
Basics of Machine Learning and its Application in 
Neutrino Physics

Lecture 1: Basics of ML

Igor Ostrovskiy, IHEP

2nd JUNO Neutrino Summer School
Hangzhou, August 2025



08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 2

Introduction
● Two 1.5 hr lectures covering basic concepts in ML (specifically, neural networks, or NNs) and how they 

are / can be applied in neutrino physics

● Expected audience level: familiarity with (neutrino) physics and its main experiments; no specific 
experience with ML

● 1.5 hr is a lot! Split time between lecture slides and hands-on activities:

– Occasional quiz questions/polls during the lecture

– Guided tutorials at the end of today and tomorrow 

● 1.5 hr is not a whole lot!

– Only select topics covered and at an intro level. The goal is to introduce main concepts and provide 
simple hands-on exercise thus lowering the threshold of entry into the field. Highlight two algorithms that 
became (and will remain) workhorses of physics analysis
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Introduction
● Topics covered in lectures:

– Lecture 1. Basics of ML/NNs
● What is ML? Difference from usual data “fitting” 

– What is a neural network, specifically?

● Supervised vs. Unsupervised, Classification vs. Regression

● Supervised algorithms: Basic concepts

● Supervised algorithms: Workhorses you will use (CNN, MLP)

– Lecture 2. Applications in neutrino physics
● Case of EXO-200: Successful examples of MLP, CNN, GAN, and data-based training

● Examples of much larger detectors: NOvA, LAr TPC
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Introduction
● To answer the occasional quiz questions, will try 

to use the WeChat’s poll app

First question:

1) Does this quiz setup work?
● Yes
● No
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Introduction
● For the tutorials/activity, I will use Jupyter notebooks and realistic data from a 0ν 

and another experiment

– Password: cUaw (please don’t share further)

● Confirmed to work with:

– python 3.7.1, torch 1.13.1, cpu

– python 3.11.9, torch 2.5.1, gpu (cuda 12.5, Tesla T4)

– python 3.12.11, torch 2.7.1, gpu (cuda 12.5, A100)

● You don’t have to run the scripts, can just follow the tutorial on the screen

– Or feel free to join forces with others to be able to play with the scripts yourselves

https://mail.ihep.ac.cn/coremail/common/nfFile.jsp?share_link=8ED2C520F15A4256A4876F3A6C3AE4BD&uid=igor.ostrovskiy@ihep.ac.cn
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What is ML?
● Fundamentally, ML is

– A type of algorithm that 
enables solving data 
analysis problems 
without explicit 
programming 

– That is, an algorithm to 
learn how to solve, not 
an algorithm to solve

credit: XKCD
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What is ML?
● Technically*, ML is:

– A software algorithm that
● Takes a set of inputs (data)
● Applies a parameter-dependent transformation on the inputs to 

compute an output (forward propagation)
● Compares the output to a given expectation (loss)
● Changes the parameters to minimize the difference between 

output and expectation (backward propagation)

*at least the NNs that we will be mostly discussing today
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What is ML?
● Does not this sound just 

like the usual fitting?!
– It does, but the number of 

the inputs and parameters 
is so vast (often >106), 
that special methods and 
considerations need to be 
applied, making ML a 
separate subject in 
software/data analysis

credit: https://statustown.com
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fitting vs ML
● If you do a simple fit of a histogram with a 

function in ROOT, it invokes the MINUIT’s 
MIGRAD algorithm

● What it does behind the curtain is finds a 
minimum of some function (ᵡ2 or -logL) by 
following the path of steepest descent. 
Mathematically, this is done by computing 
the Gradient (~derivatives of the function wrt 
parameters) using all data points

credit: https://optimization.cbe.cornell.edu
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fitting vs ML
● However, if the dataset and number of parameters 

are very large, this becomes computationally 
prohibitive

● ML’s special method: Stochastic Gradient Descent 
(SGD) 

● SGD computes gradient only for a “batch”, a 
subset of data

– “Noisy” but tractable 

– Can “jump” out of shallow local minima by luck

credit: https://optimization.cbe.cornell.edu

L - loss function, ϵ - “learning rate”, θ - parameter 
set, X - subset of data (“batch”)
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fitting vs ML
● When fitting, models are 

often analytical, providing 
a clear physical meaning 
of the parameters and a 
clear explanation of how 
changing inputs would 
affect outputs

