC experiments, will help to accelerate the
search for BSM resonances. We discuss two scenarios to
combine the Sophon model with resonance search.
The first method leverages the all-inclusive classifica-

tion nodes of the Sophon model. Since we are unsure
about the exact final state of the resonant, we can use
these 188 scores to make certain combinations, build-
ing the numerator and denominator as shown in Fig. 1
(b), to create a discriminant for jet selection. A typi-
cal bump hunt strategy can then be performed on the
mass spectrum to search for potential resonances. This
method utilizes the extensive classification ability of the
Sophon model to distinguish various jet signatures op-
timally. The second method embeds Sophon’s transfer
learning into fast-evolving model-agnostic search strate-
gies. Formally, this only involves replacing the existing
method’s input jet feature space with the Sophon model’s
latent feature space. Yet, the extensive knowledge of
jet signatures encoded in the feature space is expected
to yield improved signal-finding performance for a broad
class of signal models.
We evaluate the methods above in the single-jet and

the dijet topologies. The first topology aims to identify
resonance structure in a single jet mSD spectrum. Utiliz-
ing the above techniques, we aim to reveal the existence
of SM particles amidst the overwhelming QCD multijet
backgrounds. The second experiment performs a stan-
dard dijet resonance search to find the resonance peak
at the TeV mass scale in the dijet invariant mass mJJ .
This serves as a benchmark for the proposed methods by
comparing them with established model-agnostic strate-
gies.
First, in the single-jet resonance search, we consider

the following discriminant to veto QCD jets while puri-
fying certain signal processes,

discr (A vs. QCD) =
gA

gA +
P27

l=1 gQCDl

. (5)

2 classes 
~44M jets

better

C. Li et. al., 
 arXiv:2405.12972

188 classes, 134M jets
~48M jets

https://arxiv.org/abs/2405.12972
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larger dataset helps — even if not directly adding the target classes 

large model -> stronger transfer learning capability
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4

of the current tagging capability within the CMS experi-
ment [27, 29, 62]. These models are trained as binary
classifiers to distinguish X ! bb (bs) jets against the
QCD jets, applying similar training settings. The per-
formance of the Sophon model in X ! bb tagging and its
transfer learning version in X ! bs tagging already sur-
passes that of dedicated ParT or ParticleNet trainings.
This demonstrates the ability of the method to adapt to
various model-specific jet tagging tasks 1.

FIG. 2. Benchmark of Sophon model’s performance in the
X ! bb and X ! bs jet tagging tasks, with the signal orig-
inated from a BSM resonance X0 with mX0 = 200GeV that
decays to bb and bs, and backgrounds corresponding to the
40 fb�1 of the full SM processes. The performance of vari-
ous DNN models is compared in terms of the search’s discov-
ery significance versus SM background e�ciency calculated
within the mass window 150 < mSD < 230GeV. A major
conclusion is that the Sophon model’s direct tagging discrim-
inant (for X ! bb tagging) and its transfer learning version
(forX ! bs tagging) both outperform the current best results
achievable in the LHC experiment using a ParT or ParticleNet
tagger. It also confirms that the model improves performance
when trained by large-scale classification.

Additional comparisons are presented in Fig. 2. First,
to study whether the Sophon model gained superior
X ! bb vs. QCD jet tagging performance from the
large-scale classification task, we conduct an ablation
study by training the model only on 42 classes (denoted
Sophon*), including all 2-prong resonant-jet classes and
the QCD classes. These results show that the Sophon

1
Note that the absolute tagging performance does not necessarily

match real experiments due to the discrepancies between the

delphes modeling and real detector conditions. Our purpose is

to compare methods and draw conclusions about the capabilities

of di↵erent models. This will remain valid for real experimental

conditions.

model trained on 188 classes significantly improves the
discovery significance at a fixed background e�ciency,
highlighting the importance of pre-training on a large
and comprehensive dataset. Second, to confirm that the
high performance in X ! bs vs. QCD jet tagging relies
on knowledge transferred from the latent space instead
of recycling the tagging ability from existing classifica-
tion nodes, we identify the output node for X ! bq jets
that shares the closest similarity with X ! bs jets and
check the performance when using Sophon’s X ! bq vs.
QCD jet tagging discriminant. The latter significantly
underperforms, confirming the important role of transfer
learning.

IV. IMPLICATIONS FOR RESONANCE
SEARCH

After demonstrating the high performance of the
Sophon model, we discuss how this approach, once de-
ployed on LHC experiments, will help to accelerate the
search for BSM resonances. We discuss two scenarios to
combine the Sophon model with resonance search.
The first method leverages the all-inclusive classifica-

tion nodes of the Sophon model. Since we are unsure
about the exact final state of the resonant, we can use
these 188 scores to make certain combinations, build-
ing the numerator and denominator as shown in Fig. 1
(b), to create a discriminant for jet selection. A typi-
cal bump hunt strategy can then be performed on the
mass spectrum to search for potential resonances. This
method utilizes the extensive classification ability of the
Sophon model to distinguish various jet signatures op-
timally. The second method embeds Sophon’s transfer
learning into fast-evolving model-agnostic search strate-
gies. Formally, this only involves replacing the existing
method’s input jet feature space with the Sophon model’s
latent feature space. Yet, the extensive knowledge of
jet signatures encoded in the feature space is expected
to yield improved signal-finding performance for a broad
class of signal models.
We evaluate the methods above in the single-jet and

