Majorana 旋量场专题

第一节 Majorana 旋量场基础

余钊焕

中山大学物理学院

https://yzhxxzxy.github.io

🔤 B 站账号: 行星状星云

Dirac 旋量场回顾

第二届江门中微子暑期学校 中国科学院大学杭州高等研究院 2025 年 8 月 17 日至 24 日

旋量表示

ightharpoonup Dirac 矩阵是一组满足如下反对易关系的 4×4 矩阵 γ^{μ} ($\mu = 0, 1, 2, 3$):

$$\left\{ \left\{ \gamma^{\mu}, \gamma^{\nu} \right\} \equiv \gamma^{\mu} \gamma^{\nu} + \gamma^{\nu} \gamma^{\mu} = 2g^{\mu\nu} \, 1 = 2g^{\mu\nu} \, \right\}$$

- **a** 最后一步省略了 4×4 单位矩阵 1,而 $g^{\mu\nu} = \text{diag}(+1, -1, -1, -1)$ 是度规的逆
- 🏠 这些 Dirac 矩阵满足

$$\begin{split} \gamma^{\mu}\gamma^{\nu} &= 2g^{\mu\nu} - \gamma^{\nu}\gamma^{\mu}; \quad \gamma^{\mu}\gamma^{\nu} = -\gamma^{\nu}\gamma^{\mu} \; (\mu \neq \nu) \\ (\gamma^{0})^{2} &= 1, \quad (\gamma^{i})^{2} = -1, \quad (\gamma^{0})^{\dagger} = \gamma^{0}, \quad (\gamma^{i})^{\dagger} = -\gamma^{i} \end{split}$$

 $oxed{\square}$ 以 Dirac 矩阵的对易子定义一组 4×4 矩阵 $egin{align*} \mathcal{S}^{\mu\nu} \equiv rac{\mathrm{i}}{4}[\gamma^{\mu},\gamma^{\nu}] \end{array}$,则它们满足

Lorentz 代数关系 $[S^{\mu\nu},S^{\rho\sigma}]=\mathrm{i}(g^{\nu\rho}S^{\mu\sigma}-g^{\mu\rho}S^{\nu\sigma}-g^{\nu\sigma}S^{\mu\rho}+g^{\mu\sigma}S^{\nu\rho})$

- \square 因而 $S^{\mu\nu}$ 必定是 Lorentz 群某个表示的生成元矩阵

旋量表示中的固有保时向 Lorentz 变换

 \mathbf{O} 一组变换参数 $\omega_{\mu
u}$ 在 Lorentz 群的矢量表示中生成固有保时向的有限变换

$$\Lambda = \exp\left(-\frac{\mathrm{i}}{2}\,\omega_{\mu\nu}\mathcal{J}^{\mu\nu}\right), \quad (\mathcal{J}^{\mu\nu})^{\alpha}_{\ \beta} \equiv \mathrm{i}(g^{\mu\alpha}\delta^{\nu}_{\ \beta} - g^{\nu\alpha}\delta^{\mu}_{\ \beta})$$

◎ 这组参数在旋量表示中生成固有保时向的有限变换

$$\boxed{D(\Lambda) = \exp\left(-\frac{\mathrm{i}}{2}\,\omega_{\mu\nu}\mathcal{S}^{\mu\nu}\right)}$$

 $egin{aligned} & iggle & iggle & D^{-1}(\Lambda)\gamma^\mu D(\Lambda) = \Lambda^\mu{}_
u\gamma^
u \end{aligned}$,将此式看作旋量表示中 Dirac 矩阵 γ^μ

的固有保时向 Lorentz 变换规则,那么 γ^{μ} 是一个 Lorentz 矢量

ightarrow 进一步引入 4×4 矩阵 $\gamma^5 \equiv \gamma_5 \equiv i \gamma^0 \gamma^1 \gamma^2 \gamma^3$,它满足

$$(\gamma^5)^2 = 1, \quad (\gamma^5)^{\dagger} = \gamma^5, \quad \{\gamma^5, \gamma^{\mu}\} = 0$$

旋量表示的基底

 \mathbf{M} 在固有保时向 Lorentz 变换 $D(\Lambda)$ 的作用下,有

$$\begin{split} D^{-1}(\Lambda) \, \mathbf{1} \, D(\Lambda) &= \mathbf{1}, & D^{-1}(\Lambda) \gamma^5 D(\Lambda) &= \gamma^5 \\ D^{-1}(\Lambda) \gamma^\mu D(\Lambda) &= \Lambda^\mu{}_\nu \gamma^\nu, & D^{-1}(\Lambda) \gamma^\mu \gamma^5 D(\Lambda) &= \Lambda^\mu{}_\nu \gamma^\nu \gamma^5 \\ D^{-1}(\Lambda) \sigma^{\mu\nu} D(\Lambda) &= \Lambda^\mu{}_\rho \Lambda^\nu{}_\sigma \sigma^{\rho\sigma}, & \sigma^{\mu\nu} &\equiv \frac{\mathrm{i}}{2} [\gamma^\mu, \gamma^\nu] &= 2 \mathcal{S}^{\mu\nu} \end{split}$$

C 变换

!!! 矢量表示中的字称变换矩阵是 $\mathcal{P}^{\mu}_{\nu} = \text{diag}(+1, -1, -1, -1)$

lacktriangle 旋量空间中相应的宇称变换矩阵可定义为 $igglib D(\mathcal{P}) = \gamma^0$,从而

$$\begin{split} D^{-1}(\mathcal{P}) \, \mathbf{1} \, D(\mathcal{P}) &= +\mathbf{1}, & D^{-1}(\mathcal{P}) \gamma^5 D(\mathcal{P}) &= -\gamma^5, \\ D^{-1}(\mathcal{P}) \gamma^\mu D(\mathcal{P}) &= \mathcal{P}^\mu_{\ \nu} \gamma^\nu, & D^{-1}(\mathcal{P}) \gamma^\mu \gamma^5 D(\mathcal{P}) &= -\mathcal{P}^\mu_{\ \nu} \gamma^\nu \gamma^5 \\ D^{-1}(\mathcal{P}) \sigma^{\mu\nu} D(\mathcal{P}) &= \mathcal{P}^\mu_{\ \alpha} \mathcal{P}^\nu_{\ \beta} \sigma^{\alpha\beta} \end{split}$$

 $lacksymbol{\square}$ 可见,集合 $\{1,\gamma^5,\gamma^\mu,\gamma^\mu\gamma^5,\sigma^{\mu
u}\}$ 是由标量1、赝标量 γ^5 、极矢量 γ^μ 、轴矢量 $\gamma^{\mu}\gamma^{5}$ 和 2 阶反对称张量 $\sigma^{\mu\nu}$ 组成的,这些矩阵的变换性质**各不相同**

 $\overline{\mathbf{m}}$ 总共有 16 个线性独立的矩阵,可作为基底展开旋量空间中任意一个 4×4 矩阵

Dirac 旋量场

- 在 Lorentz 群旋量表示空间中,被变换矩阵 $D(\Lambda)$ 作用的列矢量称为 Dirac 旋量
- lacktriangle 由于 $D(\Lambda)$ 是 4 imes 4 矩阵,Dirac 旋量 ψ_a 应当具有 4 个分量 (a=1,2,3,4)
- igoplus相应的固有保时向 Lorentz 变换为 $egin{pmatrix} \psi_a' = D_{ab}(\Lambda)\psi_b \end{pmatrix}$
- igwedge 隐去旋量指标 a 和 b,上式简化为 $oldsymbol{\psi'} = D(\Lambda) oldsymbol{\psi}$
- lueen 如果 ψ_a 依赖于时空坐标 x^μ ,它就成为 Dirac 旋量场 $\psi_a(x)$
- lacktriangle 设固有保时向 Lorentz 变换 Λ 在 Hilbert 空间中诱导出来的线性幺正变换为 $|\Psi'
 angle=U(\Lambda)\,|\Psi
 angle$,则矢量场算符 $A^\mu(x)$ 的 Lorentz 变换是

$$A'^{\mu}(x') = U^{-1}(\Lambda)A^{\mu}(x')U(\Lambda) = \Lambda^{\mu}{}_{\nu}A^{\nu}(x)$$

 $oldsymbol{\Sigma}$ 类比于上式, $oldsymbol{\mathsf{Dirac}}$ 旋量场算符 $\psi_a(x)$ 的 $oldsymbol{\mathsf{Lorentz}}$ 变换形式是

$$\psi_a'(x') = U^{-1}(\Lambda)\psi_a(x')U(\Lambda) = D_{ab}(\Lambda)\psi_b(x)$$

与 Lorentz 变换相关的线性空间

线性空间名称	矢量表示空间	旋量表示空间
维度	4 维	4 维
空间中元素	Lorentz 矢量 A^μ	Dirac 旋量 ψ_a
Lorentz 群生成元	$(\mathcal{J}^{\mu\nu})^{\alpha}{}_{\beta} \equiv \mathrm{i}(g^{\mu\alpha}\delta^{\nu}{}_{\beta} - g^{\nu\alpha}\delta^{\mu}{}_{\beta})$	$\mathcal{S}^{\mu u}=rac{\mathrm{i}}{4}[\gamma^{\mu},\gamma^{ u}]$
固有保时向 Lorentz 变换	$\Lambda = \exp\left(-\frac{\mathrm{i}}{2}\omega_{\mu\nu}\mathcal{J}^{\mu\nu}\right)$	$D(\Lambda) = \exp\left(-\frac{\mathrm{i}}{2}\omega_{\mu\nu}\mathcal{S}^{\mu\nu}\right)$
线性空间名称	Hilbert 空间	场空间
维度	无限维	无限维
空间中元素	态矢 $ \Psi\rangle$	场 $\phi(x)$ 、 $A^{\mu}(x)$ 、 $\psi_a(x)$
Lorentz 群生成元	算符 $J^{\mu u}$	$\hat{L}^{\mu\nu} = \mathrm{i}(x^{\mu}\partial^{\nu} - x^{\nu}\partial^{\mu})$
固有保时向 Lorentz 变换	$U(\Lambda) = \exp\left(-\frac{\mathrm{i}}{2}\omega_{\mu\nu}J^{\mu\nu}\right)$	$\exp\left(-\frac{\mathrm{i}}{2}\omega_{\mu\nu}\hat{L}^{\mu\nu}\right)$

Dirac 旋量场回顾

- 利用 Pauli 矩阵 $\sigma^1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\sigma^2 = \begin{pmatrix} -i \\ i \end{pmatrix}$, $\sigma^3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
- \bigcirc 以 1 表示 2×2 单位矩阵,将 Dirac 矩阵表示成 2×2 分块形式:

$$\gamma^0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} \sigma^i \\ -\sigma^i \end{pmatrix}$$

- Dirac 矩阵有多种表示方式,以上表示方式称为 Weyl 表象,也称为手征表象
- \longrightarrow 用单位矩阵 1 和 Pauli 矩阵定义 $\sigma^{\mu} \equiv (1, \sigma)$ π $\sigma^{\mu} \equiv (1, -\sigma)$, 从而

$$\boxed{ \gamma^{\mu} = \begin{pmatrix} & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & \end{pmatrix}, \quad \gamma^{5} = \begin{pmatrix} -1 & \\ & 1 \end{pmatrix} }$$

 $lackbox{\underline{ }}$ 生成元矩阵表达为 $\mathcal{S}^{\mu
u} = rac{\mathrm{i}}{4} [\gamma^\mu, \gamma^
u] = rac{\mathrm{i}}{4} \left(egin{matrix} \sigma^\mu ar{\sigma}^
u - \sigma^
u ar{\sigma}^\mu \\ ar{\sigma}^\mu \sigma^
u - ar{\sigma}^
u \sigma^\mu \end{pmatrix}$

自旋角动量

Dirac 旋量场回顾

於量表示中的自旋角动量矩阵为

$$S^{i} = \frac{1}{2} \varepsilon^{ijk} S^{jk} = \frac{1}{2} \begin{pmatrix} \sigma^{i} & \\ & \sigma^{i} \end{pmatrix}$$

- igcplus 即 \mathcal{S}^i 是两个 $\mathrm{SU}(2)$ 群基础表示<mark>生成元</mark> $au^i = rac{\sigma^i}{2}$ 的<mark>直和</mark>
- ightharpoonup 因此 $ightharpoonup ^i$ 所属 m SU(2) 群线性表示是两个 m SU(2) 基础表示的直和
- 用自旋角动量矩阵构造的二阶 Casimir 算符为

$$\boldsymbol{\mathcal{S}}^2 = \boldsymbol{\mathcal{S}}^i \boldsymbol{\mathcal{S}}^i = \frac{1}{4} \begin{pmatrix} \sigma^i \sigma^i \\ \sigma^i \sigma^i \end{pmatrix} = \frac{3}{4} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{2} \left(\frac{1}{2} + 1 \right) \mathbf{1}_{4 \times 4} = s(s+1) \mathbf{1}_{4 \times 4}$$