● With ML, the model is 
often a “black box”

Input                             Output



08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 12

What is a neural net, specifically?
● A function made up of several 

identical computational  elements 
(neurons)

● Each neuron:

1) Takes several input values and 
forms their weighted sum, with 
an overall offset (called bias) 
added

2) Computes the output by applying 
the activation function

credit: Stanford CS231n (cs231n.github.io)
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What is a neural net, specifically?
● Activation function originally 

inspired by biology

● A simple decision-making 
computation. The simplest - if 
input is above a threshold, 
neuron fires
– Mathematically, a common way 

to model realistic threshold 
behavior is with TanH or 
Sigmoid
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What is a neural net, specifically?
● By now, TanH and Sigmoid 

are less common than 
another, also simple, 
activation function: 
Rectified Linear Unit 
(ReLU)

● It offers fewer vanishing 
gradient problems and is 
computationally efficient
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What is a neural net, specifically?
● By itself, a neuron does not do 

much, but the magic happens 
when one combines (many) 
neurons into a network

● The Universal Approximation 
Theorem ~ a neural network with a 
single hidden layer can 
approximate any continuous 
function
– as with all mathematics, need to 

mind the fine-print if want a rigorous 
statement

credit: Wikipedia
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What is a neural net, specifically?
● Note also how this connection 

between the input layer (vector) to 
the hidden one is similar to a 
coordinate transformation, i.e., 
going from one set of basis vectors 
to another

● Where can this come in handy? 
● Perhaps, this could be used to find 

a basis in which the originally 
complex and nonlinear separation 
boundary between signal and 
background events becomes 
trivial?

credit: Javier Duarte
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What is a neural net, specifically?
● Why Deep Learning?

● The Universal Approximation Theorem does 
not say how many neurons this single neural 
layer must have to approximate a target 
function

● In practice, going “deep”, i.e., adding several 
layers with a reasonable number of neurons is 
computationally better than having one very 
wide layer

● A simple example of a deep network is a Multi 
Layer Perceptron (MLP). An architecture 
where neurons are fully connected (FC), i.e., 
each neuron in a layer “sees” all neurons in 
preceding layer
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Unsupervised vs. Supervised

Do you have labeled data? 

Supervised Unsupervised

YES                                          NO

● Labeled data - desired answer is known for each event

● Calibration datasets; Monte Carlo datasets with “truth” information
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Classification vs. Regression
Supervised

Classification Regression

Discrete                                         Continuous

● Discrete - event classes (signal, background)

● Continuous - event energy, position vector

Output is discrete or continuous?
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Clustering vs. Reduction

● Clustering - find good “distance” metric and group events based on 
“closeness”

● Dimensionality reduction - summarize data using small number salient 
features

Unsupervised

Clustering
Dim. 

reduction

Yes                                         No

Looking for patterns?
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Quiz
2) Fitting a straight line to a set of points 

is an example of which type of 
algorithm:

1) Supervised, regression

2) Supervised, classification

3) Unsupervised, clustering

4) Unsupervised, dim. reduction



08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 22

Quiz
3) Autoencoder is a neural network with 

the same input and output shapes. It 
tries to reproduce input data. What kind 
of algorithm is this?

1) Supervised, regression

2) Supervised, classification

3) Unsupervised, clustering

4) Unsupervised, dim. reduction
credit: https://cs.toronto.edu
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Supervised algos: Loss
● When the true answer is known for each event, constructing 

regression loss function is easy

● For regression, most common is to use Mean Squared Error 
(MSE)

– Penalizes large errors more than small errors (makes it 
sensitive to outliers)

– Related to L2 loss (same, just not averaged over samples)

● Less common is Mean Absolute Error (MAE), related to L1 
loss

– Less sensitive to outliers

– Non-differentiable at zero. Requires special optimization 
approaches

L1 = ∑∣ytrue ​− ypred​  ∣

L2 = ∑(ytrue ​− ypred)2
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Supervised algos: Loss
● For binary classification (S vs B), the last 

layer should have one neuron with a 
sigmoid activation function

– Corresponds to probability (σP ϵ[0,1]) 
that input (x) belongs to S

● The network is then trained (adjusts the 
weights, w) to minimize the neg-log-
likelihood of the data given the model. The 
corresponding loss function is often called 
“(binary) cross-entropy”

x (= wTx)

credit: blog.csdn.net
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Supervised algos: Loss
● For multi-class classification tasks, the normalized 

exponential function (“softmax”) is used as the 
activation function in the last layer of the network