the dijet topologies. The first topology aims to identify
resonance structure in a single jet mSD spectrum. Utiliz-
ing the above techniques, we aim to reveal the existence
of SM particles amidst the overwhelming QCD multijet
backgrounds. The second experiment performs a stan-
dard dijet resonance search to find the resonance peak
at the TeV mass scale in the dijet invariant mass mJJ .
This serves as a benchmark for the proposed methods by
comparing them with established model-agnostic strate-
gies.
First, in the single-jet resonance search, we consider

the following discriminant to veto QCD jets while puri-
fying certain signal processes,

discr (A vs. QCD) =
gA

gA +
P27

l=1 gQCDl

. (5)

dedicated training 
from scratch

transfer learning from  
latent space features (dim=128)

better

C. Li et. al., 
 arXiv:2405.12972

https://arxiv.org/abs/2405.12972
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TOWARDS A UNIVERSAL TAGGER (III)
At future e+e- collider… 

resolving all 11 species of colored particles: 

b, b̄, c, c̄, s, s̄, u, ū, d, d̄, g
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H. Liang, Y. Zhu, Y. Wang, Y. Che,  
M. Ruan, C. Zhou, and HQ 
PRL 132 (2024), 221802

Eur.Phys.J.C 84 (2024), 152

https://doi.org/10.1103/PhysRevLett.132.221802
https://doi.org/10.1140/epjc/s10052-024-12475-5
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TOWARDS A UNIVERSAL TAGGER (III)
At future e+e- collider… 

resolving all 11 species of colored particles: 

b, b̄, c, c̄, s, s̄, u, ū, d, d̄, g

18

H. Liang, Y. Zhu, Y. Wang, Y. Che,  
M. Ruan, C. Zhou and HQ 
PRL 132 (2024), 221802

Eur.Phys.J.C 84 (2024), 152

ML taggers provide an  
end-to-end assessment of  

key detector designs choices

Further enhancement from  
AI-assisted 1-1 correspondence 

reconstruction

Y. Wang, H.Liang, Y. Zhu, Y. Che, X. Xia,  
HQ, C. Zhou, X. Zhuang and M. Ruan,

arXiv:2411.06939

https://doi.org/10.1103/PhysRevLett.132.221802
https://doi.org/10.1140/epjc/s10052-024-12475-5
https://arxiv.org/abs/2411.06939
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SCALING UP?

20

J. Brehmer, V. Bresó, P. Haan, T. Plehn, HQ, J. Spinner and J. Thaler, arXiv: 2411.00446

HEP models (jet tagging)

Source: informationisbeautiful.net
The rise and rise of AI-based Large Language Models (LLMs) like GPT4, LaMDA, LLaMa, PaLM
and Jurassic-2.

Click the company names to �lter the data.

» See the data

We’ll keep this graphic updated as new models emerge.

» Made with our visualisation tool VizSweet

Learn to Create Impactful Infographics

CHANGE LOG UPDATES
: 20th Mar – added 30 new notable LLMs including Anthropic Claude 3, Twitter’s Grok, all Mistral’s offerings, Google Gemini Pro,
Apple’s MM1 (�nally!) and Chinese LLMs like DeepSeek, GLM-4 and Xinghuo 3.5. The soon-to-be-released column includes
OpenAI’s rumoured open source LLM G3PO, Amazon’s mighty Olympus, Meta’s Llama 3 and of course GPT-5.
: 6th Dec – added 2024 column including Amazon’s Olympus, Anthropic’s Claude-Next and Twitter’s Grok. Also noted the release
of Google’s Gemini and Amazon’s Q business bot.
: 21st Nov – added Bichuan 2, Claude Instant, IDEFICS, Jais Chat, Japanese StableLM Alpha 7B, InternLM, Falcon 180B, Bolt
2.5B, DeciLM, Mistral-7B, Persimmon-8B, MoLM, Qwen, AceGPT, Retro48B, Ernie 4.0
: 2nd Nov – updated Amazon story with $1.25bn Anthropic investment
: 27th Jul – added Meta’s LLama2
: 12th Jun – added Claude 2.0, and ErnieBot 3.5
: 21st Jun – added Vicuna 13-B, Falcon LLM, Sail-7B, Web-LLM, OpenLLM
: 20th Jun – visualized all open-source LLMs as a diamond
: 11th Jun – added a ‘more info’ link for each LLM (click to spawn)
: 11th May – added Google’s latest LLM PaLM2 (source)
: 10th May – Uploaded �rst version
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FOUNDATION MODEL

21

Foundation Models
Deep
Learning

Machine Learning

Emergence of...

Homogenization of...

“how”

learning algorithms

features

architectures

functionalities

models

“A foundation model is any model that is trained on broad data 
(generally using self-supervision at scale) that can be adapted 

(e.g., fine-tuned) to a wide range of downstream tasks.”

[arXiv: 2108.07258]
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SELF-SUPERVISION: THE NLP APPROACH
The NLP way: (autoregressive) language modeling 

i.e., next token prediction 

An attempt for jets: OmniJet-α [J. Birk, A. Hallin and G. Kasieczka, MLST 5 (2024) 035031] 

Not the most natural approach though: 

requires (discrete) tokenization of high-dimensional numerical inputs 

needs to impose an ordering on jet constituent particles, which are intrinsically permutation invariant

22

Source: nvidia.com

https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2403.05618
https://developer.nvidia.com/blog/how-to-get-better-outputs-from-your-large-language-model/
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Transformation, Action Transformation, Action

JEPA world modelGenerative World model Joint Embedding

Unconditional

Conditional

BYOL, SimSiam

Latent world models, I-JEPA, 
Equivariant SSL, IWM (Ours)