- $/\!\!/$ 可见,Dirac 旋量场 $\psi(x)$ 的自旋量子数是 $s=rac{1}{2}$

Dirac 共轭和旋量双线性型

00000000000000

- \bigcirc 定义 $\psi(x)$ 的 Dirac 共轭 $\boxed{\bar{\psi}(x) \equiv \psi^{\dagger}(x) \gamma^{0}}$
- 曲于 $D^{\dagger}(\Lambda)\gamma^0 = \gamma^0 D^{-1}(\Lambda)$, $\bar{\psi}(x)$ 的 Lorentz 变换为

$$\bar{\psi}'(x') = \psi'^{\dagger}(x')\gamma^{0} = \psi^{\dagger}(x)D^{\dagger}(\Lambda)\gamma^{0} = \psi^{\dagger}(x)\gamma^{0}D^{-1}(\Lambda) = \bar{\psi}(x)D^{-1}(\Lambda)$$

M 这样一来, $\bar{\psi}(x)\psi(x)$ 就是一个 Lorentz 标量:

$$\bar{\psi}'(x')\psi'(x') = \bar{\psi}(x)D^{-1}(\Lambda)D(\Lambda)\psi(x) = \bar{\psi}(x)\psi(x)$$

- 🍑 利用 $\bar{\psi}(x)$ 还能构造 Lorentz 协变的其它旋量双线性型:
- $\bar{\psi}(x)i\gamma^5\psi(x)$ 是 Lorentz 赝标量
- $\bar{\psi}(x)\gamma^{\mu}\psi(x)$ 是 Lorentz 极矢量, $\bar{\psi}(x)\gamma^{\mu}\gamma^{5}\psi(x)$ 是 Lorentz 轴矢量
- $\bar{\psi}(x)\sigma^{\mu\nu}\psi(x)$ 是 2 阶反对称 Lorentz 张量

Dirac 方程

Dirac 旋量场回顾

 \blacksquare 此外,包含时空导数的旋量双线性型 $\bar{\psi}(x)\gamma^{\mu}\partial_{\mu}\psi(x)$ 是 Lorentz 标量,

$$\bar{\psi}'(x')\gamma^{\mu}\partial'_{\mu}\psi'(x') = \bar{\psi}(x)D^{-1}(\Lambda)\gamma^{\mu}D(\Lambda)(\Lambda^{-1})^{\nu}_{\mu}\partial_{\nu}\psi(x)$$
$$= \bar{\psi}(x)\Lambda^{\mu}_{\rho}\gamma^{\rho}(\Lambda^{-1})^{\nu}_{\mu}\partial_{\nu}\psi(x) = \bar{\psi}(x)\delta^{\nu}_{\rho}\gamma^{\rho}\partial_{\nu}\psi(x) = \bar{\psi}(x)\gamma^{\mu}\partial_{\mu}\psi(x)$$

ightharpoonup 利用 $\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi$ 和 $\bar{\psi}\psi$ 写下自由 Dirac 旋量场 $\psi(x)$ 的 Lorentz 不变拉氏量

$$\boxed{ \mathcal{L} = \mathrm{i}\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi }$$

- 以上</
- ${\color{red} leep _{m{\lambda}}}$ 根据 ${f Euler-Lagrange}$ 方程推出 $\psi(x)$ 的经典运动方程

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi(x) = 0$$

🦱 上式就是 Dirac 方程,标明<mark>旋量指标</mark>的形式为

$$[i(\gamma^{\mu})_{ab}\partial_{\mu} - m\delta_{ab}]\psi_b(x) = 0$$

Paul Dirac (1902–1984)

weyl 旋量

$$igoplus$$
 在 Weyl 表象中,旋量表示生成元矩阵 $\mathcal{S}^{\mu
u} = rac{\mathrm{i}}{4} \left(egin{matrix} \sigma^{\mu} ar{\sigma}^{
u} - \sigma^{
u} ar{\sigma}^{\mu} \\ ar{\sigma}^{\mu} \sigma^{
u} - ar{\sigma}^{
u} \sigma^{\mu} \end{pmatrix}$

是分块对角的,因而可将旋量表示分解为两个 2 维表示的直和

 \blacksquare 把四分量 Dirac 旋量场 ψ 分解为两个二分量旋量场 $\eta_{\rm L}$ 和 $\eta_{\rm R}$: $\psi = \begin{pmatrix} \eta_{\rm L} \\ \eta_{\rm R} \end{pmatrix}$

¥ 这样的二分量旋量称为 Weyl 旋量

利用
$$\gamma^{\mu} = \begin{pmatrix} \sigma^{\mu} \\ \bar{\sigma}^{\mu} \end{pmatrix}$$
 将 Dirac 方程化为
$$0 = (\mathrm{i}\gamma^{\mu}\partial_{\mu} - m)\psi = \begin{pmatrix} -m & \mathrm{i}\sigma^{\mu}\partial_{\mu} \\ \mathrm{i}\bar{\sigma}^{\mu}\partial_{\mu} & -m \end{pmatrix} \begin{pmatrix} \eta_{\mathrm{L}} \\ \eta_{\mathrm{R}} \end{pmatrix} = \begin{pmatrix} \mathrm{i}\sigma^{\mu}\partial_{\mu}\eta_{\mathrm{R}} - m\eta_{\mathrm{L}} \\ \mathrm{i}\bar{\sigma}^{\mu}\partial_{\mu}\eta_{\mathrm{L}} - m\eta_{\mathrm{R}} \end{pmatrix}$$

即得两个相互耦合的方程 $\left\{ egin{align*} & \mathrm{i} ar{\sigma}^{\mu} \partial_{\mu} \eta_{\mathrm{L}} - m \eta_{\mathrm{R}} = 0 \\ & \mathrm{i} \sigma^{\mu} \partial_{\mu} \eta_{\mathrm{R}} - m \eta_{\mathrm{L}} = 0 \end{array} \right.$

weyl 方程

Dirac 旋量场回顾

 \bigvee 如果 m=0,两个方程就各自独立了:

$$i\bar{\sigma}^{\mu}\partial_{\mu}\eta_{L}=0, \quad i\sigma^{\mu}\partial_{\mu}\eta_{R}=0$$

- 💆 这两个独立方程称为 Weyl 方程
- γ 可见,非零质量 m 的存在将左手和右手 Weyl 旋量场耦合起来
- lacktriangle 自旋角动量矩阵的直和分解 $\mathcal{S}^i = rac{1}{2}egin{pmatrix} \sigma^i \ & \sigma^i \end{pmatrix}$ 表明
- ★ 左手和右手 Weyl 旋量各对应于一个 SU(2) 群基础表示

Hermann Weyl (1885–1955)

 $\overset{\displaystyle igstyle 2}{\sim}$ 当 m=0 时,量子化之后的 $rac{\displaystyle \eta_{
m L}(x)}{\displaystyle \eta_{
m R}(x)}$ 各自描述自旋为 $rac{\displaystyle 1}{\displaystyle 2}$ 的粒子

平面波展开式

 \mathbf{m} 在 Weyl 表象中,满足 Dirac 方程 $(\mathrm{i}\gamma^{\mu}\partial_{\mu}-m)\psi(x)=0$ 的 Dirac 旋量场平面波展开式可以表达为

$$\psi(\mathbf{x},t) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\lambda=\pm} \left[\mathbf{u}(\mathbf{p},\lambda) a_{\mathbf{p},\lambda} \mathrm{e}^{-\mathrm{i}\mathbf{p}\cdot\mathbf{x}} + v(\mathbf{p},\lambda) b_{\mathbf{p},\lambda}^{\dagger} \mathrm{e}^{\mathrm{i}\mathbf{p}\cdot\mathbf{x}} \right]$$

- **②** p 是动量, $E_{\mathbf{p}} = \sqrt{|\mathbf{p}|^2 + m^2}$ 是相应的能量, $\lambda = \pm$ 是<mark>归一化</mark>的螺旋度 (helicity)
- $\Diamond a_{\mathbf{p},\lambda}$ 是湮灭算符, $b_{\mathbf{p},\lambda}^{\dagger}$ 是产生算符,而且 $a_{\mathbf{p},\lambda} \neq b_{\mathbf{p},\lambda}$
- \mathbf{Q} 平面波旋量系数 $u(\mathbf{p}, \lambda)$ 和 $v(\mathbf{p}, \lambda)$ 取为

$$u(\mathbf{p}, \lambda) = \begin{pmatrix} \omega_{-\lambda}(\mathbf{p})\xi_{\lambda}(\mathbf{p}) \\ \omega_{\lambda}(\mathbf{p})\xi_{\lambda}(\mathbf{p}) \end{pmatrix}, \quad v(\mathbf{p}, \lambda) = \begin{pmatrix} \lambda \, \omega_{\lambda}(\mathbf{p})\xi_{-\lambda}(\mathbf{p}) \\ -\lambda \, \omega_{-\lambda}(\mathbf{p})\xi_{-\lambda}(\mathbf{p}) \end{pmatrix}$$

- (p) 其中 $\omega_{\lambda}(\mathbf{p}) \equiv \sqrt{E_{\mathbf{p}} + \lambda |\mathbf{p}|}$, 二分量螺旋态 $\xi_{\lambda}(\mathbf{p})$ 满足 $(\hat{\mathbf{p}} \cdot \boldsymbol{\sigma})\xi_{\lambda}(\mathbf{p}) = \lambda \xi_{\lambda}(\mathbf{p})$
- ∂ 从而, $u(\mathbf{p}, \lambda)$ 和 $v(\mathbf{p}, \lambda)$ 分别是本征值为 λ 和 $-\lambda$ 的螺旋度本征态
- 于是,可以用 $a_{n,\lambda}^{\dagger}$ 和 $b_{n,\lambda}^{\dagger}$ 分别产生<mark>螺旋度</mark>为 λ 的 Dirac 正费米子和反费米子

Jordan-Wigner 量子化

Dirac 旋量场回顾

0000000000000

■ 为得到正定的哈密顿量算符,需采用等时反对易关系进行 Jordan-Wigner 量子化:

$$\{\psi_a(\mathbf{x},t),\pi_b(\mathbf{y},t)\} = \mathrm{i}\delta_{ab}\delta^{(3)}(\mathbf{x}-\mathbf{y}), \quad \{\psi_a(\mathbf{x},t),\psi_b(\mathbf{y},t)\} = \{\pi_a(\mathbf{x},t),\pi_b(\mathbf{y},t)\} = 0$$

★ 相应的产生湮灭算符反对易关系为

$$\begin{cases} \{a_{\mathbf{p},\lambda}, a_{\mathbf{q},\lambda'}^{\dagger}\} = (2\pi)^{3} \delta_{\lambda\lambda'} \delta^{(3)}(\mathbf{p} - \mathbf{q}), & \{a_{\mathbf{p},\lambda}, a_{\mathbf{q},\lambda'}\} = \{a_{\mathbf{p},\lambda}^{\dagger}, a_{\mathbf{q},\lambda'}^{\dagger}\} = 0 \\ \{b_{\mathbf{p},\lambda}, b_{\mathbf{q},\lambda'}^{\dagger}\} = (2\pi)^{3} \delta_{\lambda\lambda'} \delta^{(3)}(\mathbf{p} - \mathbf{q}), & \{b_{\mathbf{p},\lambda}, b_{\mathbf{q},\lambda'}\} = \{b_{\mathbf{p},\lambda}^{\dagger}, b_{\mathbf{q},\lambda'}^{\dagger}\} = 0 \\ \{a_{\mathbf{p},\lambda}, b_{\mathbf{q},\lambda'}^{\dagger}\} = \{b_{\mathbf{p},\lambda}, a_{\mathbf{q},\lambda'}^{\dagger}\} = \{a_{\mathbf{p},\lambda}, b_{\mathbf{q},\lambda'}\} = \{a_{\mathbf{p},\lambda}^{\dagger}, b_{\mathbf{q},\lambda'}^{\dagger}\} = 0 \end{cases}$$

 Υ 自由拉氏量 $\mathcal{L}=\mathrm{i}ar{\psi}\gamma^{\mu}\partial_{\mu}\psi-mar{\psi}\psi$ 在 U(1) 整体变换 $\psi'(x)=\mathrm{e}^{\mathrm{i}q heta}\psi(x)$ 的作用下 保持不变,即理论具有 $\mathrm{U}(\mathbf{1})$ 整体对称性,其中 q 是 Dirac 旋量场携带的 $\mathrm{U}(\mathbf{1})$ 荷

 \bigcirc 由 Noether 定理给出的 U(1) 守恒流算符是 $J^{\mu}=q\bar{\psi}\gamma^{\mu}\psi$,满足 $\partial_{\mu}J^{\mu}=0$

 \square 正费米子态 (U(1) 荷为 +q) 和反费米子态 (U(1) 荷为 -q) 分别定义为

$$|\mathbf{p}^+,\lambda\rangle \equiv \sqrt{2E_{\mathbf{p}}} \, a_{\mathbf{p},\lambda}^{\dagger} \, |0\rangle \,, \quad |\mathbf{p}^-,\lambda\rangle \equiv \sqrt{2E_{\mathbf{p}}} \, b_{\mathbf{p},\lambda}^{\dagger} \, |0\rangle$$

