Derivation and determination of nuclear matrix element for neutrinoless double beta decay

Dong-Liang Fang

Institute of Modern Physics CAS, Lanzhou

August 21, 2025

Content

- Background
- 2 Formalism
- 3 Results from many-body calculations
- Experimental determination of NME
- 5 conclusion

Why $\beta\beta$ -decay

• Strong nuclear pairing in nuclei for neutron-neutron and proton-proton

Why $\beta\beta$ -decay

• Strong nuclear pairing in nuclei for neutron-neutron and proton-proton

ullet Double beta (etaeta) decay is originating from the mass staggering

Why $\beta\beta$ -decay

• Strong nuclear pairing in nuclei for neutron-neutron and proton-proton

- Double beta $(\beta\beta)$ decay is originating from the mass staggering
- Neutrinoless $\beta\beta$ -decay is possible if $\nu=\bar{\nu}$ and $m_{\nu}\neq 0$

Second order process in nucleus

• The decay width of a free particle are obtained with a plane wave:

$$d\Gamma = \frac{1}{2m_i} \prod_f \left(\frac{d^3 p_f}{(2\pi)^3 2E_f} \right) |\mathcal{M}(m_i \to \sum_f p_f)|^2 (2\pi)^4 \delta^4(p_i - \sum_f p_f)$$
 (1)

 For bound system such as nucleus, we can separate the wave functions into the co-moving and intrinsic coordinates:

$$|I(F)\rangle = \sqrt{2E_{I(F)}e^{i\vec{q}_{I(F)}\cdot\vec{R}}}|i(f)\rangle \tag{2}$$

- Here $|i(f)\rangle$ are nuclear states with finite spins.
- A more general expression for decay width:

$$d\Gamma = \frac{1}{2M_I} \prod_f \frac{d\vec{\mathbf{k}}_f}{(2\pi)^3 2E_f} \frac{d\vec{\mathbf{P}}_F}{(2\pi)^3 2E_F}$$

$$\times |\langle \prod_f k_f, F| \frac{1}{2!} T \int d^4x d^4y \mathcal{H}_{int}(x) \mathcal{H}_{int}(y) |I\rangle|^2 \qquad (3)$$

Second order process in nucleus

- To separate the intrinsic and co-moving coordinate, on insert $\int d^3R|R\rangle\langle R|$ and redefine $\vec{\mathbf{x}}'=\vec{\mathbf{x}}-\vec{\mathbf{R}}$ for x and y. Noticing $\langle F|R\rangle=e^{-i\vec{\mathbf{P}}_F\cdot\vec{\mathbf{R}}}$ etc.
- Therefore after integrating over R and x^0 , y^0 , we have:

$$d\Gamma = \prod_{f} \frac{d\vec{\mathbf{k}}_{f}}{(2\pi)^{3} 2E_{f}} \frac{d\vec{\mathbf{P}}_{F}}{(2\pi)^{3}} (2\pi)^{4} \delta^{4} \left(\sum_{f} k_{f} - P_{F} \right)$$

$$\times |\langle \prod_{f} k_{f}, f| \int d^{3}x' d^{3}y' \mathcal{H}_{int}(x) \mathcal{H}_{int}(y) \sum_{contr} \frac{1}{\sum E_{f}(x) - M_{I}} |i\rangle|^{2}$$

the denominator sums over all the possible contractions and all the energies of the particle at the x vertex.

 For nuclear community, one usually redefine the decay width after integrating out the momentum of nucleus as:

$$d\Gamma = \prod_{f} \frac{d\vec{\mathbf{k}}_{f}}{(2\pi)^{3}} 2\pi \delta(\sum_{f} E_{f} + E_{F} - M_{I})|R|^{2}$$
(4)

- The underlying mechanism with L-R symmetry
 - left-handed and right-handed neutrino mixing
 - $SU(2)_L$ and $SU(2)_R$ gauge boson mixing

As an example, we show the derivation of $0\nu\beta\beta$ decay width with the L-R symmetry model (LRSM)

The guage symmetry of LRSM:

$$SU_L(2)\otimes SU_R(2)\otimes U_{B-L}(1)$$

Fermions are assigned as fundamental representation of SU(2):

$$SU_L(2): \begin{pmatrix} u_L \\ d_L \end{pmatrix} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \cdots SU_R(2): \begin{pmatrix} u_R \\ d_R \end{pmatrix} \begin{pmatrix} \nu_R \\ e_R \end{pmatrix} \cdots$$
 (6)

After successive symmetry broken:

$$SU_L(2)\otimes SU_R(2)\otimes U_{B-L}(1)\to SU_L(2)\otimes U_Y(1)\to U_{EM}(1)$$

Which lead to the neutrino mass with $N_e = C \bar{\nu}_R^T$:

a to the heatimo mass with
$$N_e = e \nu_R$$
.

 $\mathcal{L}^{
u}_{ extit{mass}} = \left(egin{array}{cc}
u^{ extsf{T}} &
extsf{N}^{ extsf{T}}
otag
ot$

Here neutrino has three generations
$$\nu^T = \left(\begin{array}{ccc} \nu_{eL} & \nu_{\mu L} & \nu_{\tau L} \end{array} \right)$$

(5)

(7)

(8)

After diagonalization, we could have:

$$\begin{pmatrix} \nu_W \\ N_W \end{pmatrix} = \begin{pmatrix} U & S \\ T & V \end{pmatrix} \begin{pmatrix} \nu \\ N \end{pmatrix} \tag{9}$$

i.e. $\nu_{eL} = \sum_{j} U_{ej} \nu_{j} + \sum_{J} S_{eJ} N_{J}$ is the weak eigenstates Symmetry Broken also leads to L-R gauge boson mixing:

$$W_L = \cos \xi W_1 - \sin \xi W_2$$

$$W_R = \cos \xi W_2 + \sin \xi W_1$$
 (10)

Where ξ is the mixing angle.