– Corresponds to the probability (P ϵ[0,1]) that an input (x) 
belongs to a given class (y = j)

– Generalization of the sigmoid to multiple classes

– The number of softmax neurons in the last layer = 
number of classes

● The network is then trained (adjusts the weights, w) to 
minimize the neg-log-likelihood of the data given the 
model. The corresponding loss function is often called 
“cross-entropy”

credit: blog.csdn.net
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Supervised algos: Regularization
● NNs can have millions of 

parameters
● This can lead to the NN achieving 

small loss on the given data, but 
large loss on unseen data of the 
same type

● This is a well-known problem for 
functions that have too many 
parameters wrt data: they overfit 
the given points, failing to 
generalize to the unseen ones
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Supervised algos: Regularization
● Check for the presence of the 

problem
– Always monitor the loss as the 

training progresses and split the 
data into the training and 
validation sets; the latter not used 
in backprop, only to compare the 
losses

● Several ways to keep it under 
control:
– More data
– Early stopping
– Regularization 
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Supervised algos: Regularization
● Common regularization methods:

– Add extra term to the loss to penalize large absolute 
(L1) or squared (L2) sum of the weights

L = C + λ · R, 

where R is the sum of squared/absolute weights and 
λ is tweak parameter. L2 is more common (in 
PyTorch implemented as a part of Adam optimizer as 
weight decay)

– Use Dropout 

Randomly “kills” a certain fraction of neurons during 
training
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Supervised algos: Training
● Tips for successful training:

– Consider data preprocessing

● Zero-centering is common, may help with faster learning

● Outlier removal (if physically motivated)

– Initialize the weights properly

● Xavier Glorot for TanH

● He Kaiming for ReLU and Leaky ReLU (+small initial bias)

● Including batch-normalization layers before nonlinearity may help 
reduce poor init. choice

– Babysit the training

● Try different learning rates for small number of epochs to choose an 
optimal (ideally, train in steps - start with higher rate, then decrease)

● Likewise, start from small, if any, regularization credit: Stanford CS231n (cs231n.github.io)
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Supervised algos: Evaluation
● For regression networks, the loss itself 

(minus any reg. terms) is often what 
you were after, as reconstruction 
accuracy in physics is commonly 
measured with MSE and related 
metrics

● For classification, there are two main 
tools to be aware of: confusion 
matrix and ROC curve

2018 JINST 13 P08023
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Supervised algos: Evaluation
● Confusion matrix conveniently 

summarizes all main aspects of a 
classifier:

– Correct classification rates (True Positive 
and True Negative) on the diagonal

– Type-1 errors (what physicists call 
background contamination) and Type-2 
errors (efficiency losses) off-diagonal

● Can be used to compute related metrics 
important in physics:

– Signal efficiency (aka Recall, aka 
Sensitivity)

– Background rejection (aka Specificity)

Predicted S Predicted B

Actual S TP FP

Actual B FN TN

Signal Efficiency = TP/(TP+FN) 

Background Rejection = TN/(TN+FP)

Accuracy = (TP+TN)/(TP+TN+FP+FN) 

Precision = TP/(TP+FP)

F-1 score =  2 * (Precision*Recall)/(Precision+Recall) 
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Supervised algos: Evaluation
● The rates depend on the threshold

– 0.5 is used by default

● You may prefer a different value
– E.g., if not limited by statistics, may 

prefer cleaner sample (less Type-1) at 
the cost of some efficiency loss (more 
Type-2)

● Receiver Operating Characteristic (ROC) 
curve visualizes this nicely

● Area Under the Curve (AUC) is often used 
for comparing different models, but some 
consider this to be oversimplification

credit: nomidl.com
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Quiz
4) What are some of the valid ways to 

control overfitting?
1) Add L2 regularization term to the loss 

function

2) Randomly drop a fraction of neurons from 
the network each training step

3) Significantly increase amount of training 
data

4) Stop training when the validation loss 
starts diverging from the training loss

