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Why ββ-decay

Strong nuclear pairing in nuclei for neutron-neutron and proton-proton

Double beta (ββ) decay is originating from the mass staggering

Neutrinoless ββ-decay is possible if ν = ν̄ and mν 6= 0
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Second order process in nucleus

The decay width of a free particle are obtained with a plane wave:

dΓ =
1

2mi

∏
f

(
d3pf

(2π)32Ef
)|M(mi →

∑
f

pf )|2(2π)4δ4(pi −
∑
f

pf ) (1)

For bound system such as nucleus, we can separate the wave
functions into the co-moving and intrinsic coordinates:

|I (F )〉 =
√

2EI (F )e
i~qI (F )·~R |i(f )〉 (2)

Here |i(f )〉 are nuclear states with finite spins.

A more general expression for decay width:

dΓ =
1

2MI

∏
f

d~kf
(2π)32Ef

d~PF

(2π)32EF

× |〈
∏
f

kf ,F |
1

2!
T

∫
d4xd4yHint(x)Hint(y)|I 〉|2 (3)
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Second order process in nucleus

To separate the intrinsic and co-moving coordinate, on insert∫
d3R|R〉〈R| and redefine ~x′ = ~x− ~R for x and y . Noticing

〈F |R〉 = e−i
~PF ·~R etc.

Therefore after integrating over R and x0, y0, we have:

dΓ =
∏
f

d~kf
(2π)32Ef

d~PF

(2π)3
(2π)4δ4(

∑
f

kf − PF )

× |〈
∏
f

kf , f |
∫

d3x ′d3y ′Hint(x)Hint(y)
∑
contr

1∑
Ef (x)−MI

|i〉|2

the denominator sums over all the possible contractions and all the
energies of the particle at the x vertex.
For nuclear community, one usually redefine the decay width after
integrating out the momentum of nucleus as:

dΓ =
∏
f

d~kf
(2π)3

2πδ(
∑
f

Ef + EF −MI )|R|2 (4)
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Background

The underlying mechanism with L-R symmetry

left-handed and right-handed neutrino mixing

SU(2)L and SU(2)R gauge boson mixing
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e e

As an example, we show the derivation of 0νββ decay width with the L-R
symmetry model (LRSM)
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Background

The guage symmetry of LRSM:

SUL(2)⊗ SUR(2)⊗ UB−L(1) (5)

Fermions are assigned as fundamental representation of SU(2):

SUL(2) :

(
uL
dL

)(
νL
eL

)
· · · SUR(2) :

(
uR
dR

)(
νR
eR

)
· · · (6)

After successive symmetry broken:

SUL(2)⊗ SUR(2)⊗ UB−L(1)→ SUL(2)⊗ UY (1)→ UEM(1) (7)

Which lead to the neutrino mass with Ne = C ν̄TR :

Lνmass =
(
νT NT

)
C

(
ML MD

MD MR

)(
ν
N

)
(8)

Here neutrino has three generations νT =
(
νeL νµL ντL

)
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Background

After diagonalization, we could have:(
νW
NW

)
=

(
U S
T V

)(
ν
N

)
(9)

i.e. νeL =
∑

j Uejνj +
∑

J SeJNJ is the weak eigenstates

Symmetry Broken also leads to L-R
gauge boson mixing:

WL = cos ξW1 − sin ξW2

WR = cos ξW2 + sin ξW1 (10)

Where ξ is the mixing angle.

This would lead to more 0νββ dia-
grams.
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Background

M. Doi et. al. Prog. Theo. Phys. Suppl. 83,1(1985)

Hamiltonian for interactions from LRSM relevant to 0νββ:

Hint =
GF cos θC√

2
(JµL jLµ + κJµL jRµ + ηJµR jLµ + λJµR jRµ) (11)

Here κ = η ≈ tan ζ and λ ≈ (MW 1
MW 2

)2, suggesting that the latter three
terms are suppressed.