Denoising Autoencoders
Variational Autoencoders

Generative World Models
Masked Image Modeling N/A

Siamese, SimCLR, VICReg, DINO

Figure 2 Multiple families of methods with related architectures can be distinguished, in which the conditioning or not of their
world model is a key distinction. Generative World Models are trained to invert a transformation in input space, leveraging
an autoencoder framework. Methods for world modeling and representation learning can be instantiated in this way. Joint
Embedding methods get rid of the world model but operate in latent space by encoding what is common between transformed
inputs. It is the main class of SSL methods. JEPAWorldModels can be seen as a more general framework where a world model is
trained in latent space. This family has been very successful both in reinforcement learning and in representation learning, and is
where Image World Models (IWM) falls.

y; in this case, the transformation parameters a (lo-
cations of masked image patches), are also fed to the
decoder network. Methods based on joint-embedding
predictive architectures (JEPAs), such as I-JEPA (As-
sran et al., 2023) or data2vec (Baevski et al., 2022),
operate similarly, but can be seen as learning a latent
image world model, which learns to infer the e!ect
of the masking action on the representation of an
image. If one does not condition the predictor on
the transformation parameters, then the best we can
hope for is learning representations that are invariant
to the data transformations, as in BYOL (Grill et al.,
2020) and SimSiam (Chen and He, 2020), wherein
the image transformations correspond to various pho-
tometric and geometric data augmentations.
However, despite some of the apparent similarities
between world modelling in reinforcement learn-
ing and self-supervised learning from images, the
learned world model in reinforcement learning is typ-
ically leveraged in downstream tasks, e.g., for plan-
ning (Hansen et al., 2022). In contrast, the learned
world model in self-supervised learning is typically
discarded after pretraining, as the main focus is often
on the representation quality of the learned encoder
network. This stems from the fact that most down-
stream tasks in computer vision are unrelated to the
world modeling task. Common tasks of interest focus
on discriminative aspects and as such, even when
the predictor learns useful information, it is simply
discarded. We postulate that discarding the world
model in representation learning is wasteful, and that
just like in RL, we can reuse this world model for
downstream tasks. This motivates us to study, in

more depth, learning world models as a paradigm for
representation learning. We thus introduce Image
World Models (IWM, illustrated to the right of fig-
ure 2) as a way to learn both good representations
and strong reusable world models. IWM is based on
JEPA and extends the usual latent inpainting to also
include photometric transformations, allowing us to
demonstrate the key aspects in learning a capable
world model, which include the choice of predictor
conditioning, the strength of the transformations,
and the capacity of the world model.
We then focus on leveraging the learned world model
for downstream tasks, and find that it can be lever-
aged through finetuning. Specifically, we find that
finetuning the world model on top of the frozen en-
coder for downstream tasks provides improved perfor-
mance over encoder finetuning; this is also achieved
at a fraction of the cost and number of finetuned
parameters. Moreover, only the world model learned
by IWM exhibits this behavior; finetuning a ran-
domly initialized network of the same architecture as
the predictor does not provide such a performance
improvement. This suggests that the world model
should be a key part of the inference process, in-
stead of being discarded. Inspired by instruction
tuning (Wei et al., 2022; Zhang et al., 2023), we fur-
ther show that the world model can be finetuned
to solve multiple tasks at once, further improving
e"ciency.

Our study reveals another key aspect of representa-
tion learning with world models: the capacity given
to the world model has a direct influence on the

2

Generative Architecture

Learns to invert a transformation  
in the input space. 

e.g., Masked Autoencoder (MAE)

Masked Autoencoders Are Scalable Vision Learners

Kaiming He⇤,† Xinlei Chen⇤ Saining Xie Yanghao Li Piotr Dollár Ross Girshick
⇤equal technical contribution †project lead

Facebook AI Research (FAIR)

Abstract

This paper shows that masked autoencoders (MAE) are
scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric
encoder-decoder architecture, with an encoder that oper-
ates only on the visible subset of patches (without mask to-
kens), along with a lightweight decoder that reconstructs
the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion
of the input image, e.g., 75%, yields a nontrivial and
meaningful self-supervisory task. Coupling these two de-
signs enables us to train large models efficiently and ef-
fectively: we accelerate training (by 3⇥ or more) and im-
prove accuracy. Our scalable approach allows for learning
high-capacity models that generalize well: e.g., a vanilla
ViT-Huge model achieves the best accuracy (87.8%) among
methods that use only ImageNet-1K data. Transfer per-
formance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior.

1. Introduction
Deep learning has witnessed an explosion of archi-

tectures of continuously growing capability and capacity
[29, 25, 52]. Aided by the rapid gains in hardware, mod-
els today can easily overfit one million images [13] and
begin to demand hundreds of millions of—often publicly
inaccessible—labeled images [16].

This appetite for data has been successfully addressed in
natural language processing (NLP) by self-supervised pre-
training. The solutions, based on autoregressive language
modeling in GPT [42, 43, 4] and masked autoencoding in
BERT [14], are conceptually simple: they remove a portion
of the data and learn to predict the removed content. These
methods now enable training of generalizable NLP models
containing over one hundred billion parameters [4].

The idea of masked autoencoders, a form of more gen-
eral denoising autoencoders [53], is natural and applicable
in computer vision as well. Indeed, closely related research

encoder

....

