
Basics of Machine Learning and its Application in
Neutrino Physics

Lecture 1: Basics of ML

Igor Ostrovskiy, IHEP

2nd JUNO Neutrino Summer School
Hangzhou, August 2025

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 2

Introduction
● Two 1.5 hr lectures covering basic concepts in ML (specifically, neural networks, or NNs) and how they

are / can be applied in neutrino physics

● Expected audience level: familiarity with (neutrino) physics and its main experiments; no specific
experience with ML

● 1.5 hr is a lot! Split time between lecture slides and hands-on activities:

– Occasional quiz questions/polls during the lecture

– Guided tutorials at the end of today and tomorrow

● 1.5 hr is not a whole lot!

– Only select topics covered and at an intro level. The goal is to introduce main concepts and provide
simple hands-on exercise thus lowering the threshold of entry into the field. Highlight two algorithms that
became (and will remain) workhorses of physics analysis

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 3

Introduction
● Topics covered in lectures:

– Lecture 1. Basics of ML/NNs
● What is ML? Difference from usual data “fitting”

– What is a neural network, specifically?

● Supervised vs. Unsupervised, Classification vs. Regression

● Supervised algorithms: Basic concepts

● Supervised algorithms: Workhorses you will use (CNN, MLP)

– Lecture 2. Applications in neutrino physics
● Case of EXO-200: Successful examples of MLP, CNN, GAN, and data-based training

● Examples of much larger detectors: NOvA, LAr TPC

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 4

Introduction
● To answer the occasional quiz questions, will try

to use the WeChat’s poll app

First question:

1) Does this quiz setup work?
● Yes
● No

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 5

Introduction
● For the tutorials/activity, I will use Jupyter notebooks and realistic data from a 0ν

and another experiment

– Password: cUaw (please don’t share further)

● Confirmed to work with:

– python 3.7.1, torch 1.13.1, cpu

– python 3.11.9, torch 2.5.1, gpu (cuda 12.5, Tesla T4)

– python 3.12.11, torch 2.7.1, gpu (cuda 12.5, A100)

● You don’t have to run the scripts, can just follow the tutorial on the screen

– Or feel free to join forces with others to be able to play with the scripts yourselves

https://mail.ihep.ac.cn/coremail/common/nfFile.jsp?share_link=8ED2C520F15A4256A4876F3A6C3AE4BD&uid=igor.ostrovskiy@ihep.ac.cn

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 6

What is ML?
● Fundamentally, ML is

– A type of algorithm that
enables solving data
analysis problems
without explicit
programming

– That is, an algorithm to
learn how to solve, not
an algorithm to solve

credit: XKCD

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 7

What is ML?
● Technically*, ML is:

– A software algorithm that
● Takes a set of inputs (data)
● Applies a parameter-dependent transformation on the inputs to

compute an output (forward propagation)
● Compares the output to a given expectation (loss)
● Changes the parameters to minimize the difference between

output and expectation (backward propagation)

*at least the NNs that we will be mostly discussing today

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 8

What is ML?
● Does not this sound just

like the usual fitting?!
– It does, but the number of

the inputs and parameters
is so vast (often >106),
that special methods and
considerations need to be
applied, making ML a
separate subject in
software/data analysis

credit: https://statustown.com

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 9

fitting vs ML
● If you do a simple fit of a histogram with a

function in ROOT, it invokes the MINUIT’s
MIGRAD algorithm

● What it does behind the curtain is finds a
minimum of some function (ᵡ2 or -logL) by
following the path of steepest descent.
Mathematically, this is done by computing
the Gradient (~derivatives of the function wrt
parameters) using all data points

credit: https://optimization.cbe.cornell.edu

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 10

fitting vs ML
● However, if the dataset and number of parameters

are very large, this becomes computationally
prohibitive

● ML’s special method: Stochastic Gradient Descent
(SGD)

● SGD computes gradient only for a “batch”, a
subset of data

– “Noisy” but tractable

– Can “jump” out of shallow local minima by luck

credit: https://optimization.cbe.cornell.edu

L - loss function, ϵ - “learning rate”, θ - parameter
set, X - subset of data (“batch”)

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 11

fitting vs ML
● When fitting, models are

often analytical, providing
a clear physical meaning
of the parameters and a
clear explanation of how
changing inputs would
affect outputs

● With ML, the model is
often a “black box”