更加的 Dirac 旋星场回顾 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

- 🔪 下面探讨旋量场的手征性 (chirality) 与自旋 1/2 费米子的螺旋度之间的关系
- igcirc 在 Weyl 表象中利用 $\gamma^5=egin{pmatrix} -1 & 1 \ & 1 \end{pmatrix}$ 引入左手投影矩阵 $P_{
 m L}$ 和右手投影矩阵 $P_{
 m R}$,

$$P_{
m L} \equiv rac{1}{2}(\mathbf{1}-\gamma^5) = egin{pmatrix} \mathbf{1} & \ & \mathbf{0} \end{pmatrix}, \quad rac{\mathbf{P_{
m R}}}{\mathbf{P_{
m R}}} \equiv rac{1}{2}(\mathbf{1}+\gamma^5) = egin{pmatrix} \mathbf{0} & \ & \mathbf{1} \end{pmatrix}$$

它们是厄米的,而且具有投影性 $P_L^2=P_L$, $P_R^2=P_R$,正交性 $P_LP_R=P_RP_L=0$ 和完备性 $P_L+P_R=1$,由 $\gamma^5\gamma^\mu=-\gamma^\mu\gamma^5$ 得 $P_L\gamma^\mu=\gamma^\mu P_R$, $P_R\gamma^\mu=\gamma^\mu P_L$

更加的 Dirac 旋量场回顾 OOOOOOOOOO

- 🔪 下面探讨旋量场的手征性 (chirality) 与自旋 1/2 费米子的螺旋度之间的关系
- igcirc 在 Weyl 表象中利用 $\gamma^5=egin{pmatrix} -1 & 1 \ & 1 \end{pmatrix}$ 引入左手投影矩阵 $P_{
 m L}$ 和右手投影矩阵 $P_{
 m R}$,

$$egin{pmatrix} P_{
m L} \equiv rac{1}{2}(\mathbf{1}-\gamma^5) = egin{pmatrix} \mathbf{1} & \ & \mathbf{0} \end{pmatrix}, & P_{
m R} \equiv rac{1}{2}(\mathbf{1}+\gamma^5) = egin{pmatrix} \mathbf{0} & \ & \mathbf{1} \end{pmatrix} \end{bmatrix}$$

- 它们是厄米的,而且具有投影性 $P_L^2=P_L$, $P_R^2=P_R$,正交性 $P_LP_R=P_RP_L=0$ 和完备性 $P_L+P_R=1$,由 $\gamma^5\gamma^\mu=-\gamma^\mu\gamma^5$ 得 $P_L\gamma^\mu=\gamma^\mu P_R$, $P_R\gamma^\mu=\gamma^\mu P_L$
- \blacksquare 将 Dirac 旋量场 ψ 分解为左手 Weyl 旋量场 $\eta_{
 m L}$ 和<mark>右手 Weyl 旋量场 $\eta_{
 m R}$ </mark>
- $_{\parallel}$ 右手的四分量<mark>旋量场</mark>定义为 $\overline{\psi_{\mathrm{R}}} \equiv P_{\mathrm{R}}\psi = \begin{pmatrix} \mathbf{0} \\ \mathbf{1} \end{pmatrix} \begin{pmatrix} \eta_{\mathrm{L}} \\ \eta_{\mathrm{R}} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \eta_{\mathrm{R}} \end{pmatrix}$
- ◆ 我们称左手旋量场和右手旋量场具有相反的手征性,而左右手投影矩阵正好挑选 出具有相应手征性的 Weyl 旋量场分量

$^{\nwarrow}$ 将 $\mathbf{1} \pm \gamma^5$ 的简化地写成 $\mathbf{1} \pm \gamma^5$,左手旋量场 ψ_{L} 的 Dirac 共轭为

$$\bar{\psi}_{\rm L} = (\psi_{\rm L})^\dagger \gamma^0 = \frac{1}{2} [(1-\gamma^5)\psi]^\dagger \gamma^0 = \frac{1}{2} \, \psi^\dagger (1-\gamma^5) \gamma^0 = \frac{1}{2} \, \psi^\dagger \gamma^0 (1+\gamma^5) = \bar{\psi} P_{\rm R}$$

同理得<mark>右手</mark>旋量场 ψ_{R} 的 Dirac 共轭为 $\bar{\psi}_{R} = \bar{\psi} P_{L}$

左右手投影分解

 $\sqrt{81 \pm \gamma^5}$ 的简化地写成 $1 \pm \gamma^5$,左手旋量场 ψ_L 的 Dirac 共轭为

$$\bar{\psi}_{\rm L} = (\psi_{\rm L})^\dagger \gamma^0 = \frac{1}{2} [(1-\gamma^5)\psi]^\dagger \gamma^0 = \frac{1}{2} \, \psi^\dagger (1-\gamma^5) \gamma^0 = \frac{1}{2} \, \psi^\dagger \gamma^0 (1+\gamma^5) = \bar{\psi} P_{\rm R}$$

- 同理得**右手**旋量场 ψ_{R} 的 Dirac 共轭为 $\bar{\psi}_{R} = \bar{\psi} P_{L}$
- 🌌 对包含若干个 Dirac 矩阵的旋量场双线性型进行左右手投影分解,得

$$\begin{split} \bar{\psi}\psi &= \bar{\psi}(P_{L} + P_{R})\psi = \bar{\psi}(P_{L}^{2} + P_{R}^{2})\psi = \bar{\psi}_{R}\psi_{L} + \bar{\psi}_{L}\psi_{R} \\ \bar{\psi}\gamma^{\mu}\psi &= \bar{\psi}\gamma^{\mu}(P_{L}^{2} + P_{R}^{2})\psi = \bar{\psi}P_{R}\gamma^{\mu}P_{L}\psi + \bar{\psi}P_{L}\gamma^{\mu}P_{R}\psi = \bar{\psi}_{L}\gamma^{\mu}\psi_{L} + \bar{\psi}_{R}\gamma^{\mu}\psi_{R} \\ \bar{\psi}\gamma^{\mu}\gamma^{\nu}\psi &= \bar{\psi}\gamma^{\mu}\gamma^{\nu}(P_{L}^{2} + P_{R}^{2})\psi = \bar{\psi}_{R}\gamma^{\mu}\gamma^{\nu}\psi_{L} + \bar{\psi}_{L}\gamma^{\mu}\gamma^{\nu}\psi_{R} \\ \bar{\psi}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\psi &= \bar{\psi}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}(P_{L}^{2} + P_{R}^{2})\psi = \bar{\psi}_{L}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\psi_{L} + \bar{\psi}_{R}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\psi_{R} \end{split}$$

包含偶数 (奇数) 个 Dirac 矩阵的旋量场双线性型耦合手征性相反 (相同) 的旋量场

- 拉氏量中的 Dirac 旋量场质量项分解为 $-m\bar{\psi}\psi = -m(\bar{\psi}_{R}\psi_{L} + \bar{\psi}_{L}\psi_{R})$
- m 把上式看作微扰,那么 f 质量 f 将左手旋量场 f 与右手旋量场 f 耦合起来

高能极限

Dirac 旋量场回顾

 \wedge 在高能极限下,忽略旋量场的质量 m ,则 $E_{\rm p} \simeq |{\bf p}|$

$$\swarrow$$
 故 $\omega_+(\mathbf{p}) = \sqrt{E_\mathbf{p} + |\mathbf{p}|} \simeq \sqrt{2E_\mathbf{p}}$, $\omega_-(\mathbf{p}) = \sqrt{E_\mathbf{p} - |\mathbf{p}|} \simeq 0$

 \nearrow 按照 5.4.2 小节中平面波旋量系数 u 和 v 的螺旋态表达式,有

$$u(\mathbf{p},+) = \begin{pmatrix} \omega_{-}(\mathbf{p})\xi_{+}(\mathbf{p}) \\ \omega_{+}(\mathbf{p})\xi_{+}(\mathbf{p}) \end{pmatrix} \simeq \sqrt{2E_{\mathbf{p}}} \begin{pmatrix} 0 \\ \xi_{+}(\mathbf{p}) \end{pmatrix}, \quad u(\mathbf{p},-) = \begin{pmatrix} \omega_{+}(\mathbf{p})\xi_{-}(\mathbf{p}) \\ \omega_{-}(\mathbf{p})\xi_{-}(\mathbf{p}) \end{pmatrix} \simeq \sqrt{2E_{\mathbf{p}}} \begin{pmatrix} \xi_{-}(\mathbf{p}) \\ 0 \end{pmatrix}$$

$$v(\mathbf{p},+) = \begin{pmatrix} \omega_{+}(\mathbf{p})\xi_{-}(\mathbf{p}) \\ -\omega_{-}(\mathbf{p})\xi_{-}(\mathbf{p}) \end{pmatrix} \simeq \sqrt{2E_{\mathbf{p}}} \begin{pmatrix} \xi_{-}(\mathbf{p}) \\ 0 \end{pmatrix}, \quad v(\mathbf{p},-) = \begin{pmatrix} -\omega_{-}(\mathbf{p})\xi_{+}(\mathbf{p}) \\ \omega_{+}(\mathbf{p})\xi_{+}(\mathbf{p}) \end{pmatrix} \simeq \sqrt{2E_{\mathbf{p}}} \begin{pmatrix} 0 \\ \xi_{+}(\mathbf{p}) \end{pmatrix}$$

- **III** 此时,螺旋度不同的 u 和 v 显示出不同手征性
- $u(\mathbf{p},+)$ 和 $v(\mathbf{p},-)$ 是右手的, $u(\mathbf{p},-)$ 和 $v(\mathbf{p},+)$ 是左手的
- 可见,高能极限下手征性等价于螺旋度
- \blacksquare 注意, $u(\mathbf{p}, \lambda)$ 是本征值为 λ 的螺旋度本征态,与螺旋度为 λ 的正费米子相关
- $| \mathbf{p} | v(\mathbf{p}, \lambda)$ 是本征值为 $-\lambda$ 的螺旋度本征态,却与螺旋度为 λ 的反费米子相关

 \P 由于高能极限下 $u(\mathbf{p}, -)$ 和 $v(\mathbf{p}, +)$ 是左手的, $u(\mathbf{p}, +)$ 和 $v(\mathbf{p}, -)$ 是右手的

77 用投影矩阵作用,得

$$u_{L}(\mathbf{p}, -) = P_{L}u(\mathbf{p}, -) \simeq u(\mathbf{p}, -), \quad u_{R}(\mathbf{p}, +) = P_{R}u(\mathbf{p}, +) \simeq u(\mathbf{p}, +)$$

$$u_{L}(\mathbf{p}, +) = P_{L}u(\mathbf{p}, +) \simeq 0, \qquad u_{R}(\mathbf{p}, -) = P_{R}u(\mathbf{p}, -) \simeq 0$$

$$v_{L}(\mathbf{p}, +) = P_{L}v(\mathbf{p}, +) \simeq v(\mathbf{p}, +), \quad v_{R}(\mathbf{p}, -) = P_{R}v(\mathbf{p}, -) \simeq v(\mathbf{p}, -)$$

$$v_{L}(\mathbf{p}, -) = P_{L}v(\mathbf{p}, -) \simeq 0, \qquad v_{R}(\mathbf{p}, +) = P_{R}v(\mathbf{p}, +) \simeq 0$$

🚔 相应的 Dirac 共轭满足

$$\begin{split} &\bar{u}_{L}(\mathbf{p},-) = \bar{u}(\mathbf{p},-)P_{R} \simeq \bar{u}(\mathbf{p},-), & \bar{u}_{R}(\mathbf{p},+) = \bar{u}(\mathbf{p},+)P_{L} \simeq \bar{u}(\mathbf{p},+)\\ &\bar{u}_{L}(\mathbf{p},+) = \bar{u}(\mathbf{p},+)P_{R} \simeq 0, & \bar{u}_{R}(\mathbf{p},-) = \bar{u}(\mathbf{p},-)P_{L} \simeq 0\\ &\bar{v}_{L}(\mathbf{p},+) = \bar{v}(\mathbf{p},+)P_{R} \simeq \bar{v}(\mathbf{p},+), & \bar{v}_{R}(\mathbf{p},-) = \bar{v}(\mathbf{p},-)P_{L} \simeq \bar{v}(\mathbf{p},-)\\ &\bar{v}_{L}(\mathbf{p},-) = \bar{v}(\mathbf{p},-)P_{R} \simeq 0, & \bar{v}_{R}(\mathbf{p},+) = \bar{v}(\mathbf{p},+)P_{L} \simeq 0 \end{split}$$

高能极限下的手征旋量场

 \nearrow 将投影矩阵作用到 $\psi(x)$ 上,得到高能极限下手征旋量场的平面波展开式

$$\psi_{\rm L}(x) = P_{\rm L}\psi(x) \simeq \int \frac{{\rm d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\rm p}}} \left[u({\bf p},-)a_{{\bf p},-}{\rm e}^{-{\rm i} p\cdot x} + v({\bf p},+)b_{{\bf p},+}^{\dagger}{\rm e}^{{\rm i} p\cdot x} \right]
\psi_{\rm R}(x) = P_{\rm R}\psi(x) \simeq \int \frac{{\rm d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\rm p}}} \left[u({\bf p},+)a_{{\bf p},+}{\rm e}^{-{\rm i} p\cdot x} + v({\bf p},-)b_{{\bf p},-}^{\dagger}{\rm e}^{{\rm i} p\cdot x} \right]$$