After diagonalization, we could have:

$$\begin{pmatrix} \nu_W \\ N_W \end{pmatrix} = \begin{pmatrix} U & S \\ T & V \end{pmatrix} \begin{pmatrix} \nu \\ N \end{pmatrix} \tag{9}$$

i.e. $\nu_{eL} = \sum_{i} U_{ej} \nu_{j} + \sum_{J} S_{eJ} N_{J}$ is the weak eigenstates

Symmetry Broken also leads to L-R gauge boson mixing:

$$W_L = \cos \xi W_1 - \sin \xi W_2$$

$$W_R = \cos \xi W_2 + \sin \xi W_1$$
 (10)

Where ξ is the mixing angle. This would lead to more $0\nu\beta\beta$ diagrams.

- M. Doi et. al. Prog. Theo. Phys. Suppl. 83,1(1985)
 - Hamiltonian for interactions from LRSM relevant to $0\nu\beta\beta$:

$$H_{\rm int} = \frac{G_F \cos \theta_C}{\sqrt{2}} (J_L^{\mu} j_{L\mu} + \kappa J_L^{\mu} j_{R\mu} + \eta J_R^{\mu} j_{L\mu} + \lambda J_R^{\mu} j_{R\mu})$$
 (11)

Here $\kappa=\eta\approx\tan\zeta$ and $\lambda\approx(\frac{M_{W1}}{M_{W2}})^2$, suggesting that the latter three terms are suppressed.

 Besides this, we have also six fermion interactions coming from Yukawa couplings with Triplet Higgs bosons:

$$H_{\text{int}} = \sum_{I_1, I_2, I_3} C_{I_1, I_2, I_3} j_{I_1} J^{\mu}_{I_2} J_{I_3 \mu}$$
 (12)

Here I_1 , I_2 and I_3 could be either L or R, and the coefficients C's are usually suppressed by triplet higgs mass, we usually neglect their contributions

Nuclear currents

The nuclear current has the form by inserting the intermediate states

$$J_{IJ}^{\rho\sigma} = \langle f | J_{WI}^{\rho} | m \rangle \langle m | J_{WJ}^{\sigma} | i \rangle$$

 Here I and J could either be L or R, and the left-handed and right-handed weak current of quark has the form:

$$J_{L}^{\mu} = \bar{u}(1 - \gamma_{5})\gamma^{\mu}d$$

$$J_{R}^{\mu} = \bar{u}(1 + \gamma_{5})\gamma^{\mu}d$$
(13)

 At the nucleon level, the current may be more complicated with induced components:

$$J^{\mu}_{L(R)} = g_V(q^2)\gamma^{\mu} - ig_M(q^2)\frac{\sigma^{\mu\nu}}{2m_p}q_{\nu} \mp g_A(q^2)\gamma^{\mu}\gamma_5 \pm g_P(q^2)q^{\nu}\gamma_5$$
 (14)

• Here $g_V(0)=1$ and $g_A(0)=1.27$ and the form factors are generally assumed to be dipole form: $g(q^2)=g/(1+q^2/\Lambda^2)^2$

Lepton currents

The weak current of lepton can be written as:

$$j_{L(R)}^{\mu} = \bar{e}\gamma^{\mu}(1 \mp \gamma_5)\nu \tag{15}$$

11 / 38

Therefore the double electron emission + neutrino propagator has the form:

$$j_{L(R)}^{\mu}(\vec{\mathbf{x}})j_{L(R)}^{\nu}(\vec{\mathbf{y}}) = \bar{e}\gamma^{\mu}(1 \mp \gamma_{5})N_{i}\bar{e}\gamma^{\nu}(1 \mp \gamma_{5})N_{j}$$

$$= -\bar{e}\gamma^{\mu}(1 \mp \gamma_{5})N_{i}N_{j}^{T}(1 \mp \gamma_{5}^{T})\gamma^{\nu T}\bar{e}^{T}$$

$$= -i\delta_{ij}\int \frac{d^{4}q}{2\pi^{4}}\frac{e^{iq(x-y)}}{q^{2}-m_{i}^{2}}$$

$$\times \bar{e}\gamma^{\mu}(1 \mp \gamma_{5})(\gamma_{\rho}q_{\rho}+m_{i})(1 \mp \gamma_{5})\gamma^{\nu}\bar{e}^{C}$$
(16)

- Be aware of the properties of γ -matrices, $(1-\gamma_5)(1+\gamma_5)=0$ and $(1-\gamma_5)\gamma_\rho(1-\gamma_5)=0$,
- We have two types of terms, namely the mass terms(same chirality on both sides of the propagator) and V+A terms (different chirality on the two sides of the propagator)