5) All of the above

credit: Stanford CS231n (cs231n.github.io)



08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 34

Convolutional Neural Nets
● MLP are and will remain useful for neutrino/particle physics

– Can extract high-level features almost directly from raw data, w/o “traditional” 
reconstruction steps

– Will see an example of this in today’s tutorial

● Another workhorse added recently to our toolbox - CNNs 

– Designed for images, and our data are often similar

● Main trick of a CNN, compared to MLP - locality. Don’t couple the whole 
input vector to the layer of neurons at once. Instead, have a small-ish set of 
neurons (filters, aka kernels) connect to a small-ish local region (receptive 
field, F) at a time and “scan” over the input step by step

– Scales much better with input size!

● They are also touted as translation-invariant

– Only they really are not by default (arXiv:2110.05861)

credit: http://deeplearning.stanford.edu
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Convolutional Neural Nets
● Depth (D): number of filters we 

would like to use, each learning to 
look for something different in the 
input

● Stride (S): Filter sliding step. If 1 
(common) then filters move one 
“pixel” at a time

● Zero-padding (P): Adding zeros to 
the input image around the borders. 
Commonly used to ensure input and 
output sizes are the same

1D example

Input (W=5, P=1):

Filter (F=3):
D=1

Result (S=1)
OV=5

Result (S=2)
OV=3

Output volume: (W−F+2P)/S+1  (xD) credit: Stanford CS231n (cs231n.github.io)
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Convolutional Neural Nets
● In this example, the 

convolutional layer (CL) is 
represented by one neuron and 
contributes only nine weights 
and a bias (shared for the whole 
image), so a total of 10 
parameters

2D example

W = 5, H = 5 (5x5x1)
Filter: F = 3
S = 1, P = 0
OV = 3x3x1 (D=1, one filter)

Output volume (WxHxD): 

(W−F+2P)/S+1 x (H−F+2P)/S+1 x D
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Convolutional Neural Nets
● Input: 5x5x3, P=1
● Two filters with F=3, S=2
● OV = 3 x 3 x 2
● 2 neurons,  56 parameters

– 27 weights and 1 bias per kernel

“3D” example (2D with 3 colors)

Output volume (WxHxD): 

(W−F+2P)/S+1 x (H−F+2P)/S+1 x D
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Convolutional Neural Nets
● After a CL, a nonlinearity is applied as usual

● In a deep NN, several CLs are used, with different 
number of filters and F 

● To further reduce number of parameters and 
control overfitting, a pooling layer (PL) is 
commonly applied between CLs

– 4x2 max PL here reduces 1024x76 data frame to 
256x38, taking maximum value in each 4x2 element 
of the original frame

– PL does reduce level of detail in the data, so don’t 
overdo it. https://arxiv.org/abs/1412.6806

● In the end, the usual FC layers are used to reduce 
output to the desired outcome
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Other designs
● In the past few years, several extensions potentially more 

applicable to specific types of inputs

– Spherical CNN (JUNO’s detectors are on a sphere, not 
planar)

– Hexagonal CNN (Some Cerenkov cosmic ray/nu 
detectors)

– Sparse CNN (Some long-baseline nu detectors often 
have just a few % of non-zero pixels)

● “But as a universal function approximator with 1M+ 
parameters, can’t a vanilla CNN simply learn by itself how 
to map a plane to a sphere? Why an extra complication 
with new designs?”

– It can, but - like with MLP cf. CNN - will be less efficient 
(more parameters, longer/finicky training) than a design 
that naturally includes the relevant geometric prior

– Still, it’s up to you to evaluate critically whether some 
new design has a clear-enough advantage for your 
specific goal before investing time in it 
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Other designs
● Relational Inductive Bias - a set of built-in assumptions on how entities interact or relate to one another

● Guides learning by constraining the space of possible functions to those that respect the underlying relational structure of the data

● Choose design with an appropriate rel. inductive bias
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Now, let’s start Tutorial
● Jupyter notebook and some waveform data 
● Password: cUaw (please don’t share further)

https://mail.ihep.ac.cn/coremail/common/nfFile.jsp?share_link=8ED2C520F15A4256A4876F3A6C3AE4BD&uid=igor.ostrovskiy%40ihep.ac.cn
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