Besides this, we have also six fermion interactions coming from
Yukawa couplings with Triplet Higgs bosons:

Hint =
∑
I1,I2I3

CI1,I2,I3 jI1J
µ
I2
JI3µ (12)

Here I1, I2 and I3 could be either L or R, and the coefficients C’s are
usually suppressed by triplet higgs mass, we usually neglect their
contributions
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Nuclear currents

The nuclear current has the form by inserting the intermediate states

JρσIJ = 〈f |JρWI |m〉〈m|J
σ
WJ |i〉

Here I and J could either be L or R, and the left-handed and
right-handed weak current of quark has the form:

JµL = ū(1− γ5)γµd

JµR = ū(1 + γ5)γµd (13)

At the nucleon level, the current may be more complicated with
induced components:

JµL(R) = gV (q2)γµ − igM(q2)
σµν

2mp
qν ∓ gA(q2)γµγ5 ± gP(q2)qνγ5 (14)

Here gV (0) = 1 and gA(0) = 1.27 and the form factors are generally
assumed to be dipole form: g(q2) = g/(1 + q2/Λ2)2
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Lepton currents

The weak current of lepton can be written as:

jµL(R) = ēγµ(1∓ γ5)ν (15)

Therefore the double electron emission + neutrino propagator has the
form:

jµL(R)(~x)jνL(R)(~y) = ēγµ(1∓ γ5)Ni ēγ
ν(1∓ γ5)Nj

= −ēγµ(1∓ γ5)NiN
T
j (1∓ γT5 )γνT ēT

= −iδij
∫

d4q

2π4
e iq(x−y)

q2 −m2
i

× ēγµ(1∓ γ5)(γρqρ + mi )(1∓ γ5)γν ēC (16)

Be aware of the properties of γ-matrices, (1− γ5)(1 + γ5) = 0 and
(1− γ5)γρ(1− γ5) = 0,
We have two types of terms, namely the mass terms(same chirality on
both sides of the propagator) and V + A terms (different chirality on
the two sides of the propagator)
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Lepton currents

After contracting with external lepton legs and integrating over q0,
we can obtain the two lepton terms with the form

SLρσ(~x,~y; a) =
ē(ε1,~x)γρ(1− γ5)γσe

C (ε2,~y)

ω + Em + (ε2 − ε1)/2

− ē(ε2,~x)γρ(1− γ5)γσe
C (ε1,~y)

ω + Em + (ε1 − ε2)/2

VLρσ(~x,~y; a) =
qµē(ε1,~x)γρ(1− γ5)γµγσe

C (ε2,~y)

ω + Em + (ε2 − ε1)/2

− qµē(ε2,~x)γρ(1− γ5)γµγσe
C (ε1,~y)

ω + Em + (ε1 − ε2)/2

Here ω =
√
~q2 + m2

j is the neutrino energy and for light neutrino

ω ≈ |~q|
e(ε,~x) is Coulomb distorted electron wave function and can be
obtained by the solution of Dirac equations
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decay width

The general decay width of 0νββ decay can be written as below
following the S-matrix theory as we have shown:

dΓ = 2π
∑
spin

|R|2δ(ε1 + ε2 + Ef −Mi )
d~p1

(2π)3
d~p2

(2π)3
(17)

Here the R-matrix can be written as follows for general LRSM (we
focus on the light neutrino mediated mechanism)

R = (
GF cos θC√

2
)2
∑
j

∫
d~x

∫
d~y

∫
d~q

2ω(2π)3
e i~q·(~x−~y)

×
∑
a

[(JρσLLSLρσ + JρσRRSRρσ) + (JρσLRVLρσ + JρσRLVRρσ)] (18)
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Electron wave functions

The electron wave function can be obtained from solutions of Dirac
equations:

HΨ = (~α · ~p− β − V )Ψ = WΨ (19)

For central field, we have a polar form:

HΨ = [iγ5σr (
∂

∂r
− 1

r
− βK ) + V (r) + β]Ψ (20)

K = ~σ ·~l + 1 commute with H and its eigenvalues are κ = −|j | − 1/2
for j = l + 1/2 and κ = |j |+ 1/2 for j = l − 1/2.

The solution are with the general form ΨT = aκµ(gκχ
T
κµ, ifκχ

T
−κµ)

df

dr
=

κ− 1

r
f − (W − 1− V )g

dg

dr
= (W − V + 1)f − κ+ 1

r
g (21)

akµ is determined by matching the plane wave solution at infinity
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Background

So the electron wave function can be expressed as:

Ψ(ε,~x) = Ψ(S)(ε,~x) + Ψ(P)(ε,~x) + · · · (22)

The s-wave has the form:

Ψ(S)(ε,~x) =

(
g̃−1χs

(σ · p̂)f̃1χs

)
(23)

For S − S electrons, we could have for example:

ē(ε1,~x)γµ(1− γ5)γνe
C (ε1,~x)

=
(

g̃∗−1χ
†
s (σ · p̂)†f̃ ∗1 χ

†
s

)
γ0γµ(1− γ5)γν iγ2

(
g̃∗−1χ

∗
s

(σ · p̂)∗f̃ ∗1 χ
∗
s

)
(24)

For decay to ground states, only γ0γ0 term or [γi ⊗ γj ]0.
Besides, we have also contributions from S − P electrons
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Background