Lepton currents

• After contracting with external lepton legs and integrating over q^0 , we can obtain the two lepton terms with the form

$$S_{L\rho\sigma}(\vec{\mathbf{x}}, \vec{\mathbf{y}}; a) = \frac{\bar{e}(\epsilon_{1}, \vec{\mathbf{x}})\gamma_{\rho}(1 - \gamma_{5})\gamma_{\sigma}e^{C}(\epsilon_{2}, \vec{\mathbf{y}})}{\omega + E_{m} + (\epsilon_{2} - \epsilon_{1})/2}$$

$$- \frac{\bar{e}(\epsilon_{2}, \vec{\mathbf{x}})\gamma_{\rho}(1 - \gamma_{5})\gamma_{\sigma}e^{C}(\epsilon_{1}, \vec{\mathbf{y}})}{\omega + E_{m} + (\epsilon_{1} - \epsilon_{2})/2}$$

$$V_{L\rho\sigma}(\vec{\mathbf{x}}, \vec{\mathbf{y}}; a) = \frac{q^{\mu}\bar{e}(\epsilon_{1}, \vec{\mathbf{x}})\gamma_{\rho}(1 - \gamma_{5})\gamma_{\mu}\gamma_{\sigma}e^{C}(\epsilon_{2}, \vec{\mathbf{y}})}{\omega + E_{m} + (\epsilon_{2} - \epsilon_{1})/2}$$

$$- \frac{q^{\mu}\bar{e}(\epsilon_{2}, \vec{\mathbf{x}})\gamma_{\rho}(1 - \gamma_{5})\gamma_{\mu}\gamma_{\sigma}e^{C}(\epsilon_{1}, \vec{\mathbf{y}})}{\omega + E_{m} + (\epsilon_{1} - \epsilon_{2})/2}$$

- Here $\omega=\sqrt{\vec{\mathbf{q}}^2+m_j^2}$ is the neutrino energy and for light neutrino $\omega\approx|\vec{\mathbf{q}}|$
- $e(\epsilon, \vec{\mathbf{x}})$ is Coulomb distorted electron wave function and can be obtained by the solution of Dirac equations

decay width

• The general decay width of $0\nu\beta\beta$ decay can be written as below following the S-matrix theory as we have shown:

$$d\Gamma = 2\pi \sum_{spin} |R|^2 \delta(\epsilon_1 + \epsilon_2 + E_f - M_i) \frac{d\vec{\mathbf{p}}_1}{(2\pi)^3} \frac{d\vec{\mathbf{p}}_2}{(2\pi)^3}$$
(17)

 Here the R-matrix can be written as follows for general LRSM (we focus on the light neutrino mediated mechanism)

$$R = \left(\frac{G_F \cos \theta_C}{\sqrt{2}}\right)^2 \sum_{j} \int d\vec{\mathbf{x}} \int d\vec{\mathbf{y}} \int \frac{d\vec{\mathbf{q}}}{2\omega (2\pi)^3} e^{i\vec{\mathbf{q}} \cdot (\vec{\mathbf{x}} - \vec{\mathbf{y}})}$$

$$\times \sum_{a} \left[\left(J_{LL}^{\rho\sigma} S_{L\rho\sigma} + J_{RR}^{\rho\sigma} S_{R\rho\sigma} \right) + \left(J_{LR}^{\rho\sigma} V_{L\rho\sigma} + J_{RL}^{\rho\sigma} V_{R\rho\sigma} \right) \right]$$
(18)

Electron wave functions

 The electron wave function can be obtained from solutions of Dirac equations:

$$H\Psi = (\vec{\alpha} \cdot \vec{\mathbf{p}} - \beta - V)\Psi = W\Psi \tag{19}$$

For central field, we have a polar form:

$$H\Psi = \left[i\gamma_5\sigma_r\left(\frac{\partial}{\partial r} - \frac{1}{r} - \beta K\right) + V(r) + \beta\right]\Psi \tag{20}$$

 $K = \vec{\sigma} \cdot \vec{\mathbf{I}} + 1$ commute with H and its eigenvalues are $\kappa = -|j| - 1/2$ for j = l + 1/2 and $\kappa = |j| + 1/2$ for j = l - 1/2.

• The solution are with the general form $\Psi^T = a_{\kappa\mu}(g_\kappa\chi^T_{\kappa\mu}, if_\kappa\chi^T_{-\kappa\mu})$

$$\frac{df}{dr} = \frac{\kappa - 1}{r}f - (W - 1 - V)g$$

$$\frac{dg}{dr} = (W - V + 1)f - \frac{\kappa + 1}{r}g$$
(21)

 $a_{k\mu}$ is determined by matching the plane wave solution at infinity

So the electron wave function can be expressed as:

$$\Psi(\epsilon, \vec{\mathbf{x}}) = \Psi^{(S)}(\epsilon, \vec{\mathbf{x}}) + \Psi^{(P)}(\epsilon, \vec{\mathbf{x}}) + \cdots$$
 (22)

The s-wave has the form:

$$\Psi^{(S)}(\epsilon, \vec{\mathbf{x}}) = \begin{pmatrix} \tilde{\mathbf{g}}_{-1}\chi_s \\ (\sigma \cdot \hat{\mathbf{p}})\tilde{f}_1\chi_s \end{pmatrix}$$
 (23)

For S - S electrons, we could have for example:

$$\bar{e}(\epsilon_{1}, \vec{\mathbf{x}}) \gamma_{\mu} (1 - \gamma_{5}) \gamma_{\nu} e^{C}(\epsilon_{1}, \vec{\mathbf{x}})
= \left(\tilde{g}_{-1}^{*} \chi_{s}^{\dagger} (\sigma \cdot \hat{p})^{\dagger} \tilde{f}_{1}^{*} \chi_{s}^{\dagger} \right) \gamma_{0} \gamma_{\mu} (1 - \gamma_{5}) \gamma_{\nu} i \gamma_{2} \left(\tilde{g}_{-1}^{*} \chi_{s}^{*} (\sigma \cdot \hat{p})^{*} \tilde{f}_{1}^{*} \chi_{s}^{*} \right) (24)$$