77 相应的 Dirac 共轭为

$$\begin{split} \bar{\psi}_{\mathrm{L}}(x) &= [\psi_{\mathrm{L}}(x)]^{\dagger} \gamma^{0} \simeq \int \frac{\mathrm{d}^{3} p}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left[\bar{u}(\mathbf{p}, -) a_{\mathbf{p}, -}^{\dagger} \mathrm{e}^{\mathrm{i} p \cdot x} + \bar{v}(\mathbf{p}, +) b_{\mathbf{p}, +} \mathrm{e}^{-\mathrm{i} p \cdot x} \right] \\ \bar{\psi}_{\mathrm{R}}(x) &= [\psi_{\mathrm{R}}(x)]^{\dagger} \gamma^{0} \simeq \int \frac{\mathrm{d}^{3} p}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left[\bar{u}(\mathbf{p}, +) a_{\mathbf{p}, +}^{\dagger} \mathrm{e}^{\mathrm{i} p \cdot x} + \bar{v}(\mathbf{p}, -) b_{\mathbf{p}, -} \mathrm{e}^{-\mathrm{i} p \cdot x} \right] \end{split}$$

- **全** 在高能极限下,**忽略质量**,那么,
- lacksquare 左手旋量场 $\psi_{
 m L}(x)$ 描述左旋极化的正费米子和右旋极化的反费米子
- \blacksquare 右手旋量场 $\psi_{\mathrm{R}}(x)$ 描述右旋极化的正费米子和左旋极化的反费米子
- $\psi_{L}(x)$ 和 $\psi_{R}(x)$ 成为两个相互独立的场

标准模型中的中微子

 $\P_{f w}$ 作为对高能极限的<mark>微扰,质量项 $-m(ar{\psi}_{f R}\psi_{f L}+ar{\psi}_{f L}\psi_{f R})$ 耦合着左旋极化 $(\lambda=-)$ </mark> 与右旋极化 $(\lambda = +)$ 的正费米子,也耦合着左旋极化与右旋极化的反费米子

- 西 因此,可以利用质量来翻转螺旋度
- 🌌 在标准模型中,每一种无质量中微子由一个左手旋量场

$$\psi_{\mathrm{L}}(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathrm{p}}}} \left[u(\mathbf{p}, -)a_{\mathrm{p}, -} \mathrm{e}^{-\mathrm{i} p \cdot x} + v(\mathbf{p}, +)b_{\mathrm{p}, +}^{\dagger} \mathrm{e}^{\mathrm{i} p \cdot x} \right]$$

描述

- 🌎 相应地,以 a_{n-1}^\dagger 算符产生的粒子是左旋正中微子,以 b_{n-1}^\dagger 算符产生的粒子是右 旋反中微子、它们互为正反粒子
- 标准模型中没有由右手旋量场描述的中微子

旋量系数的左右手投影

在高能极限下,由投影矩阵性质推出

$$\begin{split} &\bar{u}(\mathbf{q},-)u(\mathbf{p},-) \, \simeq \, \bar{u}(\mathbf{q},-)P_{\mathrm{R}}P_{\mathrm{L}}u(\mathbf{p},-) = 0 \\ &\bar{u}(\mathbf{q},+)u(\mathbf{p},+) \, \simeq \, \bar{u}(\mathbf{q},+)P_{\mathrm{L}}P_{\mathrm{R}}u(\mathbf{p},+) = 0 \\ &\bar{v}(\mathbf{q},-)v(\mathbf{p},-) \, \simeq \, \bar{v}(\mathbf{q},-)P_{\mathrm{L}}P_{\mathrm{R}}v(\mathbf{p},-) = 0 \\ &\bar{v}(\mathbf{q},+)v(\mathbf{p},+) \, \simeq \, \bar{v}(\mathbf{q},+)P_{\mathrm{R}}P_{\mathrm{L}}v(\mathbf{p},+) = 0 \end{split}$$

圖 此时两个旋量系数之间夹着零个 Dirac 矩阵,<mark>不能耦合相同螺旋度</mark>,只能耦合相反螺旋度,这是左右手投影分解式 $\bar{\psi}_{\Psi} = \bar{\psi}_{\mathrm{R}}\psi_{\mathrm{L}} + \bar{\psi}_{\mathrm{L}}\psi_{\mathrm{R}}$ 在旋量系数上的体现

Ⅲ 一般地,有

$$egin{aligned} & ar{u}(\mathbf{q},\lambda)u(\mathbf{p},\lambda) \simeq 0, & ar{v}(\mathbf{q},\lambda)v(\mathbf{p},\lambda) \simeq 0 \\ & ar{u}(\mathbf{q},-\lambda)\gamma^{\mu}u(\mathbf{p},\lambda) \simeq 0, & ar{v}(\mathbf{q},-\lambda)\gamma^{\mu}v(\mathbf{p},\lambda) \simeq 0 \\ & ar{u}(\mathbf{q},-\lambda)v(\mathbf{p},\lambda) \simeq 0, & ar{v}(\mathbf{q},-\lambda)u(\mathbf{p},\lambda) \simeq 0 \\ & ar{u}(\mathbf{q},\lambda)\gamma^{\mu}v(\mathbf{p},\lambda) \simeq 0, & ar{v}(\mathbf{q},\lambda)\gamma^{\mu}u(\mathbf{p},\lambda) \simeq 0 \end{aligned}$$

C 变换

除了宇称和时间反演,另一种重要的分立变换是<mark>电荷共轭</mark> (charge conjugation)

ho 电荷共轭变换<mark>将正反粒子互相转换</mark>,不只转换正反电荷,也转换所有其它正反 U(1) 荷,但对时空坐标、四维动量、角动量和螺旋度<mark>没有影响</mark>

Dirac 旋量场回顾 C 变换

除了宇称和时间反演,另一种重要的分立变换是<mark>电荷共轭</mark> (charge conjugation)

C 变换 •000000000000

- 电荷共轭变换将正反粒子互相转换,不只转换正反电荷,也转换所有其它正反 U(1) 荷,但对时空坐标、四维动量、角动量和螺旋度没有影响
- 在具有电荷共轭对称性的量子理论中,电荷共轭变换在 Hilbert 空间中诱导出态矢

$$\ket{\Psi}$$
 的线性幺正变换

$$\left|\Psi'\right\rangle = C\left|\Psi\right\rangle$$

- 👗 这个变换称为 🥝 变换
- $\stackrel{\blacktriangle}{\bullet}$ C 是自身的逆变换算符,满足

$$C^{\dagger} = C^{-1} = C$$

 Ψ 因而 C 算符是厄米的

Dirac 旋量场的 C 变换

 Γ C 变换在互换正反粒子的同时,不改变</mark>动量 \mathbf{p} 和螺旋度 $\lambda=\pm$,因此将正费米子态 $|\mathbf{p}^+,\lambda\rangle=\sqrt{2E_{\mathbf{p}}}\,a_{\mathbf{p},\lambda}^\dagger\,|0\rangle$ 转化成反费米子态 $|\mathbf{p}^-,\lambda\rangle=\sqrt{2E_{\mathbf{p}}}\,b_{\mathbf{p},\lambda}^\dagger\,|0\rangle$,

$$C |\mathbf{p}^+, \lambda\rangle = \zeta_C |\mathbf{p}^-, \lambda\rangle$$

№ 其中 ζ_C 是复的相位因子,满足 $|\zeta_C|=1$

 \bigcirc 出现 ζ_C 的原因是相差一个相位因子的归一化态矢描述相同的物理。由此推出

$$C^{-1}a_{\mathbf{p},\lambda}^{\dagger}C=\zeta_Cb_{\mathbf{p},\lambda}^{\dagger}, \quad C^{-1}a_{\mathbf{p},\lambda}C=\zeta_C^*b_{\mathbf{p},\lambda}, \quad C^{-1}b_{\mathbf{p},\lambda}^{\dagger}C=\zeta_C^*a_{\mathbf{p},\lambda}^{\dagger}, \quad C^{-1}b_{\mathbf{p},\lambda}C=\zeta_Ca_{\mathbf{p},\lambda}$$

 $\psi(x)$ 平面波展开式的 C 变换为

$$C^{-1}\psi(x)C = \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\lambda} \left[u(\mathbf{p}, \lambda)C^{-1}a_{\mathbf{p}, \lambda}Ce^{-i\mathbf{p}\cdot x} + v(\mathbf{p}, \lambda)C^{-1}b_{\mathbf{p}, \lambda}^{\dagger}Ce^{i\mathbf{p}\cdot x} \right]$$
$$= \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\lambda} \left[\zeta_{C}^{*}u(\mathbf{p}, \lambda)b_{\mathbf{p}, \lambda}e^{-i\mathbf{p}\cdot x} + \zeta_{C}^{*}v(\mathbf{p}, \lambda)a_{\mathbf{p}, \lambda}^{\dagger}e^{i\mathbf{p}\cdot x} \right]$$

螺旋态关系式

🐶 为了得到 $\psi(x)$ 的电荷共轭场,需要探讨 $u(\mathbf{p},\lambda)$ 和 $v(\mathbf{p},\lambda)$ 之间相互转换的关系

 λ 在 Weyl 表象中,对 $\bar{u}(\mathbf{p},\lambda)$ 和 $\bar{v}(\mathbf{p},\lambda)$ 进行转置,得

$$ar{u}^{\mathrm{T}}(\mathbf{p},\lambda) = egin{pmatrix} \omega_{\lambda}(\mathbf{p})\xi_{\lambda}^{*}(\mathbf{p}) \ \omega_{-\lambda}(\mathbf{p})\xi_{\lambda}^{*}(\mathbf{p}) \end{pmatrix}, \quad ar{v}^{\mathrm{T}}(\mathbf{p},\lambda) = egin{pmatrix} -\lambda\omega_{-\lambda}(\mathbf{p})\xi_{-\lambda}^{*}(\mathbf{p}) \ \lambda\omega_{\lambda}(\mathbf{p})\xi_{-\lambda}^{*}(\mathbf{p}) \end{pmatrix}$$

 \checkmark 将螺旋态 $\xi_{\lambda}(\mathbf{p})$ 的具体形式取为

$$\xi_{+}(\mathbf{p}) = \frac{1}{\sqrt{2|\mathbf{p}|(|\mathbf{p}| + p^{3})}} \begin{pmatrix} |\mathbf{p}| + p^{3} \\ p^{1} + ip^{2} \end{pmatrix}, \quad \xi_{-}(\mathbf{p}) = \frac{1}{\sqrt{2|\mathbf{p}|(|\mathbf{p}| + p^{3})}} \begin{pmatrix} -p^{1} + ip^{2} \\ |\mathbf{p}| + p^{3} \end{pmatrix}$$

$$ightharpoonup$$
 $\mathbf{i}\sigma^2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 对 $\xi_{\lambda}^*(\mathbf{p})$ 的作用为 $\mathbf{i}\sigma^2 \xi_+^*(\mathbf{p}) = -\xi_-(\mathbf{p})$ 和 $\mathbf{i}\sigma^2 \xi_-^*(\mathbf{p}) = +\xi_+(\mathbf{p})$

$$i\sigma^2 \xi_{\lambda}^*(\mathbf{p}) = -\lambda \xi_{-\lambda}(\mathbf{p}), \quad i\sigma^2 \xi_{-\lambda}^*(\mathbf{p}) = \lambda \xi_{\lambda}(\mathbf{p})$$

电荷共轭场

Dirac 旋量场回顾

引入旋量空间中的电荷共轭矩阵

$$\boxed{ \mathcal{C} \equiv i\gamma^0 \gamma^2 = i \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} \sigma^2 \\ -\sigma^2 \end{pmatrix} = \begin{pmatrix} -i\sigma^2 \\ i\sigma^2 \end{pmatrix} }$$

C 变换

000000000000

《 就可以导出平面波旋量系数 $u(\mathbf{p}, \lambda)$ 和 $v(\mathbf{p}, \lambda)$ 之间的转换关系式:

$$\mathcal{C}\bar{u}^{\mathrm{T}}(\mathbf{p}, \lambda) = \begin{pmatrix} -\omega_{\lambda}(\mathbf{p}) \mathrm{i}\sigma^{2} \xi_{\lambda}^{*}(\mathbf{p}) \\ \omega_{-\lambda}(\mathbf{p}) \mathrm{i}\sigma^{2} \xi_{\lambda}^{*}(\mathbf{p}) \end{pmatrix} = \begin{pmatrix} \lambda\omega_{\lambda}(\mathbf{p})\xi_{-\lambda}(\mathbf{p}) \\ -\lambda\omega_{-\lambda}(\mathbf{p})\xi_{-\lambda}(\mathbf{p}) \end{pmatrix} = v(\mathbf{p}, \lambda)$$

$$\mathcal{C}\bar{v}^{\mathrm{T}}(\mathbf{p},\lambda) = \begin{pmatrix} \lambda \omega_{-\lambda}(\mathbf{p}) \mathrm{i}\sigma^{2} \xi_{-\lambda}^{*}(\mathbf{p}) \\ \lambda \omega_{\lambda}(\mathbf{p}) \mathrm{i}\sigma^{2} \xi_{-\lambda}^{*}(\mathbf{p}) \end{pmatrix} = \begin{pmatrix} \omega_{-\lambda}(\mathbf{p}) \xi_{\lambda}(\mathbf{p}) \\ \omega_{\lambda}(\mathbf{p}) \xi_{\lambda}(\mathbf{p}) \end{pmatrix} = u(\mathbf{p},\lambda)$$