....
decoder

input target

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

in vision [54, 41] preceded BERT. However, despite signif-
icant interest in this idea following the success of BERT,
progress of autoencoding methods in vision lags behind
NLP. We ask: what makes masked autoencoding different
between vision and language? We attempt to answer this
question from the following perspectives:

(i) Until recently, architectures were different. In vision,
convolutional networks [30] were dominant over the last
decade [29]. Convolutions typically operate on regular grids
and it is not straightforward to integrate ‘indicators’ such as
mask tokens [14] or positional embeddings [52] into con-
volutional networks. This architectural gap, however, has
been addressed with the introduction of Vision Transform-
ers (ViT) [16] and should no longer present an obstacle.

(ii) Information density is different between language
and vision. Languages are human-generated signals that
are highly semantic and information-dense. When training
a model to predict only a few missing words per sentence,
this task appears to induce sophisticated language under-
standing. Images, on the contrary, are natural signals with
heavy spatial redundancy—e.g., a missing patch can be re-
covered from neighboring patches with little high-level un-
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Masked Autoencoder [arXiv: 2111.06377]

… masks random patches of the input image  
and reconstructs the missing pixels
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Figure 2 Multiple families of methods with related architectures can be distinguished, in which the conditioning or not of their
world model is a key distinction. Generative World Models are trained to invert a transformation in input space, leveraging
an autoencoder framework. Methods for world modeling and representation learning can be instantiated in this way. Joint
Embedding methods get rid of the world model but operate in latent space by encoding what is common between transformed
inputs. It is the main class of SSL methods. JEPAWorldModels can be seen as a more general framework where a world model is
trained in latent space. This family has been very successful both in reinforcement learning and in representation learning, and is
where Image World Models (IWM) falls.

y; in this case, the transformation parameters a (lo-
cations of masked image patches), are also fed to the
decoder network. Methods based on joint-embedding
predictive architectures (JEPAs), such as I-JEPA (As-
sran et al., 2023) or data2vec (Baevski et al., 2022),
operate similarly, but can be seen as learning a latent
image world model, which learns to infer the e!ect
of the masking action on the representation of an
image. If one does not condition the predictor on
the transformation parameters, then the best we can
hope for is learning representations that are invariant
to the data transformations, as in BYOL (Grill et al.,
2020) and SimSiam (Chen and He, 2020), wherein
the image transformations correspond to various pho-
tometric and geometric data augmentations.
However, despite some of the apparent similarities
between world modelling in reinforcement learn-
ing and self-supervised learning from images, the
learned world model in reinforcement learning is typ-
ically leveraged in downstream tasks, e.g., for plan-
ning (Hansen et al., 2022). In contrast, the learned
world model in self-supervised learning is typically
discarded after pretraining, as the main focus is often
on the representation quality of the learned encoder
network. This stems from the fact that most down-
stream tasks in computer vision are unrelated to the
world modeling task. Common tasks of interest focus
on discriminative aspects and as such, even when
the predictor learns useful information, it is simply
discarded. We postulate that discarding the world
model in representation learning is wasteful, and that
just like in RL, we can reuse this world model for
downstream tasks. This motivates us to study, in

more depth, learning world models as a paradigm for
representation learning. We thus introduce Image
World Models (IWM, illustrated to the right of fig-
ure 2) as a way to learn both good representations
and strong reusable world models. IWM is based on
JEPA and extends the usual latent inpainting to also
include photometric transformations, allowing us to
demonstrate the key aspects in learning a capable
world model, which include the choice of predictor
conditioning, the strength of the transformations,
and the capacity of the world model.
We then focus on leveraging the learned world model
for downstream tasks, and find that it can be lever-
aged through finetuning. Specifically, we find that
finetuning the world model on top of the frozen en-
coder for downstream tasks provides improved perfor-
mance over encoder finetuning; this is also achieved
at a fraction of the cost and number of finetuned
parameters. Moreover, only the world model learned
by IWM exhibits this behavior; finetuning a ran-
domly initialized network of the same architecture as
the predictor does not provide such a performance
improvement. This suggests that the world model
should be a key part of the inference process, in-
stead of being discarded. Inspired by instruction
tuning (Wei et al., 2022; Zhang et al., 2023), we fur-
ther show that the world model can be finetuned
to solve multiple tasks at once, further improving
e"ciency.

Our study reveals another key aspect of representa-
tion learning with world models: the capacity given
to the world model has a direct influence on the

2

Joint-Embedding Architecture

Learns an invariant representation  
in the latent space. 
e.g., SimCLR / DINO

SimCLR [arXiv: 2002.05709]

… maximizes similarity between positive pairs (same images after transformations) 
and minimizes that between negative pairs (different images)
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Figure 2 Multiple families of methods with related architectures can be distinguished, in which the conditioning or not of their
world model is a key distinction. Generative World Models are trained to invert a transformation in input space, leveraging
an autoencoder framework. Methods for world modeling and representation learning can be instantiated in this way. Joint
Embedding methods get rid of the world model but operate in latent space by encoding what is common between transformed
inputs. It is the main class of SSL methods. JEPAWorldModels can be seen as a more general framework where a world model is
trained in latent space. This family has been very successful both in reinforcement learning and in representation learning, and is
where Image World Models (IWM) falls.