For derivation of the final decay width, several assumptions are used:
long wavelength approximation: eS(~x) = eS(R), eL(x) ∼ (kx)L,· · ·
equal energy approximation: ε1 ≈ ε2
Under such assumption, for example, for the mass mechanism:

|R|2 ≈ |ēS(ε1,R)γµ(1− γ5)γνe
SC (ε2,R)|2

× |
∑
j

U2
ejmj

∑
m

∫
d~xd~y

∫
d~q

e iq·(x−y)

ωj(ωj + Am)
〈f |JµL |m〉〈m|J

ν
L |i〉|2

= |ēS(ε1,R)(1 + γ5)eSC (ε2,R)|2

× |
∑
j

U2
ejmj

∑
m

∫
d~xd~y

∫
d~q

e iq·(x−y)

ωj(ωj + Am)
〈f |JµL |m〉〈m|JLµ|i〉|

2

For decay to ground states, this then can be written as:∑
spin

|R|2 = (f 011 + f 111 cos θ)|mν
ββ |2|M|2 (25)

cos θ term will not contribute to the total decay rate but is important
observable

16 / 38



Background

For derivation of the final decay width, several assumptions are used:
long wavelength approximation: eS(~x) = eS(R), eL(x) ∼ (kx)L,· · ·
equal energy approximation: ε1 ≈ ε2
Under such assumption, for example, for the mass mechanism:
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phase space factor

Here f ’s are functionals of electron wave functions:

f 011 = |g−1(k1R)g−1(k2R)|2 + |f1(k1R)f1(k2R)|2

+ |g−1(k1R)f1(k2R)|2 + |f1(k1R)g−1(k2R)|2

f 111 = −2Re[g−1(k1R)g−1(k2R)(f1(k1R)f1(k2R))∗

+g−1(k1R)f1(k2R)(f1(k1R)g−1(k2R))]∗ (26)

After integration over electron momenta,

G 01 = C

∫
d3k1
(2π)3

d3k2
(2π)3

(f 011 + f 111 cos θ) (27)

the decay width are well separated into three parts:

Γ = G 01(mν
ββ)2|M|2 (28)

Such formalism works for different mechanism with different decay
opeartors

Γtot =
∑
ij

Re(CiCj)GijMiMj (29)
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Background

A complete expression for LRSM:

Γ0ν(0+ → 0+) = G 01(〈mν〉Ml + 〈ηN〉Mh)2 + 〈λ〉2(G 02M2
ω−

+ G 011M2
q+ − 2G 010Mω−Mq+)

+ 〈η〉2(G 02M2
ω+ + G 011M2

q− − 2G 010Mω+Mq−

+ G 08M2
P + G 09M2

R − G 07MPMR)

+ · · · (30)

〈mν〉=|
∑

j(Uej)
2mj |,

〈ηN〉=|
∑

J
(SeJ)

2mp

MJ
|,

〈λ〉=| tan ξ
∑

j UejT
∗
ej(g

′
V /gV )|,

〈η〉 = |(MW 1/MW 2)2
∑

j UejT
∗
ej |

are new physics parameters

18 / 38



Background

A complete expression for LRSM:

Γ0ν(0+ → 0+) = G 01(〈mν〉Ml + 〈ηN〉Mh)2 + 〈λ〉2(G 02M2
ω−

+ G 011M2
q+ − 2G 010Mω−Mq+)

+ 〈η〉2(G 02M2
ω+ + G 011M2

q− − 2G 010Mω+Mq−

+ G 08M2
P + G 09M2

R − G 07MPMR)

+ · · · (30)

〈mν〉=|
∑

j(Uej)
2mj |,

〈ηN〉=|
∑

J
(SeJ)

2mp

MJ
|,

〈λ〉=| tan ξ
∑

j UejT
∗
ej(g

′
V /gV )|,

〈η〉 = |(MW 1/MW 2)2
∑

j UejT
∗
ej |

are new physics parameters

18 / 38



Background

In above expression, we first consider the neutrino mass mechanism

Γ0ν = |〈mν〉|2G 01M2
m (31)

Calculations of PSFs using numerical
electron wave functions (Kotila et al.
PRC85,034316(2012))
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Formalism

Calculation of the nuclear part (NME) depends on the nuclear structure
theory. Modern nuclear structure calculations face two obstacles:

many-body methods

exact Configuration Interaction approaches

approximate approaches with Configuration truncations: QRPA,
DFT, IBM, · · ·

nuclear force

ab initio:

phenomenological realistic
forces

Chiral forces

Effective interactions:

Skyrme, Gogny, Relativistic
mean fields,· · ·
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Formalism

QRPA methods based on G-matrix with CD-Bonn potential

WS meanfield + pairing and residual interactions from G-matrix

deformation of nuclei is taken into consideration

Pros:

QRPA is capable of dealing with intermediates states

Closure approximation is used for other approaches

Cons:

only one phonon excitations are considered

meanfield interactions and residual interactions are of different types

NSM method starts from G-matrix but fitted by nuclear properties
Pros:

exact solutions for many-body problem

all possible excitations included

Cons:

large computation burden and only applicable for limited nuclei

usually severe model space truncation leads to uncontrolled errors
21 / 38



Many-body calculations

The nuclear many body wave functions can be written as a Slater
determinant which fulfills the permutation symmetry of Fermions:

φ(x1, ..., xA) =
1

A!

∣∣∣∣∣∣
φ1(x1) ... φA(xA)
... ...

φ1(xA) ... φA(x1)

∣∣∣∣∣∣ (32)

or equivalently in second-quantized form:

|φ〉 =
∏
i

c†i |0〉 (33)

Usually the operator can be written as:

O1b =
∑
τ1τ2

〈τ1|Oi |τ2〉c†τ1cτ2

O2b =
∑

τ1τ2τ3τ4

〈τ1τ2|Oi |τ3τ4〉c†τ1c
†
τ2cτ4cτ3

... (34)
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Many-body calculations

Usually the single particle wave functions are expanded on certain
basis, e.g. Harmonic oscillator basis

φi (~x) =
∑
k

Cikφk(x) (35)

in actual calculations, one first calculate the so-called reduced density
from the wave functions

〈Jf ||[c†k c̃k ′ ]J ||Ji 〉 =
∑
τ1τ2

Cτ1kCτ2k ′〈Jf ||[c
†
τ1 c̃τ2 ]J ||Ji 〉 (36)

Here the Wigner-Eckart theorem is used

〈Jfmf |[c†c]Jm|Jimi 〉 =
(−1)ji−miC Jm

Jf mf Ji−mi
〈Jf ||[c†c]J ||Ji 〉√

2J + 1
(37)

Besides the reduced one body density, we have also two body, three
body, ..., density defined in a similar way
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Many-body calculations

Therefore, using the reduced densities, we could calculate the nuclear
transition amplitude:

A1b =
∑

mimf m

〈Jfmf |[c†τ1 c̃τ2 ]Jm|Jimi 〉〈τ1|OJm|τ2〉

=
〈Jf ||[c†k c̃k ′ ]J ||Ji 〉√

2J + 1
〈k||OJ ||k ′〉 (38)

This formalism can actually be used in various occasions, if τ1, τ2 are
with the same species, this is charge conserving transition (e.g.
electromagnetic transition), otherwise charge exchange transition
(e.g. β-decay)

Similar expressions can be obtained for two-, three-, ..., body
transitions.
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Nuclear current operator

The induced weak current under the impulse approximation:

JµL(R) =
A∑
1

τ+[gµ0gV (q2)± gµj(gA(q2)σj

± igM(q2)
(σ × ~q)j

2mp
− gP(q2)

qj~σ · ~q
2mp

)]δ(~r −~rn) (39)

The non-relativistic reduction is needed for a non-relativistic system, time
component is a scalar and spatial component is a 3-vector

JL(R),0(r) =
∑
n

gV (q2)δ(~r −~rn)

JL(R),i (r) = ∓[gA(q2)σi −
qj~σ · ~q

2mp
+ igM(q2)

(σ × ~q)i
2mp

]δ(~r −~rn)(40)
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NME

Leads to:

M =
∑
m

∫
d~xd~y

e iq·(x−y)

ωj(ωj + A)
〈f |JµL |m〉〈m|JLµ|i〉

=
∑
m

∫
d~xd~y

e iq·(x−y)

ωj(ωj + A)
(〈f |JL0|m〉〈m|JL0|i〉 −

∑
i

〈f |JLi |m〉〈m|JLi |i〉)

(41)

Substitute the detailed forms of Jµ into above formula, we obtain:

M = 〈HF (r) + HGT (r)σ1 · σ2 + HT (r)(σ1 ⊗ σ2)2 : (~q⊗ ~q)2〉
here the most important part is the ”neutrino potential”:

HiGT (r) =
2R

π

∫ ∞
0

j0(qr)hi (q
2)dq (42)

i could be AA, AP, PP and MM
Short-range correlation functions are usually multiplied

f (r) = c(1− be−ar
2
) (43)
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NME calculation details

particle-particle vs. particle-hole channel
pp (most approaches):

calculations in particle-particle channel adopts the closure
approximation ∑

m

|m〉〈m|
ω + Am

≈ 1

ω + Ã
(44)