For decay to ground states, only $\gamma_0\gamma_0$ term or $[\gamma_i\otimes\gamma_j]^0$. Besides, we have also contributions from S-P electrons

- For derivation of the final decay width, several assumptions are used:
- long wavelength approximation: $e^{S}(\vec{\mathbf{x}}) = e^{S}(R)$, $e^{L}(\mathbf{x}) \sim (kx)^{L}$,...
- equal energy approximation: $\epsilon_1 \approx \epsilon_2$
- Under such assumption, for example, for the mass mechanism:

$$\begin{split} |R|^2 &\approx |\bar{e^{S}}(\epsilon_{1},R)\gamma_{\mu}(1-\gamma_{5})\gamma_{\nu}e^{SC}(\epsilon_{2},R)|^{2} \\ &\times |\sum_{j}U_{ej}^{2}m_{j}\sum_{m}\int d\vec{\mathbf{x}}d\vec{\mathbf{y}}\int d\vec{\mathbf{q}}\frac{e^{i\mathbf{q}\cdot(\mathbf{x}-\mathbf{y})}}{\omega_{j}(\omega_{j}+A_{m})}\langle f|J_{L}^{\mu}|m\rangle\langle m|J_{L}^{\nu}|i\rangle|^{2} \\ &= |\bar{e^{S}}(\epsilon_{1},R)(1+\gamma_{5})e^{SC}(\epsilon_{2},R)|^{2} \\ &\times |\sum_{j}U_{ej}^{2}m_{j}\sum_{m}\int d\vec{\mathbf{x}}d\vec{\mathbf{y}}\int d\vec{\mathbf{q}}\frac{e^{i\mathbf{q}\cdot(\mathbf{x}-\mathbf{y})}}{\omega_{j}(\omega_{j}+A_{m})}\langle f|J_{L}^{\mu}|m\rangle\langle m|J_{L\mu}|i\rangle|^{2} \end{split}$$

- For derivation of the final decay width, several assumptions are used:
- long wavelength approximation: $e^{S}(\vec{x}) = e^{S}(R)$, $e^{L}(x) \sim (kx)^{L}$,...
 - equal energy approximation: $\epsilon_1 \approx \epsilon_2$
- Under such assumption, for example, for the mass mechanism:

$$|R|^{2} \approx |\bar{e^{S}}(\epsilon_{1},R)\gamma_{\mu}(1-\gamma_{5})\gamma_{\nu}e^{SC}(\epsilon_{2},R)|^{2}$$

$$\times |\sum_{j} U_{ej}^{2}m_{j}\sum_{m} \int d\vec{\mathbf{x}}d\vec{\mathbf{y}} \int d\vec{\mathbf{q}} \frac{e^{i\mathbf{q}\cdot(\mathbf{x}-\mathbf{y})}}{\omega_{j}(\omega_{j}+A_{m})} \langle f|J_{L}^{\mu}|m\rangle\langle m|J_{L}^{\nu}|i\rangle|^{2}$$

$$= |\bar{e^{S}}(\epsilon_{1},R)(1+\gamma_{5})e^{SC}(\epsilon_{2},R)|^{2}$$

$$\times |\sum_{i} U_{ej}^{2}m_{j}\sum_{m} \int d\vec{\mathbf{x}}d\vec{\mathbf{y}} \int d\vec{\mathbf{q}} \frac{e^{i\mathbf{q}\cdot(\mathbf{x}-\mathbf{y})}}{\omega_{j}(\omega_{j}+A_{m})} \langle f|J_{L}^{\mu}|m\rangle\langle m|J_{L\mu}|i\rangle|^{2}$$

• For decay to ground states, this then can be written as:

$$\sum |R|^2 = (f_{11}^0 + f_{11}^1 \cos \theta) |m_{\beta\beta}^{\nu}|^2 |M|^2$$
 (25)

 \bullet cos θ term will not contribute to the total decay rate but is important

phase space factor

Here f's are functionals of electron wave functions:

$$f_{11}^{0} = |g_{-1}(k_{1}R)g_{-1}(k_{2}R)|^{2} + |f_{1}(k_{1}R)f_{1}(k_{2}R)|^{2} + |g_{-1}(k_{1}R)f_{1}(k_{2}R)|^{2} + |f_{1}(k_{1}R)g_{-1}(k_{2}R)|^{2} f_{11}^{1} = -2Re[g_{-1}(k_{1}R)g_{-1}(k_{2}R)(f_{1}(k_{1}R)f_{1}(k_{2}R))^{*} + g_{-1}(k_{1}R)f_{1}(k_{2}R)(f_{1}(k_{1}R)g_{-1}(k_{2}R))]^{*}$$
(26)

After integration over electron momenta,

$$G^{01} = C \int \frac{d^3k_1}{(2\pi)^3} \frac{d^3k_2}{(2\pi)^3} (f_{11}^0 + f_{11}^1 \cos \theta)$$
 (27)