电荷共轭场

Dirac 旋量场回顾

引入旋量空间中的电荷共轭矩阵

$$\boxed{ \mathcal{C} \equiv \mathrm{i} \gamma^0 \gamma^2 = \mathrm{i} \begin{pmatrix} & 1 \\ 1 & \end{pmatrix} \begin{pmatrix} & \sigma^2 \\ -\sigma^2 & \end{pmatrix} = \begin{pmatrix} -\mathrm{i} \sigma^2 & \\ & \mathrm{i} \sigma^2 \end{pmatrix} }$$

000000000000

 \checkmark 就可以导出平面波旋量系数 $u(\mathbf{p}, \lambda)$ 和 $v(\mathbf{p}, \lambda)$ 之间的转换关系式:

$$\frac{\mathcal{C}\bar{u}^{\mathrm{T}}(\mathbf{p},\lambda)}{\mathcal{C}\bar{u}^{\mathrm{T}}(\mathbf{p},\lambda)} = \begin{pmatrix} -\omega_{\lambda}(\mathbf{p})i\sigma^{2}\xi_{\lambda}^{*}(\mathbf{p}) \\ \omega_{-\lambda}(\mathbf{p})i\sigma^{2}\xi_{\lambda}^{*}(\mathbf{p}) \end{pmatrix} = \begin{pmatrix} \lambda\omega_{\lambda}(\mathbf{p})\xi_{-\lambda}(\mathbf{p}) \\ -\lambda\omega_{-\lambda}(\mathbf{p})\xi_{-\lambda}(\mathbf{p}) \end{pmatrix} = v(\mathbf{p},\lambda)$$

$$\mathcal{C}\bar{v}^{\mathrm{T}}(\mathbf{p},\lambda) = \begin{pmatrix} \lambda\omega_{-\lambda}(\mathbf{p})i\sigma^{2}\xi_{-\lambda}^{*}(\mathbf{p}) \\ \lambda\omega_{\lambda}(\mathbf{p})i\sigma^{2}\xi_{-\lambda}^{*}(\mathbf{p}) \end{pmatrix} = \begin{pmatrix} \omega_{-\lambda}(\mathbf{p})\xi_{\lambda}(\mathbf{p}) \\ \omega_{\lambda}(\mathbf{p})\xi_{\lambda}(\mathbf{p}) \end{pmatrix} = u(\mathbf{p},\lambda)$$

III 于是, $\psi(x)$ 的 C 变换化为

$$C^{-1}\psi(x)C = \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\lambda} \left[\zeta_{C}^{*} u(\mathbf{p}, \lambda) b_{\mathbf{p}, \lambda} \mathrm{e}^{-\mathrm{i}p \cdot x} + \zeta_{C}^{*} v(\mathbf{p}, \lambda) a_{\mathbf{p}, \lambda}^{\dagger} \mathrm{e}^{\mathrm{i}p \cdot x} \right]$$

$$= \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\lambda} \left[\zeta_{C}^{*} \mathcal{C}\bar{v}^{\mathrm{T}}(\mathbf{p}, \lambda) b_{\mathbf{p}, \lambda} \mathrm{e}^{-\mathrm{i}p \cdot x} + \zeta_{C}^{*} \mathcal{C}\bar{u}^{\mathrm{T}}(\mathbf{p}, \lambda) a_{\mathbf{p}, \lambda}^{\dagger} \mathrm{e}^{\mathrm{i}p \cdot x} \right] = \zeta_{C}^{*} \psi^{\mathrm{C}}(x)$$

② 这里 $\psi^{\mathrm{C}}(x) \equiv \mathcal{C}\bar{\psi}^{\mathrm{T}}(x)$ 便是 $\psi(x)$ 的电荷共轭场

电荷共轭矩阵的性质

$^{\text{CS}}$ 现在研究电荷共轭矩阵 $^{\text{C}}$ 的性质

 $lackline{\P}$ 利用 $(\sigma^2)^{
m T}=-\sigma^2$ 、 γ^0 的厄米性、 γ^2 的反厄米性和 $\gamma^2\gamma^0=-\gamma^0\gamma^2$,有

$$\begin{split} & \mathcal{C}^{\mathrm{T}} \,=\, \begin{pmatrix} -\mathrm{i}(\sigma^2)^{\mathrm{T}} \\ & \mathrm{i}(\sigma^2)^{\mathrm{T}} \end{pmatrix} = \begin{pmatrix} \mathrm{i}\sigma^2 \\ & -\mathrm{i}\sigma^2 \end{pmatrix} = -\mathcal{C} \\ & \mathcal{C}^{\dagger} \,=\, -\mathrm{i}(\gamma^2)^{\dagger}(\gamma^0)^{\dagger} = \mathrm{i}\gamma^2\gamma^0 = -\mathrm{i}\gamma^0\gamma^2 = -\mathcal{C} \\ & \mathcal{C}^{\dagger}\mathcal{C} \,=\, \gamma^0\gamma^2\gamma^0\gamma^2 = -(\gamma^0)^2(\gamma^2)^2 = \mathbf{1} \end{split}$$

 $\stackrel{\longleftarrow}{\longrightarrow}$ 可见,C 是幺正矩阵,满足

$$\mathcal{C}^{\mathrm{T}} = \mathcal{C}^{\dagger} = \mathcal{C}^{-1} = -\mathcal{C}$$

电荷共轭矩阵的性质

\square 现在研究电荷共轭矩阵 C 的性质

利用 $(\sigma^2)^T = -\sigma^2$ 、 γ^0 的厄米性、 γ^2 的反厄米性和 $\gamma^2\gamma^0 = -\gamma^0\gamma^2$,有

$$\begin{split} & \mathcal{C}^{\mathrm{T}} \,=\, \begin{pmatrix} -\mathrm{i}(\sigma^2)^{\mathrm{T}} \\ & \mathrm{i}(\sigma^2)^{\mathrm{T}} \end{pmatrix} = \begin{pmatrix} \mathrm{i}\sigma^2 \\ & -\mathrm{i}\sigma^2 \end{pmatrix} = -\mathcal{C} \\ & \mathcal{C}^{\dagger} \,=\, -\mathrm{i}(\gamma^2)^{\dagger}(\gamma^0)^{\dagger} = \mathrm{i}\gamma^2\gamma^0 = -\mathrm{i}\gamma^0\gamma^2 = -\mathcal{C} \\ & \mathcal{C}^{\dagger}\mathcal{C} \,=\, \gamma^0\gamma^2\gamma^0\gamma^2 = -(\gamma^0)^2(\gamma^2)^2 = \mathbf{1} \end{split}$$

 $\stackrel{\longleftarrow}{\longrightarrow}$ 可见, $\cal C$ 是幺正矩阵,满足

$$\mathcal{C}^{\mathrm{T}} = \mathcal{C}^{\dagger} = \mathcal{C}^{-1} = -\mathcal{C}$$

Pauli 矩阵满足 $\sigma^2 \sigma^1 \sigma^2 = i\sigma^2 \sigma^3 = -\sigma^1 = -(\sigma^1)^T$ 、 $\sigma^2 \sigma^2 \sigma^2 = \sigma^2 = -(\sigma^2)^T$ 和 $\sigma^2 \sigma^3 \sigma^2 = i \sigma^1 \sigma^2 = -\sigma^3 = -(\sigma^3)^T$,归纳得到 $\sigma^2 1 \sigma^2 = 1^T$ 和 $\sigma^2 \sigma \sigma^2 = -\sigma^T$,因此

$$\sigma^2 \sigma^\mu \sigma^2 = (\bar{\sigma}^\mu)^\mathrm{T}, \quad \sigma^2 \bar{\sigma}^\mu \sigma^2 = (\sigma^\mu)^\mathrm{T}$$

Dirac 矩阵的电荷共轭变换

利用 $\sigma^2 \sigma^\mu \sigma^2 = (\bar{\sigma}^\mu)^T$ 和 $\sigma^2 \bar{\sigma}^\mu \sigma^2 = (\sigma^\mu)^T$ 推出

$$\mathcal{C}^{-1}\gamma^{\mu}\mathcal{C} = \begin{pmatrix} i\sigma^{2} & & & \\ & -i\sigma^{2} \end{pmatrix} \begin{pmatrix} & \sigma^{\mu} \\ \bar{\sigma}^{\mu} \end{pmatrix} \begin{pmatrix} -i\sigma^{2} & & \\ & i\sigma^{2} \end{pmatrix} = -\begin{pmatrix} & & \sigma^{2}\sigma^{\mu}\sigma^{2} \\ & & & \end{pmatrix} \\
= -\begin{pmatrix} & & (\bar{\sigma}^{\mu})^{T} \\ & & & \end{pmatrix} \begin{pmatrix} & i\sigma^{2} & & \\ & & & & \end{pmatrix} \begin{pmatrix} & (\sigma^{2})^{2} & & \\ & & & & \end{pmatrix} \begin{pmatrix} & 1 & & \\ & & & & \end{pmatrix} \begin{pmatrix} & \sigma^{2} & & \\ & & & & \\ & & & & \end{pmatrix} \begin{pmatrix} & 1 & & \\ & & & & \\ & & & & & \end{pmatrix} \begin{pmatrix} & \sigma^{2} & & \\ & & & & \\ & & & & \\ \end{pmatrix}$$

$$C^{-1}\gamma^5C = \begin{pmatrix} i\sigma^2 \\ -i\sigma^2 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \begin{pmatrix} -i\sigma^2 \\ i\sigma^2 \end{pmatrix} = \begin{pmatrix} -(\sigma^2)^2 \\ (\sigma^2)^2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

 \triangle 即得 γ^{μ} 和 γ^{5} 关于 C 的相似变换性质

$$\mathcal{C}^{-1}\gamma^{\mu}\mathcal{C} = -(\gamma^{\mu})^{\mathrm{T}}, \quad \mathcal{C}^{-1}\gamma^{5}\mathcal{C} = \gamma^{5}$$

 \triangle 由于 $C^{-1} = -C$,这两个式子等价于

$$\begin{bmatrix} \mathcal{C}^{-1}(\gamma^{\mu})^{\mathrm{T}}\mathcal{C} = -\gamma^{\mu}, & \mathcal{C}^{-1}(\gamma^{5})^{\mathrm{T}}\mathcal{C} = \gamma^{5} \end{bmatrix}$$

$\psi^{\rm C}(x)$ 的运动方程

Dirac 旋量场回顾

本 如果 Dirac 旋量场 $\psi(x)$ 携带电荷 Q ,相应的运动方程是

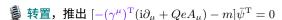
$$[\gamma^{\mu}(\mathrm{i}\partial_{\mu} - QeA_{\mu}) - m]\psi = 0$$

C 变换

0000000000000

ightharpoons 其中 A_{μ} 是电磁场。对上式取厄米共轭,再右乘 γ^0 ,得

$$0 = \psi^{\dagger} [(\gamma^{\mu})^{\dagger} (-i\partial_{\mu} - QeA_{\mu}) - m] \gamma^{0} = \bar{\psi} [-\gamma^{\mu} (i\partial_{\mu} + QeA_{\mu}) - m]$$



$\psi^{\rm C}(x)$ 的运动方程

Dirac 旋量场回顾

本 如果 Dirac 旋量场 $\psi(x)$ 携带电荷 Q ,相应的运动方程是

$$[\gamma^{\mu}(\mathrm{i}\partial_{\mu} - QeA_{\mu}) - m]\psi = 0$$

C 变换

0000000000000

ightharpoons 其中 A_{μ} 是电磁场。对上式取厄米共轭,再右乘 γ^0 ,得

$$0 = \psi^{\dagger} [(\gamma^{\mu})^{\dagger} (-i\partial_{\mu} - QeA_{\mu}) - m] \gamma^{0} = \bar{\psi} [-\gamma^{\mu} (i\partial_{\mu} + QeA_{\mu}) - m]$$

- **转置**,推出 $[-(\gamma^{\mu})^{\mathrm{T}}(\mathrm{i}\partial_{\mu} + QeA_{\mu}) m]\bar{\psi}^{\mathrm{T}} = 0$
- 利用 $\mathcal{C}^{-1}\gamma^{\mu}\mathcal{C} = -(\gamma^{\mu})^{\mathrm{T}}$,将上式化为

$$0 = \left[\mathcal{C}^{-1}\gamma^{\mu}\mathcal{C}(\mathrm{i}\partial_{\mu} + QeA_{\mu}) - m\,\mathcal{C}^{-1}\mathcal{C}\right]\bar{\psi}^{\mathrm{T}} = \mathcal{C}^{-1}\left[\gamma^{\mu}(\mathrm{i}\partial_{\mu} + QeA_{\mu}) - m\right]\mathcal{C}\bar{\psi}^{\mathrm{T}}$$