Input Output

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 12

What is a neural net, specifically?
● A function made up of several

identical computational elements
(neurons)

● Each neuron:

1) Takes several input values and
forms their weighted sum, with
an overall offset (called bias)
added

2) Computes the output by applying
the activation function

credit: Stanford CS231n (cs231n.github.io)

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 13

What is a neural net, specifically?
● Activation function originally

inspired by biology

● A simple decision-making
computation. The simplest - if
input is above a threshold,
neuron fires
– Mathematically, a common way

to model realistic threshold
behavior is with TanH or
Sigmoid

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 14

What is a neural net, specifically?
● By now, TanH and Sigmoid

are less common than
another, also simple,
activation function:
Rectified Linear Unit
(ReLU)

● It offers fewer vanishing
gradient problems and is
computationally efficient

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 15

What is a neural net, specifically?
● By itself, a neuron does not do

much, but the magic happens
when one combines (many)
neurons into a network

● The Universal Approximation
Theorem ~ a neural network with a
single hidden layer can
approximate any continuous
function
– as with all mathematics, need to

mind the fine-print if want a rigorous
statement

credit: Wikipedia

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 16

What is a neural net, specifically?
● Note also how this connection

between the input layer (vector) to
the hidden one is similar to a
coordinate transformation, i.e.,
going from one set of basis vectors
to another

● Where can this come in handy?
● Perhaps, this could be used to find

a basis in which the originally
complex and nonlinear separation
boundary between signal and
background events becomes
trivial?

credit: Javier Duarte

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 17

What is a neural net, specifically?
● Why Deep Learning?

● The Universal Approximation Theorem does
not say how many neurons this single neural
layer must have to approximate a target
function

● In practice, going “deep”, i.e., adding several
layers with a reasonable number of neurons is
computationally better than having one very
wide layer

● A simple example of a deep network is a Multi
Layer Perceptron (MLP). An architecture
where neurons are fully connected (FC), i.e.,
each neuron in a layer “sees” all neurons in
preceding layer

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 18

Unsupervised vs. Supervised

Do you have labeled data?

Supervised Unsupervised

YES NO

● Labeled data - desired answer is known for each event

● Calibration datasets; Monte Carlo datasets with “truth” information

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 19

Classification vs. Regression
Supervised

Classification Regression

Discrete Continuous

● Discrete - event classes (signal, background)

● Continuous - event energy, position vector

Output is discrete or continuous?

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 20

Clustering vs. Reduction

● Clustering - find good “distance” metric and group events based on
“closeness”

● Dimensionality reduction - summarize data using small number salient
features

Unsupervised

Clustering
Dim.

reduction

Yes No

Looking for patterns?

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 21

Quiz
2) Fitting a straight line to a set of points

is an example of which type of
algorithm:

1) Supervised, regression

2) Supervised, classification

3) Unsupervised, clustering

4) Unsupervised, dim. reduction

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 22

Quiz
3) Autoencoder is a neural network with

the same input and output shapes. It
tries to reproduce input data. What kind
of algorithm is this?

1) Supervised, regression

2) Supervised, classification

3) Unsupervised, clustering

4) Unsupervised, dim. reduction
credit: https://cs.toronto.edu

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 23

Supervised algos: Loss
● When the true answer is known for each event, constructing

regression loss function is easy

● For regression, most common is to use Mean Squared Error
(MSE)

– Penalizes large errors more than small errors (makes it
sensitive to outliers)

– Related to L2 loss (same, just not averaged over samples)

● Less common is Mean Absolute Error (MAE), related to L1
loss

– Less sensitive to outliers

– Non-differentiable at zero. Requires special optimization
approaches

L1 = ∑∣ytrue ​− ypred​ ∣

L2 = ∑(ytrue ​− ypred)2

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 24

Supervised algos: Loss
● For binary classification (S vs B), the last

layer should have one neuron with a
sigmoid activation function

– Corresponds to probability (σP ϵ[0,1])
that input (x) belongs to S

● The network is then trained (adjusts the
weights, w) to minimize the neg-log-
likelihood of the data given the model. The
corresponding loss function is often called
“(binary) cross-entropy”

x (= wTx)

credit: blog.csdn.net

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 25

Supervised algos: Loss
● For multi-class classification tasks, the normalized

exponential function (“softmax”) is used as the
activation function in the last layer of the network

– Corresponds to the probability (P ϵ[0,1]) that an input (x)
belongs to a given class (y = j)