y; in this case, the transformation parameters a (lo-
cations of masked image patches), are also fed to the
decoder network. Methods based on joint-embedding
predictive architectures (JEPAs), such as I-JEPA (As-
sran et al., 2023) or data2vec (Baevski et al., 2022),
operate similarly, but can be seen as learning a latent
image world model, which learns to infer the e!ect
of the masking action on the representation of an
image. If one does not condition the predictor on
the transformation parameters, then the best we can
hope for is learning representations that are invariant
to the data transformations, as in BYOL (Grill et al.,
2020) and SimSiam (Chen and He, 2020), wherein
the image transformations correspond to various pho-
tometric and geometric data augmentations.
However, despite some of the apparent similarities
between world modelling in reinforcement learn-
ing and self-supervised learning from images, the
learned world model in reinforcement learning is typ-
ically leveraged in downstream tasks, e.g., for plan-
ning (Hansen et al., 2022). In contrast, the learned
world model in self-supervised learning is typically
discarded after pretraining, as the main focus is often
on the representation quality of the learned encoder
network. This stems from the fact that most down-
stream tasks in computer vision are unrelated to the
world modeling task. Common tasks of interest focus
on discriminative aspects and as such, even when
the predictor learns useful information, it is simply
discarded. We postulate that discarding the world
model in representation learning is wasteful, and that
just like in RL, we can reuse this world model for
downstream tasks. This motivates us to study, in

more depth, learning world models as a paradigm for
representation learning. We thus introduce Image
World Models (IWM, illustrated to the right of fig-
ure 2) as a way to learn both good representations
and strong reusable world models. IWM is based on
JEPA and extends the usual latent inpainting to also
include photometric transformations, allowing us to
demonstrate the key aspects in learning a capable
world model, which include the choice of predictor
conditioning, the strength of the transformations,
and the capacity of the world model.
We then focus on leveraging the learned world model
for downstream tasks, and find that it can be lever-
aged through finetuning. Specifically, we find that
finetuning the world model on top of the frozen en-
coder for downstream tasks provides improved perfor-
mance over encoder finetuning; this is also achieved
at a fraction of the cost and number of finetuned
parameters. Moreover, only the world model learned
by IWM exhibits this behavior; finetuning a ran-
domly initialized network of the same architecture as
the predictor does not provide such a performance
improvement. This suggests that the world model
should be a key part of the inference process, in-
stead of being discarded. Inspired by instruction
tuning (Wei et al., 2022; Zhang et al., 2023), we fur-
ther show that the world model can be finetuned
to solve multiple tasks at once, further improving
e"ciency.

Our study reveals another key aspect of representa-
tion learning with world models: the capacity given
to the world model has a direct influence on the
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Figure 2 Multiple families of methods with related architectures can be distinguished, in which the conditioning or not of their
world model is a key distinction. Generative World Models are trained to invert a transformation in input space, leveraging
an autoencoder framework. Methods for world modeling and representation learning can be instantiated in this way. Joint
Embedding methods get rid of the world model but operate in latent space by encoding what is common between transformed
inputs. It is the main class of SSL methods. JEPAWorldModels can be seen as a more general framework where a world model is
trained in latent space. This family has been very successful both in reinforcement learning and in representation learning, and is
where Image World Models (IWM) falls.

y; in this case, the transformation parameters a (lo-
cations of masked image patches), are also fed to the
decoder network. Methods based on joint-embedding
predictive architectures (JEPAs), such as I-JEPA (As-
sran et al., 2023) or data2vec (Baevski et al., 2022),
operate similarly, but can be seen as learning a latent
image world model, which learns to infer the e!ect
of the masking action on the representation of an
image. If one does not condition the predictor on
the transformation parameters, then the best we can
hope for is learning representations that are invariant
to the data transformations, as in BYOL (Grill et al.,
2020) and SimSiam (Chen and He, 2020), wherein
the image transformations correspond to various pho-
tometric and geometric data augmentations.
However, despite some of the apparent similarities
between world modelling in reinforcement learn-
ing and self-supervised learning from images, the
learned world model in reinforcement learning is typ-
ically leveraged in downstream tasks, e.g., for plan-
ning (Hansen et al., 2022). In contrast, the learned
world model in self-supervised learning is typically
discarded after pretraining, as the main focus is often
on the representation quality of the learned encoder
network. This stems from the fact that most down-
stream tasks in computer vision are unrelated to the
world modeling task. Common tasks of interest focus
on discriminative aspects and as such, even when
the predictor learns useful information, it is simply
discarded. We postulate that discarding the world
model in representation learning is wasteful, and that
just like in RL, we can reuse this world model for
downstream tasks. This motivates us to study, in

more depth, learning world models as a paradigm for
representation learning. We thus introduce Image
World Models (IWM, illustrated to the right of fig-
ure 2) as a way to learn both good representations
and strong reusable world models. IWM is based on
JEPA and extends the usual latent inpainting to also
include photometric transformations, allowing us to
demonstrate the key aspects in learning a capable
world model, which include the choice of predictor
conditioning, the strength of the transformations,
and the capacity of the world model.
We then focus on leveraging the learned world model
for downstream tasks, and find that it can be lever-
aged through finetuning. Specifically, we find that
finetuning the world model on top of the frozen en-
coder for downstream tasks provides improved perfor-
mance over encoder finetuning; this is also achieved
at a fraction of the cost and number of finetuned
parameters. Moreover, only the world model learned
by IWM exhibits this behavior; finetuning a ran-
domly initialized network of the same architecture as
the predictor does not provide such a performance
improvement. This suggests that the world model
should be a key part of the inference process, in-
stead of being discarded. Inspired by instruction
tuning (Wei et al., 2022; Zhang et al., 2023), we fur-
ther show that the world model can be finetuned
to solve multiple tasks at once, further improving
e"ciency.