• the decay width are well separated into three parts:

$$\Gamma = G^{01}(m_{\beta\beta}^{\nu})^2 |M|^2 \tag{28}$$

 Such formalism works for different mechanism with different decay opeartors

$$\Gamma_{\text{tot}} = \sum_{ij} Re(C_i C_j) G_{ij} M_i M_j \tag{29}$$

A complete expression for LRSM:

$$\Gamma^{0\nu}(0^{+} \to 0^{+}) = G^{01}(\langle m_{\nu} \rangle M_{I} + \langle \eta_{N} \rangle M_{h})^{2} + \langle \lambda \rangle^{2}(G^{02}M_{\omega^{-}}^{2} + G^{011}M_{q^{+}}^{2} - 2G^{010}M_{\omega^{-}}M_{q^{+}}) + \langle \eta \rangle^{2}(G^{02}M_{\omega^{+}}^{2} + G^{011}M_{q^{-}}^{2} - 2G^{010}M_{\omega^{+}}M_{q^{-}} + G^{08}M_{P}^{2} + G^{09}M_{R}^{2} - G^{07}M_{P}M_{R}) + \cdots$$
(30)

$$\begin{split} \langle \textit{m}_{\nu} \rangle &= |\sum_{j} (\textit{U}_{ej})^{2} \textit{m}_{j}|, \\ \langle \textit{\eta}_{\textit{N}} \rangle &= |\sum_{J} \frac{(\textit{S}_{eJ})^{2} \textit{m}_{p}}{\textit{M}_{J}}|, \\ \langle \lambda \rangle &= |\tan \xi \sum_{j} \textit{U}_{ej} \textit{T}_{ej}^{*} (\textit{g}'_{V} / \textit{g}_{V})|, \\ \langle \textit{\eta} \rangle &= |(\textit{M}_{W1} / \textit{M}_{W2})^{2} \sum_{j} \textit{U}_{ej} \textit{T}_{ej}^{*}| \\ \text{are new physics parameters} \end{split}$$

A complete expression for LRSM:

$$\Gamma^{0\nu}(0^{+} \to 0^{+}) = G^{01}(\langle m_{\nu} \rangle M_{I} + \langle \eta_{N} \rangle M_{h})^{2} + \langle \lambda \rangle^{2}(G^{02}M_{\omega^{-}}^{2} + G^{011}M_{q^{+}}^{2} - 2G^{010}M_{\omega^{-}}M_{q^{+}}) + \langle \eta \rangle^{2}(G^{02}M_{\omega^{+}}^{2} + G^{011}M_{q^{-}}^{2} - 2G^{010}M_{\omega^{+}}M_{q^{-}} + G^{08}M_{P}^{2} + G^{09}M_{R}^{2} - G^{07}M_{P}M_{R}) + \cdots$$
(30)

$$\begin{split} \langle \textit{m}_{\nu} \rangle &= |\sum_{j} (\textit{U}_{ej})^{2} \textit{m}_{j}|, \\ \langle \eta_{\textit{N}} \rangle &= |\sum_{J} \frac{(\textit{S}_{eJ})^{2} \textit{m}_{p}}{\textit{M}_{J}}|, \\ \langle \lambda \rangle &= |\tan \xi \sum_{j} \textit{U}_{ej} \textit{T}_{ej}^{*} (\textit{g}'_{V} / \textit{g}_{V})|, \\ \langle \eta \rangle &= |(\textit{M}_{W1} / \textit{M}_{W2})^{2} \sum_{j} \textit{U}_{ej} \textit{T}_{ej}^{*}| \\ \text{are new physics parameters} \end{split}$$

• In above expression, we first consider the neutrino mass mechanism

$$\Gamma^{0\nu} = |\langle m_{\nu} \rangle|^2 G^{01} M_m^2 \tag{31}$$

In above expression, we first consider the neutrino mass mechanism

$$\Gamma^{0\nu} = |\langle m_{\nu} \rangle|^2 G^{01} M_m^2 \tag{31}$$

Calculations of PSFs using numerical electron wave functions (Kotila *et al.* PRC85,034316(2012))

Nucleus	$G_{0\nu}^{(0)}~(10^{-15}~{ m yr}^{-1})$	$G_{0\nu}^{(1)} (10^{-15} \text{ yr}^{-1})$	$Q_{\beta\beta}$ (MeV)		
⁴⁸ Ca	24.81	-23.09	4.27226(404)		
⁷⁶ Ge	2.363	-1.954	2.03904(16)		
82Se	10.16	-9.074	2.99512(201)		
^{96}Zr	20.58	-18.67	3.35037(289)		
¹⁰⁰ Mo	15.92	-14.25	3.03440(17)		
¹¹⁰ Pd	4.815	-4.017	2.01785(64)		
116Cd	16.70	-14.83	2.81350(13)		
124 S n	9.040	-7.765	2.28697(153)		
¹²⁸ Te	0.5878	-0.3910	0.86587(131)		
¹³⁰ Te	14.22	-12.45	2.52697(23)		
¹³⁶ Xe	14.58	-12.73	2.45783(37)		
148Nd	10.10	-8.506	1.92875(192)		
150Nd	63.03	-57.76	3.37138(20)		
154Sm	3.015	-2.295	1.21503(125)		
¹⁶⁰ Gd	9.559	-7.932	1.72969(126)		
¹⁹⁸ Pt	7.556	-5.868	1.04717(311)		
²³² Th	13.93	-10.95	0.84215(246)		
^{238}U	33.61	-28.13	1.14498(125)		

Calculation of the nuclear part (NME) depends on the nuclear structure theory. Modern nuclear structure calculations face two obstacles:

- many-body methods
 - exact Configuration Interaction approaches
 - ullet approximate approaches with Configuration truncations: QRPA, DFT, IBM, \cdots

Calculation of the nuclear part (NME) depends on the nuclear structure theory. Modern nuclear structure calculations face two obstacles:

- many-body methods
 - exact Configuration Interaction approaches
 - \bullet approximate approaches with Configuration truncations: QRPA, DFT, IBM, \cdots
- nuclear force
 - ab initio:
 - phenomenological realistic forces
 - Chiral forces
 - Effective interactions:
 - Skyrme, Gogny, Relativistic mean fields,...