The NME can be expressed by the sum of two-body density

M =
∑

pp′nn′,J

〈0+f ||[pp
′]J [nn′]J ||0+i 〉〈pp

′J||O(Ã)||nn′J〉 (45)

ph (mostly QRPA):

The intermediate states are accounted explicitly

M =
∑
pp′nn′

∑
Jm

〈0+f ||[c
†
p c̃n]J ||Jm〉〈Jm||[c†p c̃n]J ||0+i 〉

2J + 1
〈p||Of ||n〉〈p′||Oi ||n′〉(46)

The two body operator and the two one body operators are connected by
a specific transformation 27 / 38



Results

DLF et al. Phys. Rev. C97,045503(2018)

MF = − 1
3MGT approximately hold, Tensor component is about 1/10 and its

contribution is at sub leading order

Uncertainties of the calculations

nuclear force, quenching of gA in nuclei, SRC
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Results

Agostini et al. Rev. Mod. Phys. 95, 025002(2023)

Deviations between different calculations are still large
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Origins of deviations

The deviations of different many calculations may come from different
factors, either from the nuclear force or many-body correlations. Some can
be qualitatively discussed.

For example, the lack of isoscalar pairing in EDF calculations leads to
overestimation of the NME
Hinohara et al., Phys.Rev.C90, 031301(R)(2014) 30 / 38



Comparative study

Brown et al. Phys. Rev. C91, 041301(R)(2015)

The most important error for NSM comes from model space
truncation

Internal errors may come from the choice of Hamiltonian, closure

approximation

External errors from src, gA quenching, etc.

M0ν(76Ge) = [2.6(3)][0.89(4)][1.01(3)][1.28(3)] = 3.0(4)
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double GT

For shell model calculations, one finds the correlation between double
GT transition strength and 0νββ NME

They suggest that it comes from a similar radial dependence of the
two transition operator Shumizu et al. Phys. Rev. Lett. 120. 142502(2018)
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γγ-decay

Similar conclusion has been drawn for the correlation between
γγ-decay NME and 0νββ NME Romeo et al. Phys. Lett. B827, 136985(2022)
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two nucleon removal reaction

Making use of the 0+ pair dominance for 0νββ-NME
two nucleon transfer reaction to the ground states could constrain the
NME

Brown et al. Phys.Rev.Lett.113, 262501(2014)

Rebeiro et al. Phys.Lett.B809, 135702(2020)

Pioneer work has been done for 138Ba,

which has a similar sturcture as 136Ba

Decent agreement between experiments

and calculations is achieved
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Other NMEs

76Ge 82Se
AV18 cd-Bonn w/o AV18 cd-Bonn w/o

MF -1.482 -1.600 -1.522 -1.360 -1.463 -1.390
MGT 4.667 5.169 5.024 4.051 4.491 4.353
MT -0.775 -0.774 -0.752 -0.730 -0.728 -0.709
MωF -1.458 -1.571 -1.499 -1.333 -1.432 -1.365

MωGT+ 4.604 5.087 4.961 4.041 4.462 4.342
MωGT− 3.607 3.868 3.627 3.156 3.383 3.164
MωT+ -0.752 -0.750 -0.729 -0.708 -0.706 -0.688
MωT− -0.464 -0.463 -0.455 -0.440 -0.440 -0.432
MqF -0.944 -0.971 -0.857 -0.886 -0.910 -0.806

MqGT+ 4.364 4.611 4.237 3.826 4.042 3.705
MqGT− 1.671 1.682 1.440 1.431 1.440 1.223
MqT+ 2.065 2.062 2.022 1.956 1.951 1.919
MqT− 2.331 2.328 2.271 2.196 2.194 2.140

RGT 8.873 11.240 12.756 8.045 10.165 11.510
RT -2.783 -2.780 -2.646 -2.641 -2.638 -2.514
P -0.672 -0.682 -0.630 -0.635 -0.643 -0.598

Other NMEs needed for LRSM with QRPA calculations
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perspective

A model independent route for neutrinoless double beta decay

Cirigliano et al. JHEP12, 097(2018)
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Conclusion

Neutrinoless double beta decay is very good probe for new physics
beyond Standard Model

Calculations of NME is important for the determinations of new
physics parameters

NMEs from various nuclear many-body approaches don’t converge at
present

We need to understand the underlying mechanisms of this rare process
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END

Thank You
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