Our study reveals another key aspect of representa-
tion learning with world models: the capacity given
to the world model has a direct influence on the
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Figure 2 Multiple families of methods with related architectures can be distinguished, in which the conditioning or not of their
world model is a key distinction. Generative World Models are trained to invert a transformation in input space, leveraging
an autoencoder framework. Methods for world modeling and representation learning can be instantiated in this way. Joint
Embedding methods get rid of the world model but operate in latent space by encoding what is common between transformed
inputs. It is the main class of SSL methods. JEPAWorldModels can be seen as a more general framework where a world model is
trained in latent space. This family has been very successful both in reinforcement learning and in representation learning, and is
where Image World Models (IWM) falls.

y; in this case, the transformation parameters a (lo-
cations of masked image patches), are also fed to the
decoder network. Methods based on joint-embedding
predictive architectures (JEPAs), such as I-JEPA (As-
sran et al., 2023) or data2vec (Baevski et al., 2022),
operate similarly, but can be seen as learning a latent
image world model, which learns to infer the e!ect
of the masking action on the representation of an
image. If one does not condition the predictor on
the transformation parameters, then the best we can
hope for is learning representations that are invariant
to the data transformations, as in BYOL (Grill et al.,
2020) and SimSiam (Chen and He, 2020), wherein
the image transformations correspond to various pho-
tometric and geometric data augmentations.
However, despite some of the apparent similarities
between world modelling in reinforcement learn-
ing and self-supervised learning from images, the
learned world model in reinforcement learning is typ-
ically leveraged in downstream tasks, e.g., for plan-
ning (Hansen et al., 2022). In contrast, the learned
world model in self-supervised learning is typically
discarded after pretraining, as the main focus is often
on the representation quality of the learned encoder
network. This stems from the fact that most down-
stream tasks in computer vision are unrelated to the
world modeling task. Common tasks of interest focus
on discriminative aspects and as such, even when
the predictor learns useful information, it is simply
discarded. We postulate that discarding the world
model in representation learning is wasteful, and that
just like in RL, we can reuse this world model for
downstream tasks. This motivates us to study, in

more depth, learning world models as a paradigm for
representation learning. We thus introduce Image
World Models (IWM, illustrated to the right of fig-
ure 2) as a way to learn both good representations
and strong reusable world models. IWM is based on
JEPA and extends the usual latent inpainting to also
include photometric transformations, allowing us to
demonstrate the key aspects in learning a capable
world model, which include the choice of predictor
conditioning, the strength of the transformations,
and the capacity of the world model.
We then focus on leveraging the learned world model
for downstream tasks, and find that it can be lever-
aged through finetuning. Specifically, we find that
finetuning the world model on top of the frozen en-
coder for downstream tasks provides improved perfor-
mance over encoder finetuning; this is also achieved
at a fraction of the cost and number of finetuned
parameters. Moreover, only the world model learned
by IWM exhibits this behavior; finetuning a ran-
domly initialized network of the same architecture as
the predictor does not provide such a performance
improvement. This suggests that the world model
should be a key part of the inference process, in-
stead of being discarded. Inspired by instruction
tuning (Wei et al., 2022; Zhang et al., 2023), we fur-
ther show that the world model can be finetuned
to solve multiple tasks at once, further improving
e"ciency.

Our study reveals another key aspect of representa-
tion learning with world models: the capacity given
to the world model has a direct influence on the
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SELF-SUPERVISION: THE CV APPROACH
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an autoencoder framework. Methods for world modeling and representation learning can be instantiated in this way. Joint
Embedding methods get rid of the world model but operate in latent space by encoding what is common between transformed
inputs. It is the main class of SSL methods. JEPAWorldModels can be seen as a more general framework where a world model is
trained in latent space. This family has been very successful both in reinforcement learning and in representation learning, and is
where Image World Models (IWM) falls.

y; in this case, the transformation parameters a (lo-
cations of masked image patches), are also fed to the
decoder network. Methods based on joint-embedding
predictive architectures (JEPAs), such as I-JEPA (As-
sran et al., 2023) or data2vec (Baevski et al., 2022),
operate similarly, but can be seen as learning a latent
image world model, which learns to infer the e!ect
of the masking action on the representation of an
image. If one does not condition the predictor on
the transformation parameters, then the best we can
hope for is learning representations that are invariant
to the data transformations, as in BYOL (Grill et al.,
2020) and SimSiam (Chen and He, 2020), wherein
the image transformations correspond to various pho-
tometric and geometric data augmentations.
However, despite some of the apparent similarities
between world modelling in reinforcement learn-
ing and self-supervised learning from images, the
learned world model in reinforcement learning is typ-
ically leveraged in downstream tasks, e.g., for plan-
ning (Hansen et al., 2022). In contrast, the learned
world model in self-supervised learning is typically
discarded after pretraining, as the main focus is often
on the representation quality of the learned encoder
network. This stems from the fact that most down-
stream tasks in computer vision are unrelated to the
world modeling task. Common tasks of interest focus
on discriminative aspects and as such, even when
the predictor learns useful information, it is simply
discarded. We postulate that discarding the world
model in representation learning is wasteful, and that
just like in RL, we can reuse this world model for
downstream tasks. This motivates us to study, in

more depth, learning world models as a paradigm for
representation learning. We thus introduce Image
World Models (IWM, illustrated to the right of fig-
ure 2) as a way to learn both good representations
and strong reusable world models. IWM is based on
JEPA and extends the usual latent inpainting to also
include photometric transformations, allowing us to
demonstrate the key aspects in learning a capable
world model, which include the choice of predictor
conditioning, the strength of the transformations,
and the capacity of the world model.
We then focus on leveraging the learned world model
for downstream tasks, and find that it can be lever-
aged through finetuning. Specifically, we find that
finetuning the world model on top of the frozen en-
coder for downstream tasks provides improved perfor-
mance over encoder finetuning; this is also achieved
at a fraction of the cost and number of finetuned
parameters. Moreover, only the world model learned
by IWM exhibits this behavior; finetuning a ran-
domly initialized network of the same architecture as
the predictor does not provide such a performance
improvement. This suggests that the world model
should be a key part of the inference process, in-
stead of being discarded. Inspired by instruction
tuning (Wei et al., 2022; Zhang et al., 2023), we fur-
ther show that the world model can be finetuned
to solve multiple tasks at once, further improving
e"ciency.