 \mathbf{A} 从而得到电荷共轭场 $\psi^{\mathbf{C}}(x)$ 的运动方程

$$[\gamma^{\mu}(\mathrm{i}\partial_{\mu} + QeA_{\mu}) - m]\psi^{\mathrm{C}} = 0$$

$\psi^{\rm C}(x)$ 携带的 U(1) 荷

Dirac 旋量场回顾

- Θ 实际上, $\psi^{C}(x)$ 携带的任何 U(1) 荷都与 $\psi(x)$ 相反
- \spadesuit 如果 $\psi(x)$ 携带某种 $\mathrm{U}(1)$ 荷 q ,在相应 $\mathrm{U}(1)$ 整体变换的作用下,有

$$\psi'(x) = e^{iq\theta} \psi(x)$$

 Δ 那么, $\psi^{C}(x)$ 的变换为

$$(\psi^{\mathrm{C}})' = (\psi')^{\mathrm{C}} = \left(e^{\mathrm{i}q\theta}\psi\right)^{\mathrm{C}} = \mathcal{C}(\overline{e^{\mathrm{i}q\theta}\psi})^{\mathrm{T}} = \mathcal{C}[(e^{\mathrm{i}q\theta}\psi)^{\dagger}\gamma^{0}]^{\mathrm{T}} = e^{-\mathrm{i}q\theta}\mathcal{C}\bar{\psi}^{\mathrm{T}} = e^{-\mathrm{i}q\theta}\psi^{\mathrm{C}}$$

可见, $\psi^{C}(x)$ 携带的相应 U(1) 荷是 -q

$\psi(x)$ 和 $\bar{\psi}(x)$ 的 C 变换

⑩ 根据
$$\mathcal{C}^{\mathrm{T}} = \mathcal{C}^{\dagger} = \mathcal{C}^{-1} = -\mathcal{C}$$
 和 $\mathcal{C}^{-1}(\gamma^{\mu})^{\mathrm{T}}\mathcal{C} = -\gamma^{\mu}$

$$\begin{split} \bar{\psi}^{\mathrm{C}} &= (\psi^{\mathrm{C}})^{\dagger} \gamma^{0} = (\mathcal{C}\bar{\psi}^{\mathrm{T}})^{\dagger} \gamma^{0} = [(\gamma^{0})^{\mathrm{T}} (\bar{\psi}\mathcal{C}^{\mathrm{T}})^{\dagger}]^{\mathrm{T}} = [(\gamma^{0})^{\mathrm{T}} (\psi^{\dagger} \gamma^{0} \mathcal{C}^{\dagger})^{\dagger}]^{\mathrm{T}} = [(\gamma^{0})^{\mathrm{T}} \mathcal{C} \gamma^{0} \psi]^{\mathrm{T}} \\ &= [\mathcal{C}\mathcal{C}^{-1} (\gamma^{0})^{\mathrm{T}} \mathcal{C} \gamma^{0} \psi]^{\mathrm{T}} = -(\mathcal{C}\gamma^{0} \gamma^{0} \psi)^{\mathrm{T}} = (\mathcal{C}^{\mathrm{T}} \psi)^{\mathrm{T}} \end{split}$$

$$\left[\bar{\psi}^{\mathrm{C}}(x) = \psi^{\mathrm{T}}(x) \, \mathcal{C} \right]$$

$\psi(x)$ 和 $\bar{\psi}(x)$ 的 C 变换

根据
$$\mathcal{C}^{\mathrm{T}} = \mathcal{C}^{\dagger} = \mathcal{C}^{-1} = -\mathcal{C}$$
 和 $\mathcal{C}^{-1}(\gamma^{\mu})^{\mathrm{T}}\mathcal{C} = -\gamma^{\mu}$

 $\stackrel{ extbf{C}}{=}$ 电荷共轭场 $\psi^{\mathrm{C}}(x) = \mathcal{C} \bar{\psi}^{\mathrm{T}}(x)$ 的 Dirac 共轭为

$$\begin{split} \bar{\psi}^{\mathrm{C}} &= (\psi^{\mathrm{C}})^{\dagger} \gamma^{0} = (\mathcal{C} \bar{\psi}^{\mathrm{T}})^{\dagger} \gamma^{0} = [(\gamma^{0})^{\mathrm{T}} (\bar{\psi} \mathcal{C}^{\mathrm{T}})^{\dagger}]^{\mathrm{T}} = [(\gamma^{0})^{\mathrm{T}} (\psi^{\dagger} \gamma^{0} \mathcal{C}^{\dagger})^{\dagger}]^{\mathrm{T}} = [(\gamma^{0})^{\mathrm{T}} \mathcal{C} \gamma^{0} \psi]^{\mathrm{T}} \\ &= [\mathcal{C} \mathcal{C}^{-1} (\gamma^{0})^{\mathrm{T}} \mathcal{C} \gamma^{0} \psi]^{\mathrm{T}} = -(\mathcal{C} \gamma^{0} \gamma^{0} \psi)^{\mathrm{T}} = (\mathcal{C}^{\mathrm{T}} \psi)^{\mathrm{T}} \end{split}$$

$$\left[\bar{\psi}^{\mathrm{C}}(x) = \psi^{\mathrm{T}}(x) \, \mathcal{C} \right]$$

手是
$$C^{-1}\bar{\psi}C = C^{\dagger}\psi^{\dagger}C\gamma^{0} = (C^{-1}\psi C)^{\dagger}\gamma^{0} = (\zeta_{C}^{*}\psi^{C})^{\dagger}\gamma^{0} = \zeta_{C}\bar{\psi}^{C} = \zeta_{C}\psi^{T}C$$

lue 也就是说,Dirac 旋量场 $\psi(x)$ 及其 Dirac 共轭场 $ar{\psi}(x)$ 的 C 变换是

$$\begin{bmatrix} C^{-1}\psi(x)C = \zeta_C^*\psi^{\mathbf{C}}(x) = \zeta_C^*\mathcal{C}\bar{\psi}^{\mathbf{T}}(x), & C^{-1}\bar{\psi}(x)C = \zeta_C\bar{\psi}^{\mathbf{C}}(x) = \zeta_C\psi^{\mathbf{T}}(x)\mathcal{C} \end{bmatrix}$$

舒照
$$\bar{\psi}^{\mathrm{C}}(x) = \psi^{\mathrm{T}}(x) \mathcal{C}$$
 的推导,由 $\mathcal{C}\bar{u}^{\mathrm{T}}(\mathbf{p}, \lambda) = v(\mathbf{p}, \lambda)$ 和 $\mathcal{C}\bar{v}^{\mathrm{T}}(\mathbf{p}, \lambda) = u(\mathbf{p}, \lambda)$ 得 $\bar{v}(\mathbf{p}, \lambda) = u^{\mathrm{T}}(\mathbf{p}, \lambda) \mathcal{C}$, $\bar{u}(\mathbf{p}, \lambda) = v^{\mathrm{T}}(\mathbf{p}, \lambda) \mathcal{C}$

-般旋量双线性型的 $oldsymbol{C}$ 变换

考虑一般旋量双线性型 $\bar{\psi}(x) \Gamma \psi(x)$,其中 Γ 是<mark>旋量空间中的任意 4×4 矩阵</mark>,则

$$C^{-1}\bar{\psi}\Gamma\psi C = \underline{C}^{-1}\bar{\psi}\underline{C}\Gamma C^{-1}\psi C = |\zeta_C|^2\underline{\psi}^\mathrm{T}\underline{C}\Gamma C\bar{\psi}^\mathrm{T} = \underline{\psi}^\mathrm{T}\underline{C}\Gamma C\bar{\psi}^\mathrm{T} = -\bar{\psi}\,\underline{C}^\mathrm{T}\Gamma^\mathrm{T}\underline{C}^\mathrm{T}\psi$$

■ 最后一步进行了转置,需要注意的是, 转置两个旋量场会**交换**两者的位置,为

了与<mark>反对易关系</mark>相匹配,必须引进一个额外的<mark>负号</mark>

-般旋量双线性型的 C 变换

 ${\color{red} 8 \hspace{-0.05cm} \overline{\hspace{0.05cm} 8}}$ 考虑一般旋量双线性型 $\bar{\psi}(x)\Gamma\psi(x)$,其中 Γ 是<mark>旋量空间中的任意 4×4 矩阵</mark>,则

$$C^{-1}\bar{\psi}\Gamma\psi C = \underline{C}^{-1}\bar{\psi}\underline{C}\Gamma C^{-1}\psi C = |\zeta_C|^2\psi^{\mathrm{T}}\underline{\mathcal{C}}\Gamma\mathcal{C}\bar{\psi}^{\mathrm{T}} = \psi^{\mathrm{T}}\mathcal{C}\Gamma\mathcal{C}\bar{\psi}^{\mathrm{T}} = -\bar{\psi}\,\mathcal{C}^{\mathrm{T}}\Gamma^{\mathrm{T}}\mathcal{C}^{\mathrm{T}}\psi$$

■ 最后一步进行了转置,需要注意的是, 转置两个旋量场会**交换**两者的位置,为

了与反对易关系相匹配,必须引进一个额外的负号

I 从而,由 $\mathcal{C}^{\mathrm{T}} = \mathcal{C}^{-1} = -\mathcal{C}$ 得到 $\bar{\psi}\Gamma\psi$ 的 C 变换

$$C^{-1}\bar{\psi}(x)\Gamma\psi(x)C = \bar{\psi}(x)C^{-1}\Gamma^{\mathrm{T}}C\psi(x) = \bar{\psi}(x)\Gamma^{\mathrm{C}}\psi(x)$$

Arr 其中 Arr Ar

一般旋量双线性型的 C 变换

 ${\color{red} 8 \hspace{-0.05cm} \overline{\hspace{0.05cm} 8}}$ 考虑一般旋量双线性型 $\bar{\psi}(x)\Gamma\psi(x)$,其中 Γ 是<mark>旋量空间中的任意 4×4 矩阵</mark>,则

$$C^{-1}\bar{\psi}\Gamma\psi C = \underline{C}^{-1}\bar{\psi}C\Gamma C^{-1}\psi C = |\zeta_C|^2 \underline{\psi}^\mathrm{T} \underline{\mathcal{C}}\Gamma \mathcal{C}\bar{\psi}^\mathrm{T} = \underline{\psi}^\mathrm{T} \mathcal{C}\Gamma \mathcal{C}\bar{\psi}^\mathrm{T} = -\bar{\psi}\,\mathcal{C}^\mathrm{T}\Gamma^\mathrm{T} \mathcal{C}^\mathrm{T}\psi$$

雷 最后一步进行了转置,需要注意的是, 转置两个旋量场会**交换**两者的位置,为

了与<mark>反对易关系</mark>相匹配,必须引进一个额外的<mark>负号</mark>

I 从而,由 $\mathcal{C}^{\mathrm{T}} = \mathcal{C}^{-1} = -\mathcal{C}$ 得到 $\bar{\psi}\Gamma\psi$ 的 C 变换

$$C^{-1}\bar{\psi}(x)\Gamma\psi(x)C = \bar{\psi}(x)C^{-1}\Gamma^{\mathrm{T}}\mathcal{C}\psi(x) = \bar{\psi}(x)\Gamma^{\mathrm{C}}\psi(x)$$

- **뺄** 其中 $\Gamma^{C} \equiv C^{-1}\Gamma^{T}C$ 可视为矩阵 Γ 的电荷共轭变换
- 根据 $\mathcal{C}^{-1}(\gamma^{\mu})^{\mathrm{T}}\mathcal{C} = -\gamma^{\mu}$ 和 $\mathcal{C}^{-1}(\gamma^{5})^{\mathrm{T}}\mathcal{C} = \gamma^{5}$,有

$$\begin{split} \mathbf{1}^{\mathrm{C}} &= \mathcal{C}^{-1}\mathbf{1}^{\mathrm{T}}\mathcal{C} = +\mathbf{1}, & (\mathrm{i}\gamma^5)^{\mathrm{C}} &= \mathcal{C}^{-1}(\mathrm{i}\gamma^5)^{\mathrm{T}}\mathcal{C} = +\mathrm{i}\gamma^5 \\ (\gamma^\mu)^{\mathrm{C}} &= \mathcal{C}^{-1}(\gamma^\mu)^{\mathrm{T}}\mathcal{C} = -\gamma^\mu, & (\gamma^\mu\gamma^5)^{\mathrm{C}} &= \mathcal{C}^{-1}(\gamma^\mu\gamma^5)^{\mathrm{T}}\mathcal{C} = +\gamma^\mu\gamma^5 \\ (\gamma^\mu\gamma^\nu)^{\mathrm{C}} &= \mathcal{C}^{-1}(\gamma^\mu\gamma^\nu)^{\mathrm{T}}\mathcal{C} = +\gamma^\nu\gamma^\mu, & (\sigma^{\mu\nu})^{\mathrm{C}} &= \mathcal{C}^{-1}(\sigma^{\mu\nu})^{\mathrm{T}}\mathcal{C} = -\sigma^{\mu\nu} \end{split}$$