Calculation of the nuclear part (NME) depends on the nuclear structure theory. Modern nuclear structure calculations face two obstacles:

- many-body methods
 - exact Configuration Interaction approaches
 - ullet approximate approaches with Configuration truncations: QRPA, DFT, IBM, \cdots

nuclear force

- ab initio:
 - phenomenological realistic forces
 - Chiral forces
- Effective interactions:
 - Skyrme, Gogny, Relativistic mean fields....

QRPA methods based on G-matrix with CD-Bonn potential

- WS meanfield + pairing and residual interactions from G-matrix
- deformation of nuclei is taken into consideration

Pros:

- QRPA is capable of dealing with intermediates states
- Closure approximation is used for other approaches

Cons:

- only one phonon excitations are considered
- meanfield interactions and residual interactions are of different types

NSM method starts from G-matrix but fitted by nuclear properties Pros:

- exact solutions for many-body problem
- all possible excitations included

Cons:

- large computation burden and only applicable for limited nuclei
- usually severe model space truncation leads to uncontrolled errors

Many-body calculations

 The nuclear many body wave functions can be written as a Slater determinant which fulfills the permutation symmetry of Fermions:

$$\phi(x_1,...,x_A) = \frac{1}{A!} \begin{vmatrix} \phi_1(x_1) & ... & \phi_A(x_A) \\ ... & ... \\ \phi_1(x_A) & ... & \phi_A(x_1) \end{vmatrix}$$
(32)

or equivalently in second-quantized form:

$$|\phi\rangle = \prod_{i} c_{i}^{\dagger} |0\rangle \tag{33}$$

Usually the operator can be written as:

$$O_{1b} = \sum_{\tau_1 \tau_2} \langle \tau_1 | \mathcal{O}_i | \tau_2 \rangle c_{\tau_1}^{\dagger} c_{\tau_2}$$

$$O_{2b} = \sum_{\tau_1 \tau_2 \tau_3 \tau_4} \langle \tau_1 \tau_2 | \mathcal{O}_i | \tau_3 \tau_4 \rangle c_{\tau_1}^{\dagger} c_{\tau_2}^{\dagger} c_{\tau_4} c_{\tau_3}$$

Many-body calculations

• Usually the single particle wave functions are expanded on certain basis, e.g. Harmonic oscillator basis

$$\phi_i(\vec{x}) = \sum_k C_{ik} \phi_k(x) \tag{35}$$

 in actual calculations, one first calculate the so-called reduced density from the wave functions

$$\langle J_f || [c_k^{\dagger} \tilde{c}_{k'}]_J || J_i \rangle = \sum_{\tau_1 \tau_2} C_{\tau_1 k} C_{\tau_2 k'} \langle J_f || [c_{\tau_1}^{\dagger} \tilde{c}_{\tau_2}]_J || J_i \rangle$$
 (36)

Here the Wigner-Eckart theorem is used

$$\langle J_f m_f | [c^{\dagger} c]_{Jm} | J_i m_i \rangle = \frac{(-1)^{j_i - m_i} C_{J_f m_f J_i - m_i}^{Jm} \langle J_f | | [c^{\dagger} c]_J | | J_i \rangle}{\sqrt{2J + 1}}$$
(37)

 Besides the reduced one body density, we have also two body, three body, ..., density defined in a similar way

Many-body calculations

 Therefore, using the reduced densities, we could calculate the nuclear transition amplitude:

$$\mathcal{A}_{1b} = \sum_{m_{i}m_{f}m} \langle J_{f}m_{f}|[c_{\tau_{1}}^{\dagger}\tilde{c}_{\tau_{2}}]J_{m}|J_{i}m_{i}\rangle\langle\tau_{1}|\mathcal{O}_{Jm}|\tau_{2}\rangle$$

$$= \frac{\langle J_{f}||[c_{k}^{\dagger}\tilde{c}_{k'}]J||J_{i}\rangle}{\sqrt{2J+1}}\langle k||\mathcal{O}_{J}||k'\rangle$$
(38)

- This formalism can actually be used in various occasions, if τ_1, τ_2 are with the same species, this is charge conserving transition (e.g. electromagnetic transition), otherwise charge exchange transition (e.g. β -decay)
- Similar expressions can be obtained for two-, three-, ..., body transitions.

Nuclear current operator

The induced weak current under the impulse approximation:

$$J_{L(R)}^{\mu} = \sum_{1}^{A} \tau^{+} [g^{\mu 0} g_{V}(q^{2}) \pm g^{\mu j} (g_{A}(q^{2}) \sigma_{j})$$

$$\pm i g_{M}(q^{2}) \frac{(\sigma \times \vec{\mathbf{q}})_{j}}{2m_{p}} - g_{P}(q^{2}) \frac{q_{j} \vec{\sigma} \cdot \vec{\mathbf{q}}}{2m_{p}}] \delta(\vec{\mathbf{r}} - \vec{\mathbf{r}}_{n})$$
(39)