Our study reveals another key aspect of representa-
tion learning with world models: the capacity given
to the world model has a direct influence on the
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P-JEPA
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Work in progress with Q. Liu (刘⻬斌), S. Wang (王书栋) and C. Li (李聪乔)
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P-JEPA
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P-JEPA

29

EMA*  
of weights

* Exponential Moving Average

Predictor
Context 
Encoder

×

×

×

Particle 
Representation

...

Context 
Aggregator

Mask Token

Aggregated 
Representation

Target 
Encoder

Loss

...

`
Particle Loss

Aggregated Loss

PID Loss

Smooth L1 LossTgt. 
Agg.

Cross Entropy

PID Li
ne

arPID

Pre
d.

Smooth L1 Loss

Tgt. 
Agg.

EMA*  
of weights

Target 
Encoder

For downstream tasks



To
w

ar
ds

 a
 F

ou
nd

at
io

n 
M

od
el

 fo
r J

et
 P

hy
sic

s 
- D

ec
. 3

0,
 2

02
4 

- H
ui

lin
 Q

u 
(C

ER
N

)

PARTICLE MASKING
The pre-training task in a nutshell: 

predict the masked particles from the remaining ones 

… but in the latent space 

Masking strategy: 

randomly mask 30–50% of the particles in a jet 

the remaining particles serve as the context for the prediction 

==> input to the context encoder & predictor 

the masked particles become the target to be predicted 

==> NOT seen by the context encoder & predictor 

==> the loss is computed only for the target particles

30
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CONTEXT ENCODER AND PREDICTOR
Context encoder 

large Particle Transformer (w/ pairwise features between context particles) 

Context aggregator 

aggregates all context particles into a single token 

Predictor 

plain Transformer, smaller than encoder 

predicts the masked particles from the aggregated  
representation + mask tokens w/ pos. emb.

31
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Aggregator
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Aggregated 
Representation

Context Encoder + 
Aggregator Predictor

Embed Dims (512, 512, 512) 192

Pair Embed Dims (64, 64, 64) /

Num Heads 8 6

Num Blocks 16 4

Num Class Blocks 2 /
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Agg.
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of weights

TARGET ENCODER
A target encoder is used to derive the particle embeddings in the latent space for loss computation 

processes the complete set of particles in a jet (i.e., context + target) 

then only the embeddings of the target particles are picked for loss computation 

updated via an exponential moving average of the context encoder’s weights

32
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PRE-TRAINING LOSS
Loss = Particle Loss + Aggregated Loss + PID loss 

Particle Loss: smooth L1 loss between the predicted embeddings and those from target encoder 

Aggregated Loss: computed on the aggregated representations of target particles using the target aggregator 

PID Loss: auxiliary task to predict the reconstructed PID of each masked particle from the predicted embeddings

33
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PRE-TRAINING AND TRANSFER LEARNING

34
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The pre-training of the P-JEPA model can be performed on large-scale real data 

we demonstrate this by pre-training P-JEPA on the JetClass dataset (100M jets) without using any truth labels 

Once pre-trained, the target encoder can be viewed as a foundation model  

transfer learning to specific downstream tasks

Pre-training Transfer learning

Task-specific  
dataset
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TRANSFER LEARNING: JET TAGGING
Benchmark: 10-class jet classification on JetClass

35

 FineTune: 
 Encoder allowed to be slightly updated 

when trained with labelled jets for tagging

 Freeze: 
 Encoder fixed when trained with labelled 

jets for tagging

 FromScratch: 
 Same network architecture, but trained 

with labelled jets starting from randomly 
initialized weights
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TRANSFER LEARNING: JET TAGGING
Benchmark: 10-class jet classification on JetClass

36

Pre-training + transfer learning shows a 
significant performance boost when labelled 
samples are limited.
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TRANSFER LEARNING: JET TAGGING
Benchmark: 10-class jet classification on JetClass

37

As training dataset increases, training from 
scratch catches up and reaches similar 
performance to pre-training + fine-tuning.
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TRANSFER LEARNING: ANOMALY DETECTION
Anomaly Detection (AD): model-agnostic search for new physics signals 

A classic paradigm for AD: CWoLa (classification without labels) 

trains a classifier to distinguish two mixed samples  

e.g., mass window (signal enriched) vs mass sideband (background enriched) 

the classifier effectively becomes a signal vs background discriminator, thus can be used to enhance signal purity 

allows to detect unknown signals purely from data

38

Figure Credit

https://link.springer.com/article/10.1007/JHEP10(2017)174
https://arxiv.org/abs/1708.02949
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TRANSFER LEARNING: ANOMALY DETECTION
Traditionally AD was performed using only high-level features (e.g., jet mass, substructures) as inputs 

Machine-learned representations captures richer information of a jet, thus can improve the performance of AD 

We benchmark this using the IAD [arXiv:2210.14924] framework 

idealized setup for the mixed samples: background only vs background + signal 

background in the two mixed samples are drawn from the same distribution, no need to worry about e.g., mass 
dependency and interpolation into the mass window etc. 

performance of the learned features evaluated by the significance improvement metric 

i.e., the maximal gain in significance by varying the classifier cut

39

https://arxiv.org/abs/2210.14924
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TRANSFER LEARNING: ANOMALY DETECTION
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How much does the 
significance need to be 
increased to reach the 
5σ discovery

Classifier using high-level observables
PRL, 121 (2018) 24, 241803

Significance 
improvement 
 
 
 (better)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.241803
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TRANSFER LEARNING: ANOMALY DETECTION
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How much does the 
significance need to be 
increased to reach the 
5σ discovery

Classifier using high-level observables
PRL, 121 (2018) 24, 241803

Significance 
improvement 
 
 
 (better)

2.4x reduction in data 
to mark a discovery!