旋量双线性型的 C 变换

$^{"}$ 于是,各种旋量双线性型的 $^{"}$ 变换为

$$C^{-1}\bar{\psi}(x)\psi(x)C = +\bar{\psi}(x)\psi(x)$$

$$C^{-1}\bar{\psi}(x)\mathrm{i}\gamma^5\psi(x)C = +\bar{\psi}(x)\mathrm{i}\gamma^5\psi(x)$$

$$C^{-1}\bar{\psi}(x)\gamma^{\mu}\psi(x)C = -\bar{\psi}(x)\gamma^{\mu}\psi(x)$$

$$C^{-1}\bar{\psi}(x)\gamma^{\mu}\gamma^5\psi(x)C = +\bar{\psi}(x)\gamma^{\mu}\gamma^5\psi(x)$$

$$C^{-1}\bar{\psi}(x)\sigma^{\mu\nu}\psi(x)C = -\bar{\psi}(x)\sigma^{\mu\nu}\psi(x)$$

C 变换

000000000000

旋量双线性型的 C 变换

Dirac 旋量场回顾

$^{"}$ 于是,各种旋量双线性型的 $^{"}$ 变换为

$$C^{-1}\bar{\psi}(x)\psi(x)C = +\bar{\psi}(x)\psi(x)$$

$$C^{-1}\bar{\psi}(x)\mathrm{i}\gamma^5\psi(x)C = +\bar{\psi}(x)\mathrm{i}\gamma^5\psi(x)$$

$$C^{-1}\bar{\psi}(x)\gamma^{\mu}\psi(x)C = -\bar{\psi}(x)\gamma^{\mu}\psi(x)$$

$$C^{-1}\bar{\psi}(x)\gamma^{\mu}\gamma^5\psi(x)C = +\bar{\psi}(x)\gamma^{\mu}\gamma^5\psi(x)$$

$$C^{-1}\bar{\psi}(x)\sigma^{\mu\nu}\psi(x)C = -\bar{\psi}(x)\sigma^{\mu\nu}\psi(x)$$

C 变换

0000000000000

 \bigcirc 拉氏量中的<mark>动能项算符 $i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi$ 在 C 变换下化为</mark>

$$C^{-1}i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi C = i\psi^{T}\mathcal{C}\gamma^{\mu}\mathcal{C}\partial_{\mu}\bar{\psi}^{T} = -i\psi^{T}\mathcal{C}^{-1}\gamma^{\mu}\mathcal{C}\partial_{\mu}\bar{\psi}^{T} = i\psi^{T}(\gamma^{\mu})^{T}\partial_{\mu}\bar{\psi}^{T}$$
$$= -i(\partial_{\mu}\bar{\psi})\gamma^{\mu}\psi = -i\frac{\partial_{\mu}(\bar{\psi}\gamma^{\mu}\psi) + i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi$$

- 💾 最后的表达式中第一项是<mark>全散度</mark>,全时空积分后对作用量没有贡献,可以<mark>丢弃</mark>
- ▼ 因而上式表明动能项算符在 C 变换下不变
- igotimes 自由 Dirac 旋量场的拉氏量 $\mathcal{L}=\mathrm{i}ar{\psi}\gamma^{\mu}\partial_{\mu}\psi-mar{\psi}\psi$ 具有电荷共轭不变性

手征旋量场算符的 C 变换

Dirac 旋量场回顾

$$\begin{tabular}{ll} \blacksquare & \mathcal{C}^{-1}P_{\mathrm{L/R}}^{\mathrm{T}}\mathcal{C} \,=\, \frac{1}{2}\,\mathcal{C}^{-1}[\mathbf{1}^{\mathrm{T}}\mp(\gamma^{5})^{\mathrm{T}}]\mathcal{C} = \frac{1}{2}(\mathbf{1}\mp\gamma^{5}) = +P_{\mathrm{L/R}} \\ & \mathcal{C}^{-1}(\gamma^{\mu}P_{\mathrm{L/R}})^{\mathrm{T}}\mathcal{C} \,=\, \frac{1}{2}\,\mathcal{C}^{-1}[(\gamma^{\mu})^{\mathrm{T}}\mp(\gamma^{\mu}\gamma^{5})^{\mathrm{T}}]\mathcal{C} = \frac{1}{2}(-\gamma^{\mu}\mp\gamma^{\mu}\gamma^{5}) = -\gamma^{\mu}P_{\mathrm{R/L}} \\ & \end{tabular}$$

C 变换

000000000000

可知,手征旋量场 $\psi_L(x)$ 和 $\psi_R(x)$ 构造的算符 $\bar{\psi}_R\psi_L = \bar{\psi}P_L\psi$ 和 $\bar{\psi}_L\psi_R = \bar{\psi}P_R\psi$ 在 C 变换下不变,满足 $C^{-1}\bar{\psi}_{\mathrm{R}}(x)\psi_{\mathrm{L}}(x)C = +\bar{\psi}_{\mathrm{R}}(x)\psi_{\mathrm{L}}(x)$

 $C^{-1}\bar{\psi}_{L}(x)\psi_{R}(x)C = +\bar{\psi}_{L}(x)\psi_{R}(x)$

手征旋量场算符的 C 变换

$$\begin{tabular}{ll} \blacksquare & \mathcal{C}^{-1}P_{\mathrm{L/R}}^{\mathrm{T}}\mathcal{C} \,=\, \frac{1}{2}\,\mathcal{C}^{-1}[\mathbf{1}^{\mathrm{T}}\mp(\gamma^{5})^{\mathrm{T}}]\mathcal{C} = \frac{1}{2}(\mathbf{1}\mp\gamma^{5}) = +P_{\mathrm{L/R}} \\ & \mathcal{C}^{-1}(\gamma^{\mu}P_{\mathrm{L/R}})^{\mathrm{T}}\mathcal{C} \,=\, \frac{1}{2}\,\mathcal{C}^{-1}[(\gamma^{\mu})^{\mathrm{T}}\mp(\gamma^{\mu}\gamma^{5})^{\mathrm{T}}]\mathcal{C} = \frac{1}{2}(-\gamma^{\mu}\mp\gamma^{\mu}\gamma^{5}) = -\gamma^{\mu}P_{\mathrm{R/L}} \\ & \end{tabular}$$

可知,手征旋量场 $\psi_{\rm L}(x)$ 和 $\psi_{\rm R}(x)$ 构造的算符 $\bar{\psi}_{\rm R}\psi_{\rm L}=\bar{\psi}P_{\rm L}\psi$ 和 $\bar{\psi}_{\rm L}\psi_{\rm R}=\bar{\psi}P_{\rm R}\psi$ 在 C 变换下不变,满足 $C^{-1}\bar{\psi}_{\rm R}(x)\psi_{\rm L}(x)C=+\bar{\psi}_{\rm R}(x)\psi_{\rm L}(x)$

$$C^{-1}\bar{\psi}_{\mathrm{L}}(x)\psi_{\mathrm{R}}(x)C = +\bar{\psi}_{\mathrm{L}}(x)\psi_{\mathrm{R}}(x)$$

重 左手流算符 $\overline{\psi_L \gamma^\mu \psi_L} = \overline{\psi} \gamma^\mu P_L \psi$ 和右手流算符 $\overline{\psi_R \gamma^\mu \psi_R} = \overline{\psi} \gamma^\mu P_R \psi$ 的 C 变换为

$$C^{-1}\bar{\psi}_{L}(x)\gamma^{\mu}\psi_{L}(x)C = -\bar{\psi}_{R}(x)\gamma^{\mu}\psi_{R}(x)$$
$$C^{-1}\bar{\psi}_{R}(x)\gamma^{\mu}\psi_{R}(x)C = -\bar{\psi}_{L}(x)\gamma^{\mu}\psi_{L}(x)$$

lacksquare 两者在 C 变换下相互转化,并出现一个负号

★ 在弱相互作用中,轻子和夸克的左手流算符和右手流算符参与不同的规范相互作用,因而电荷共轭对称性遭到破坏

$\psi^{\mathrm{C}}(x)$ 的固有保时向 Lorentz 变换

- $\mathbf{\Theta}$ 旋量表示生成元 $\mathcal{S}^{\mu\nu} = \frac{\sigma^{\mu\nu}}{2}$ 满足 $\mathcal{C}(\mathcal{S}^{\mu\nu})^{\mathrm{T}}\mathcal{C}^{-1} = \frac{1}{2}\,\mathcal{C}^{-1}(\sigma^{\mu\nu})^{\mathrm{T}}\mathcal{C} = -\mathcal{S}^{\mu\nu}$
- lacksquare 对于旋量表示中的 Lorentz 逆变换矩阵 $D^{-1}(\Lambda)=\exp(\mathrm{i}\omega_{\mu
 u}\mathcal{S}^{\mu
 u}/2)$,有

$$\mathcal{C}[D^{-1}(\Lambda)]^{\mathrm{T}}\mathcal{C}^{-1} = \mathcal{C}\left[\exp\left(\frac{\mathrm{i}}{2}\omega_{\mu\nu}\mathcal{S}^{\mu\nu}\right)\right]^{\mathrm{T}}\mathcal{C}^{-1} = \mathcal{C}\exp\left[\frac{\mathrm{i}}{2}\omega_{\mu\nu}(\mathcal{S}^{\mu\nu})^{\mathrm{T}}\right]\mathcal{C}^{-1}$$
$$= \exp\left[\frac{\mathrm{i}}{2}\omega_{\mu\nu}\mathcal{C}(\mathcal{S}^{\mu\nu})^{\mathrm{T}}\mathcal{C}^{-1}\right] = \exp\left(-\frac{\mathrm{i}}{2}\omega_{\mu\nu}\mathcal{S}^{\mu\nu}\right) = D(\Lambda)$$

- \P 在固有保时向 Lorentz 变换下,Dirac 旋量场 $\psi(x)$ 变换为 $\psi'(x') = D(\Lambda)\psi(x)$
- 相应的电荷共轭场变换为

$$\begin{split} \boldsymbol{\psi}^{\mathbf{C}\prime}(\boldsymbol{x}') &= \mathcal{C}[\overline{\psi'}(\boldsymbol{x}')]^{\mathrm{T}} = \mathcal{C}\{[D(\Lambda)\psi(\boldsymbol{x})]^{\dagger}\boldsymbol{\gamma}^{0}\}^{\mathrm{T}} = \mathcal{C}[\psi^{\dagger}(\boldsymbol{x})D^{\dagger}(\Lambda)\boldsymbol{\gamma}^{0}]^{\mathrm{T}} \\ &= \mathcal{C}[\bar{\psi}(\boldsymbol{x})\boldsymbol{\gamma}^{0}D^{\dagger}(\Lambda)\boldsymbol{\gamma}^{0}]^{\mathrm{T}} = \mathcal{C}[\boldsymbol{\gamma}^{0}D^{\dagger}(\Lambda)\boldsymbol{\gamma}^{0}]^{\mathrm{T}}\bar{\psi}^{\mathrm{T}}(\boldsymbol{x}) = \mathcal{C}[\boldsymbol{\gamma}^{0}\boldsymbol{\gamma}^{0}D^{-1}(\Lambda)]^{\mathrm{T}}\mathcal{C}^{-1}\mathcal{C}\bar{\psi}^{\mathrm{T}}(\boldsymbol{x}) \\ &= \mathcal{C}[D^{-1}(\Lambda)]^{\mathrm{T}}\mathcal{C}^{-1}\boldsymbol{\psi}^{\mathbf{C}}(\boldsymbol{x}) = D(\Lambda)\boldsymbol{\psi}^{\mathbf{C}}(\boldsymbol{x}) \end{split}$$

 \blacksquare 可见, $\psi^{C}(x)$ 与 $\psi(x)$ 的变换形式相同,因而它也是一个 Dirac 旋量场

Majorana 旋量场

Dirac 旋量场回顾

 如果 $\psi(x)$ 与它的电荷共轭场相同, $\psi(x) = \psi^{C}(x)$,即满 足自共轭条件

$$\boxed{\psi(x) = \mathcal{C}\bar{\psi}^{\mathrm{T}}(x)}$$

 \longrightarrow 那么, $\psi(x)$ 就是一种纯中性的场,不能携带任何 U(1) 荷, 称为 Majorana 旋量场,上式称为 Majorana 条件

Ettore Majorana (1906 - ?)

Majorana 旋量场

Dirac 旋量场回顾

 如果 $\psi(x)$ 与它的电荷共轭场相同, $\psi(x) = \psi^{C}(x)$,即满 足自共轭条件

$$\boxed{\psi(x) = \mathcal{C}\bar{\psi}^{\mathrm{T}}(x)}$$

 \implies 那么, $\psi(x)$ 就是一种纯中性的场,不能携带任何 U(1) 荷, 称为 Majorana 旋量场,上式称为 Majorana 条件

Ettore Majorana (1906 - ?)