The non-relativistic reduction is needed for a non-relativistic system, time component is a scalar and spatial component is a 3-vector

$$J_{L(R),0}(\mathbf{r}) = \sum_{n} g_{V}(q^{2})\delta(\vec{\mathbf{r}} - \vec{\mathbf{r}}_{n})$$

$$J_{L(R),i}(\mathbf{r}) = \mp [g_{A}(q^{2})\sigma_{i} - \frac{q_{j}\vec{\sigma}\cdot\vec{\mathbf{q}}}{2m_{n}} + ig_{M}(q^{2})\frac{(\sigma\times\vec{\mathbf{q}})_{i}}{2m_{n}}]\delta(\vec{\mathbf{r}} - \vec{\mathbf{r}}_{n})(40)$$

NME

Leads to:

$$M = \sum_{m} \int d\vec{\mathbf{x}} d\vec{\mathbf{y}} \frac{e^{i\mathbf{q}\cdot(\mathbf{x}-\mathbf{y})}}{\omega_{j}(\omega_{j}+A)} \langle f|J_{L}^{\mu}|m\rangle\langle m|J_{L\mu}|i\rangle$$

$$= \sum_{m} \int d\vec{\mathbf{x}} d\vec{\mathbf{y}} \frac{e^{i\mathbf{q}\cdot(\mathbf{x}-\mathbf{y})}}{\omega_{j}(\omega_{j}+A)} (\langle f|J_{L0}|m\rangle\langle m|J_{L0}|i\rangle - \sum_{i} \langle f|J_{Li}|m\rangle\langle m|J_{Li}|i\rangle)$$

Substitute the detailed forms of J_{μ} into above formula, we obtain:

$$M = \langle H_F(r) + H_{GT}(r)\sigma_1 \cdot \sigma_2 + H_T(r)(\sigma_1 \otimes \sigma_2)^2 : (\vec{\mathbf{q}} \otimes \vec{\mathbf{q}})^2 \rangle$$

here the most important part is the "neutrino potential":

$$H_{iGT}(r) = \frac{2R}{\pi} \int_0^\infty j_0(qr) h_i(q^2) dq \tag{42}$$

(41)

i could be AA, AP, PP and MM

Short-range correlation functions are usually multiplied

NME calculation details

particle-particle vs. particle-hole channel pp (most approaches):

 calculations in particle-particle channel adopts the closure approximation

$$\sum_{m} \frac{|m\rangle\langle m|}{\omega + A_{m}} \approx \frac{1}{\omega + \tilde{A}} \tag{44}$$

The NME can be expressed by the sum of two-body density

$$M = \sum_{pp'nn',J} \langle 0_f^+ || [pp']_J [nn']_J || 0_i^+ \rangle \langle pp'J || \mathcal{O}(\tilde{A}) || nn'J \rangle$$
 (45)

ph (mostly QRPA):

The intermediate states are accounted explicitly

$$M = \sum_{pp',pp'} \sum_{lm} \frac{\langle 0_f^+ || [c_p^{\dagger} \tilde{c}_n]_J || Jm \rangle \langle Jm || [c_p^{\dagger} \tilde{c}_n]_J || 0_i^+ \rangle}{2J + 1} \langle p || \mathcal{O}_f || n \rangle \langle p' || \mathcal{O}_i || n' \rangle \langle p' || \mathcal{O}_f || n' \rangle \langle p' || n'$$

The two body operator and the two one body operators are connected by a specific transformation

Results

DLF et al. Phys. Rev. C97,045503(2018)

		AV18								CD Bonn							
		$g_A = g_{A0}$			$g_A = 0.75 g_{A0}$			$g_A = g_{A0}$			$g_A = 0.75 g_{A0}$						
		$M_F^{0 u}$	$M_{GT}^{0 u}$	$M_T^{0\nu}$	$M_l^{\prime 0\nu}$	$M_{F,l}^{0 u}$	$M_{GT,l}^{0\nu}$	$M_{T,l}^{0\nu}$	$M_l^{\prime 0 \nu}$	$M_F^{0 u}$	$M_{GT}^{0\nu}$	$M_T^{0 u}$	$M_l^{\prime 0 \nu}$	$M_{F,l}^{0 u}$	$M_{GT,l}^{0\nu}$	$M_{T,l}^{0\nu}$	$M_l^{\prime 0 \nu}$
$^{76}\mathrm{Ge}{ ightarrow}^{76}\mathrm{Se}$	a	-1.09	3.11	-0.44	3.34	-1.09	3.94	-0.46	2.63	-1.10	2.99	-0.40	3.27	-1.09	3.90	-0.42	2.64
	b	-1.06	2.92	-0.45	3.12	-1.06	3.70	-0.47	2.48	-1.15	3.09	-0.41	3.40	-1.15	4.00	-0.43	2.72
$^{82}\mathrm{Se}{ ightarrow}^{82}\mathrm{Kr}$	a	-1.00	2.86	-0.41	3.07	-1.00	3.61	-0.43	2.41	-1.00	2.76	-0.37	3.01	-1.00	3.58	-0.42	2.41
	b	-0.98	2.68	-0.42	2.86	-0.97	3.39	-0.38	2.26	-1.05	2.85	-0.38	3.13	-1.05	3.67	-0.39	2.49
$^{130}\mathrm{Te}{ ightarrow}^{130}\mathrm{Xe}$	a	-1.17	2.95	-0.52	3.16	-1.16	3.37	-0.55	2.31	-1.15	2.85	-0.46	3.10	-1.15	3.29	-0.49	2.29
	b	-1.13	2.73	-0.53	2.90	-1.13	3.11	-0.56	2.13	-1.21	2.95	-0.47	3.22	-1.21	3.38	-0.50	2.37
$^{136}\mathrm{Xe}{ ightarrow}^{136}\mathrm{Ba}$	a	-0.37	1.12	-0.17	1.18	-0.37	1.39	-0.17	0.91	-0.33	1.05	-0.13	1.12	-0.33	1.29	-0.14	0.85
	b	-0.36	1.06	-0.17	1.11	-0.36	1.31	-0.17	0.86	-0.35	1.10	-0.14	1.18	-0.35	1.33	-0.14	0.89
$^{150}\mathrm{Nd}{ ightarrow}^{150}\mathrm{Sm}$	a	-1.35	2.98	-0.53	3.28	-1.35	3.54	-0.56	2.52	-1.36	2.89	-0.45	3.28	-1.37	3.45	-0.52	2.50
	ь	-1.32	2.74	-0.55	3.01	-1.31	3.26	-0.57	2.33	-1.43	3.00	-0.46	3.43	-1.43	3.55	-0.53	2.59