Sophon: learned jet representations 
from fully-supervised training on 

O(100) types of jets

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.241803
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TRANSFER LEARNING: ANOMALY DETECTION
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How much does the 
significance need to be 
increased to reach the 
5σ discovery

Classifier using high-level observables
PRL, 121 (2018) 24, 241803

Significance 
improvement 
 
 
 (better)

Similar performance to Sophon, 
but without the need to simulate 

a large variety of jets 

P-JEPA: representations from 
self-supervised learning

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.241803


To
w

ar
ds

 a
 F

ou
nd

at
io

n 
M

od
el

 fo
r J

et
 P

hy
sic

s 
- D

ec
. 3

0,
 2

02
4 

- H
ui

lin
 Q

u 
(C

ER
N

)

SUMMARY & OUTLOOK
Tremendous progress in machine learning for jet physics in recent years 

Towards a foundation model for jet physics 

Sophon: pre-training via fully supervised classification over a large variety of jets 

P-JEPA: pre-training via self-supervised learning on unlabelled dataset 

Outlook: a foundation model for all of the LHC?
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• We find both proof-of-concepts as well as  
established use cases (→ MadNIS)

Take-home message

Summary and Outlook

• ML beneficial in every step in the simulation chain

• Interesting interplay between HEP and ML

ℒ
Theory Shower EventsHard process Hadronization Detectors

    → HEP simulations provide ~infinite data for ML
  → HEP requirements (precision, symmertries,…) 
       different than industry applications

Future tasks

• Make everything run on the GPU and 
differentiable (MadJax - Heinrich et al. [2203.00057])

• Full integration of ML-based simulations into 
standard tools → MadGraph,….

• Further foster collaboration between  
theory, experiment, and ML community

Generation, Simulation, …

Reconstruction, Unfolding, …

Forward

Inverse

Credits: R. Winterhalder

https://indico.cern.ch/event/1253794/contributions/5640861/attachments/2746361/4778845/lhc_sim_rw.pdf
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ADVERTISEMENT
AI+HEP workshop in East Asia 

Feb. 24—28, 2025 at IBS (Korea) 

Indico: 

https://indico.ibs.re.kr/event/789/ 

Organizing Committee: 

Tianji Cai (蔡恬吉, SLAC) 

Sung Hak Lim (CTPU-PTC, IBS) 

Huilin Qu (CERN) 

Advisory Committee: 

Mihoko M. Nojiri (KEK) 

David Shih (Rutgers)
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Hope to see many of you there!

https://indico.ibs.re.kr/event/789/


EXTRAS
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SCALING LAW
How far can we push the performance with bigger models, larger datasets, and more computing power? 

For language models — neural scaling law [arXiv: 2001.08361, 2203.15556] 

empirical power law scaling of the loss as a function of the compute (C), dataset size (D) and model parameters (N) 

once established, can be extrapolated to determine the best dataset size & parameter combination under a fixed 
compute budget 

Would be interesting to see the scaling law for jets — but very computation intensive…
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Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.

For each FLOP budget, we plot the final loss (after smoothing) against the parameter count in
Figure 3 (left). In all cases, we ensure that we have trained a diverse enough set of model sizes to see
a clear minimum in the loss. We fit a parabola to each IsoFLOPs curve to directly estimate at what
model size the minimum loss is achieved (Figure 3 (left)). As with the previous approach, we then fit
a power law between FLOPs and loss-optimal model size and number of training tokens, shown in
Figure 3 (center, right). Again, we fit exponents of the form #=>B / ⇠0 and ⇡=>B / ⇠1 and we find that
0 = 0.49 and 1 = 0.51—as summarized in Table 2.

3.3. Approach 3: Fitting a parametric loss function

Lastly, we model all final losses from experiments in Approach 1 & 2 as a parametric function of
model parameter count and the number of seen tokens. Following a classical risk decomposition (see
Section D.2), we propose the following functional form

!̂(#, ⇡) , ⇢ +
�

#U +
⌫

⇡V
. (2)

The first term captures the loss for an ideal generative process on the data distribution, and should
correspond to the entropy of natural text. The second term captures the fact that a perfectly trained
transformer with # parameters underperforms the ideal generative process. The final term captures
the fact that the transformer is not trained to convergence, as we only make a finite number of
optimisation steps, on a sample of the dataset distribution.

Model fitting. To estimate (�, ⌫, ⇢, U, V), we minimize the Huber loss (Huber, 1964) between the
predicted and observed log loss using the L-BFGS algorithm (Nocedal, 1980):

min
�,⌫,⇢,U,V

’
Runs 7

HuberX
⇣
log !̂(#7, ⇡7) � log !7

⌘
(3)

We account for possible local minima by selecting the best fit from a grid of initialisations. The Huber
loss (X = 10�3) is robust to outliers, which we find important for good predictive performance over
held-out data points. Section D.2 details the fitting procedure and the loss decomposition.
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