- Q 根据 $\bar{\psi}^{\mathrm{C}}(x) = \psi^{\mathrm{T}}(x) \mathcal{C}$,Majorana 条件等价于 $\bar{\psi}(x) = \psi^{\mathrm{T}}(x) \mathcal{C}$
- \bigcirc 这里没出现 $\psi^{\dagger}(x)$,而出现 $\psi^{\mathrm{T}}(x)$,表明 $\bar{\psi}_{a}(x) = \psi_{b}(x) \, \mathcal{C}_{ba}$ 与 $\psi_{a}(x)$ 线性相关
- 🚳 因此, $\bar{\psi}_a(x)$ 并不是独立于 $\psi_a(x)$ 的场变量,这一点与 Dirac 旋量场不同
- **四** 根据前面的讨论, $\psi^{C}(x)$ 的平面波展开式为

$$\psi^{C}(x) = \zeta_{C}C^{-1}\psi(x)C = \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\lambda} \left[u(\mathbf{p}, \lambda)b_{\mathbf{p}, \lambda} \mathrm{e}^{-\mathrm{i}p \cdot x} + v(\mathbf{p}, \lambda)a_{\mathbf{p}, \lambda}^{\dagger} \mathrm{e}^{\mathrm{i}p \cdot x} \right]$$

Majorana 费米子

Dirac 旋量场回顾

- % 将上式与 $\psi(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\mathbf{p}} \left[u(\mathbf{p}, \lambda) a_{\mathbf{p}, \lambda} \mathrm{e}^{-\mathrm{i} p \cdot x} + v(\mathbf{p}, \lambda) b_{\mathbf{p}, \lambda}^{\dagger} \mathrm{e}^{\mathrm{i} p \cdot x} \right]$ 比较
- 🥌 可知 Majorana 条件 $\psi(x) = \psi^{C}(x)$ 意味着 $b_{\mathbf{p},\lambda} = a_{\mathbf{p},\lambda}$
- 因此,**Majorana 旋量场** $\psi(x)$ 的平面波展开式是

$$\psi(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\lambda = \pm} \left[u(\mathbf{p}, \lambda) a_{\mathbf{p}, \lambda} \mathrm{e}^{-\mathrm{i}\mathbf{p}\cdot x} + v(\mathbf{p}, \lambda) a_{\mathbf{p}, \lambda}^{\dagger} \mathrm{e}^{\mathrm{i}\mathbf{p}\cdot x} \right]$$

➡ 产生湮灭算符满足反对易关系

$$\begin{cases} \{a_{\mathbf{p},\lambda}, a_{\mathbf{q},\lambda'}^{\dagger}\} = (2\pi)^3 \delta_{\lambda\lambda'} \delta^{(3)}(\mathbf{p} - \mathbf{q}), & \{a_{\mathbf{p},\lambda}, a_{\mathbf{q},\lambda'}\} = \{a_{\mathbf{p},\lambda}^{\dagger}, a_{\mathbf{q},\lambda'}^{\dagger}\} = 0 \end{cases}$$

Majorana 费米子

Dirac 旋量场回顾

秘书上式与
$$\psi(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_\mathbf{p}}} \sum_{\lambda} \left[u(\mathbf{p}, \lambda) a_{\mathbf{p}, \lambda} \mathrm{e}^{-\mathrm{i} p \cdot x} + v(\mathbf{p}, \lambda) b_{\mathbf{p}, \lambda}^\dagger \mathrm{e}^{\mathrm{i} p \cdot x} \right]$$
比较

- 🥌 可知 Majorana 条件 $\psi(x) = \psi^{C}(x)$ 意味着 $b_{\mathbf{p},\lambda} = a_{\mathbf{p},\lambda}$
- leflet 因此, $oldsymbol{\mathsf{Majorana}}$ 旋量场 $\psi(x)$ 的平面波展开式是

$$\psi(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\lambda = \pm} \left[u(\mathbf{p}, \lambda) a_{\mathbf{p}, \lambda} \mathrm{e}^{-\mathrm{i} p \cdot x} + v(\mathbf{p}, \lambda) a_{\mathbf{p}, \lambda}^{\dagger} \mathrm{e}^{\mathrm{i} p \cdot x} \right]$$

产生湮灭算符满足反对易关系

$$\{a_{\mathbf{p},\lambda}, a_{\mathbf{q},\lambda'}^{\dagger}\} = (2\pi)^3 \delta_{\lambda\lambda'} \delta^{(3)}(\mathbf{p} - \mathbf{q}), \quad \{a_{\mathbf{p},\lambda}, a_{\mathbf{q},\lambda'}\} = \{a_{\mathbf{p},\lambda}^{\dagger}, a_{\mathbf{q},\lambda'}^{\dagger}\} = 0$$

- 类似于实标量场,Majorana 旋量场描述一种纯中性费米子
- 🝣 即正费米子与反费米子相同,称为 Majorana 费米子
- $C^{-1}a_{\mathbf{n},\lambda}C = \zeta_C^*b_{\mathbf{n},\lambda}$ 、 $C^{-1}b_{\mathbf{n},\lambda}C = \zeta_Ca_{\mathbf{n},\lambda}$ 和 $b_{\mathbf{n},\lambda} = a_{\mathbf{n},\lambda}$ 表明 $\zeta_C = \zeta_C^*$
- ${}^{lack}_{lack}$ 故 ${lack}_{C}=\pm 1$,也就是说,Majorana 旋量场的 C 宇称要么为偶,要么为奇

Majorana 旋量场双线性型的 C 变换

些 对于 Majorana 旋量场, $C^{-1}\psi(x)C=\zeta_C^*\psi^{\mathrm{C}}(x)$ 和 $C^{-1}\bar{\psi}(x)C=\zeta_C\bar{\psi}^{\mathrm{C}}(x)$ 化为

$$C^{-1}\psi(x)C = \zeta_C\psi(x), \quad C^{-1}\bar{\psi}(x)C = \zeta_C\bar{\psi}(x)$$

 $igcup_{igoplus}$ 在 C 变换下,由 Majorana 旋量场组成的一般旋量双线性型 $ar{\psi}(x)\Gamma\psi(x)$ 变成

$$C^{-1}\bar{\psi}(x)\Gamma\psi(x)C = C^{-1}\bar{\psi}(x)C\Gamma C^{-1}\psi(x)C = \zeta_C^2\bar{\psi}(x)\Gamma\psi(x) = +\bar{\psi}(x)\Gamma\psi(x)$$

- \bigcirc 即非平庸的 $\bar{\psi}\Gamma\psi$ 算符的 C 宇称必须为偶
- $extbf{ iny m}$ 这表明 Majorana 旋量场<mark>不能</mark>构成 C 宇称为<mark>奇</mark>的算符 $ar{\psi}\gamma^\mu\psi$ 和 $ar{\psi}\sigma^{\mu
 u}\psi$,即

$$\bar{\psi}(x)\gamma^{\mu}\psi(x) = 0, \quad \bar{\psi}(x)\sigma^{\mu\nu}\psi(x) = 0$$

 $^{\circ}$ 由 Majorana 旋量场构成的非平庸双线性型则具有与 Dirac 旋量场相同的 C 变换规则

自由 Majorana 旋量场拉氏量

Dirac 旋量场回顾

black bl

$$\boxed{ \mathcal{L} = \frac{\mathrm{i}}{2} \, \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} \, m \bar{\psi} \psi = \frac{\mathrm{i}}{2} \, \psi^{\mathrm{T}} \mathcal{C} \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} \, m \psi^{\mathrm{T}} \mathcal{C} \psi }$$

- ightarrow 应用 Euler-Lagrange 方程求经典运动方程时,拉氏量中 ψ^{T} 扮演的角色跟 ψ 相同

$$\psi_1^{\mathrm{T}} \mathcal{C} \gamma^{\mu} \frac{\partial_{\mu} \psi_2}{\partial_{\mu} \psi_2} = (\psi_1^{\mathrm{T}} \mathcal{C} \gamma^{\mu} \partial_{\mu} \psi_2)^{\mathrm{T}} = -(\partial_{\mu} \psi_2^{\mathrm{T}}) (\gamma^{\mu})^{\mathrm{T}} \mathcal{C}^{\mathrm{T}} \psi_1$$
$$= (\partial_{\mu} \psi_2^{\mathrm{T}}) \mathcal{C} \mathcal{C}^{-1} (\gamma^{\mu})^{\mathrm{T}} \mathcal{C} \psi_1 = -(\partial_{\mu} \psi_2^{\mathrm{T}}) \mathcal{C} \gamma^{\mu} \psi_1$$

igoplus 质量项算符可化为 $\psi_1^{\mathrm{T}} \mathcal{C} \psi_2 = (\psi_1^{\mathrm{T}} \mathcal{C} \psi_2)^{\mathrm{T}} = -\psi_2^{\mathrm{T}} \mathcal{C}^{\mathrm{T}} \psi_1 = \psi_2^{\mathrm{T}} \mathcal{C} \psi_1$,则

$$\frac{\partial \mathcal{L}}{\partial \psi_1} = -\frac{\mathrm{i}}{2} (\partial_\mu \psi_2^{\mathrm{T}}) \, \mathcal{C} \gamma^\mu - \frac{1}{2} \, m \psi_2^{\mathrm{T}} \mathcal{C}, \quad \frac{\partial \mathcal{L}}{\partial \psi_2} = -\frac{1}{2} \, m \psi_1^{\mathrm{T}} \mathcal{C}$$

 \bigcirc ψ_1 和 ψ_2 都是 ψ ,因而

$$\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} = \frac{\mathrm{i}}{2} \psi^{\mathrm{T}} \mathcal{C} \gamma^{\mu}, \quad \frac{\partial \mathcal{L}}{\partial \psi} = \frac{\partial \mathcal{L}}{\partial \psi_{1}} + \frac{\partial \mathcal{L}}{\partial \psi_{2}} = -\frac{\mathrm{i}}{2} (\partial_{\mu} \psi^{\mathrm{T}}) \mathcal{C} \gamma^{\mu} - m \psi^{\mathrm{T}} \mathcal{C}$$

C 变换

自由 Majorana 旋量场运动方程

Dirac 旋量场回顾

以根据
$$\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\psi)} = \frac{\mathrm{i}}{2} \psi^{\mathrm{T}} \mathcal{C} \gamma^{\mu}$$
 和 $\frac{\partial \mathcal{L}}{\partial \psi} = -\frac{\mathrm{i}}{2} (\partial_{\mu}\psi^{\mathrm{T}}) \mathcal{C} \gamma^{\mu} - m \psi^{\mathrm{T}} \mathcal{C}$

► Euler-Lagrange 方程给出
$$0 = \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} - \frac{\partial \mathcal{L}}{\partial \psi} = \mathbf{i} (\partial_{\mu} \psi^{\mathrm{T}}) \, \mathcal{C} \gamma^{\mu} + m \psi^{\mathrm{T}} \mathcal{C}$$

齡 对上式转置,并利用
$$(\gamma^{\mu})^{\mathrm{T}}\mathcal{C}^{\mathrm{T}} = -\mathcal{C}\mathcal{C}^{-1}(\gamma^{\mu})^{\mathrm{T}}\mathcal{C} = \mathcal{C}\gamma^{\mu} = -\mathcal{C}^{\mathrm{T}}\gamma^{\mu}$$
,推出

$$0 = i(\gamma^{\mu})^{\mathrm{T}} \mathcal{C}^{\mathrm{T}} \partial_{\mu} \psi + m \, \mathcal{C}^{\mathrm{T}} \psi = \mathcal{C}^{\mathrm{T}} (-i\gamma^{\mu} \partial_{\mu} \psi + m\psi)$$

自由 Majorana 旋量场运动方程

以根据
$$\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} = \frac{\mathrm{i}}{2} \psi^{\mathrm{T}} \mathcal{C} \gamma^{\mu}$$
 和 $\frac{\partial \mathcal{L}}{\partial \psi} = -\frac{\mathrm{i}}{2} (\partial_{\mu} \psi^{\mathrm{T}}) \mathcal{C} \gamma^{\mu} - m \psi^{\mathrm{T}} \mathcal{C}$

► Euler-Lagrange 方程给出
$$0 = \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi)} - \frac{\partial \mathcal{L}}{\partial \psi} = i(\partial_{\mu} \psi^{T}) \mathcal{C} \gamma^{\mu} + m \psi^{T} \mathcal{C}$$

齡 对上式转置,并利用
$$(\gamma^{\mu})^{\mathrm{T}}\mathcal{C}^{\mathrm{T}} = -\mathcal{C}\mathcal{C}^{-1}(\gamma^{\mu})^{\mathrm{T}}\mathcal{C} = \mathcal{C}\gamma^{\mu} = -\mathcal{C}^{\mathrm{T}}\gamma^{\mu}$$
,推出

$$0 = i(\gamma^{\mu})^{\mathrm{T}} \mathcal{C}^{\mathrm{T}} \partial_{\mu} \psi + m \, \mathcal{C}^{\mathrm{T}} \psi = \mathcal{C}^{\mathrm{T}} (-i\gamma^{\mu} \partial_{\mu} \psi + m \psi)$$

 \Rightarrow 可见,自由的 Majorana 旋量场 $\psi(x)$ 也满足 **Dirac** 方程

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi(x) = 0$$

一 这与上述平面波展开式

$$\psi(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \sum_{\mathbf{y} = \mathbf{k}} \left[u(\mathbf{p}, \lambda) a_{\mathbf{p}, \lambda} \mathrm{e}^{-\mathrm{i} p \cdot x} + v(\mathbf{p}, \lambda) a_{\mathbf{p}, \lambda}^{\dagger} \mathrm{e}^{\mathrm{i} p \cdot x} \right]$$

相容