 $M_F = -\frac{1}{3}M_{GT}$ approximately hold, Tensor component is about 1/10 and its contribution is at sub leading order Uncertainties of the calculations

• nuclear force, quenching of g_A in nuclei, SRC

Results

Agostini et al. Rev. Mod. Phys. 95, 025002(2023)

Deviations between different calculations are still large

Origins of deviations

The deviations of different many calculations may come from different factors, either from the nuclear force or many-body correlations. Some can be qualitatively discussed.

For example, the lack of isoscalar pairing in EDF calculations leads to overestimation of the NME

Comparative study

Brown et al. Phys. Rev. C91, 041301(R)(2015)

The most important error for NSM comes from model space truncation

- Internal errors may come from the choice of Hamiltonian, closure approximation
- External errors from src, g_A quenching, etc.
- $M^{0\nu}(^{76}Ge) = [2.6(3)][0.89(4)][1.01(3)][1.28(3)] = 3.0(4)$

double GT

- \bullet For shell model calculations, one finds the correlation between double GT transition strength and $0\nu\beta\beta$ NME
- They suggest that it comes from a similar radial dependence of the two transition operator
 Shumizu et al. Phys. Rev. Lett. 120. 142502(2018)

Shumizu et al. Phys. Rev. Lett. 120. 14

double GT

- \bullet For shell model calculations, one finds the correlation between double GT transition strength and $0\nu\beta\beta$ NME
- They suggest that it comes from a similar radial dependence of the two transition operator
 Shumizu et al. Phys. Rev. Lett. 120. 142502(2018)

$\gamma\gamma$ -decay

• Similar conclusion has been drawn for the correlation between $\gamma\gamma\text{-decay NME}$ and $0\nu\beta\beta$ NME $_{\text{Romeo et al. Phys. Lett. B827, 136985(2022)}$

$\gamma\gamma$ -decay

• Similar conclusion has been drawn for the correlation between $\gamma\gamma$ -decay NME and $0\nu\beta\beta$ NME Romeo et al. Phys. Lett. B827, 136985(2022)

two nucleon removal reaction

- Making use of the 0^+ pair dominance for $0\nu\beta\beta$ -NME
- two nucleon transfer reaction to the ground states could constrain the NME

Brown et al. Phys.Rev.Lett.113, 262501(2014)

Rebeiro et al. Phys.Lett.B809, 135702(2020)

- Pioneer work has been done for ¹³⁸Ba, which has a similar sturcture as ¹³⁶Ba
- Decent agreement between experiments and calculations is achieved

Other NMEs

	⁷⁶ Ge			⁸² Se		
	AV18	cd-Bonn	w/o	AV18	cd-Bonn	w/o
M_F	-1.482	-1.600	-1.522	-1.360	-1.463	-1.390
M_{GT}	4.667	5.169	5.024	4.051	4.491	4.353
M_T	-0.775	-0.774	-0.752	-0.730	-0.728	-0.709
$M_{\omega F}$	-1.458	-1.571	-1.499	-1.333	-1.432	-1.365
$M_{\omega GT+}$	4.604	5.087	4.961	4.041	4.462	4.342
$M_{\omega GT}$	3.607	3.868	3.627	3.156	3.383	3.164
$M_{\omega T+}$	-0.752	-0.750	-0.729	-0.708	-0.706	-0.688
$M_{\omega T-}$	-0.464	-0.463	-0.455	-0.440	-0.440	-0.432
M _{aF}	-0.944	-0.971	-0.857	-0.886	-0.910	-0.806
M_{aGT+}	4.364	4.611	4.237	3.826	4.042	3.705
M_{qGT}	1.671	1.682	1.440	1.431	1.440	1.223
\dot{M}_{aT+}	2.065	2.062	2.022	1.956	1.951	1.919
M_{qT}	2.331	2.328	2.271	2.196	2.194	2.140
RGT	8.873	11.240	12.756	8.045	10.165	11.510
RT	-2.783	-2.780	-2.646	-2.641	-2.638	-2.514
P	-0.672	-0.682	-0.630	-0.635	-0.643	-0.598

Other NMEs needed for LRSM with QRPA calculations

perspective

A model independent route for neutrinoless double beta decay

Cirigliano et al. JHEP12, 097(2018)

Conclusion

- Neutrinoless double beta decay is very good probe for new physics beyond Standard Model
- Calculations of NME is important for the determinations of new physics parameters
- NMEs from various nuclear many-body approaches don't converge at present
- We need to understand the underlying mechanisms of this rare process

Thank You