– Generalization of the sigmoid to multiple classes

– The number of softmax neurons in the last layer =
number of classes

● The network is then trained (adjusts the weights, w) to
minimize the neg-log-likelihood of the data given the
model. The corresponding loss function is often called
“cross-entropy”

credit: blog.csdn.net

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 26

Supervised algos: Regularization
● NNs can have millions of

parameters
● This can lead to the NN achieving

small loss on the given data, but
large loss on unseen data of the
same type

● This is a well-known problem for
functions that have too many
parameters wrt data: they overfit
the given points, failing to
generalize to the unseen ones

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 27

Supervised algos: Regularization
● Check for the presence of the

problem
– Always monitor the loss as the

training progresses and split the
data into the training and
validation sets; the latter not used
in backprop, only to compare the
losses

● Several ways to keep it under
control:
– More data
– Early stopping
– Regularization

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 28

Supervised algos: Regularization
● Common regularization methods:

– Add extra term to the loss to penalize large absolute
(L1) or squared (L2) sum of the weights

L = C + λ · R,

where R is the sum of squared/absolute weights and
λ is tweak parameter. L2 is more common (in
PyTorch implemented as a part of Adam optimizer as
weight decay)

– Use Dropout

Randomly “kills” a certain fraction of neurons during
training

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 29

Supervised algos: Training
● Tips for successful training:

– Consider data preprocessing

● Zero-centering is common, may help with faster learning

● Outlier removal (if physically motivated)

– Initialize the weights properly

● Xavier Glorot for TanH

● He Kaiming for ReLU and Leaky ReLU (+small initial bias)

● Including batch-normalization layers before nonlinearity may help
reduce poor init. choice

– Babysit the training

● Try different learning rates for small number of epochs to choose an
optimal (ideally, train in steps - start with higher rate, then decrease)

● Likewise, start from small, if any, regularization credit: Stanford CS231n (cs231n.github.io)

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 30

Supervised algos: Evaluation
● For regression networks, the loss itself

(minus any reg. terms) is often what
you were after, as reconstruction
accuracy in physics is commonly
measured with MSE and related
metrics

● For classification, there are two main
tools to be aware of: confusion
matrix and ROC curve

2018 JINST 13 P08023

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 31

Supervised algos: Evaluation
● Confusion matrix conveniently

summarizes all main aspects of a
classifier:

– Correct classification rates (True Positive
and True Negative) on the diagonal

– Type-1 errors (what physicists call
background contamination) and Type-2
errors (efficiency losses) off-diagonal

● Can be used to compute related metrics
important in physics:

– Signal efficiency (aka Recall, aka
Sensitivity)

– Background rejection (aka Specificity)

Predicted S Predicted B

Actual S TP FP

Actual B FN TN

Signal Efficiency = TP/(TP+FN)

Background Rejection = TN/(TN+FP)

Accuracy = (TP+TN)/(TP+TN+FP+FN)

Precision = TP/(TP+FP)

F-1 score = 2 * (Precision*Recall)/(Precision+Recall)

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 32

Supervised algos: Evaluation
● The rates depend on the threshold

– 0.5 is used by default

● You may prefer a different value
– E.g., if not limited by statistics, may

prefer cleaner sample (less Type-1) at
the cost of some efficiency loss (more
Type-2)

● Receiver Operating Characteristic (ROC)
curve visualizes this nicely

● Area Under the Curve (AUC) is often used
for comparing different models, but some
consider this to be oversimplification

credit: nomidl.com

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 33

Quiz
4) What are some of the valid ways to

control overfitting?
1) Add L2 regularization term to the loss

function

2) Randomly drop a fraction of neurons from
the network each training step

3) Significantly increase amount of training
data

4) Stop training when the validation loss
starts diverging from the training loss

5) All of the above

credit: Stanford CS231n (cs231n.github.io)

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 34

Convolutional Neural Nets
● MLP are and will remain useful for neutrino/particle physics

– Can extract high-level features almost directly from raw data, w/o “traditional”
reconstruction steps

– Will see an example of this in today’s tutorial

● Another workhorse added recently to our toolbox - CNNs

– Designed for images, and our data are often similar

● Main trick of a CNN, compared to MLP - locality. Don’t couple the whole
input vector to the layer of neurons at once. Instead, have a small-ish set of
neurons (filters, aka kernels) connect to a small-ish local region (receptive
field, F) at a time and “scan” over the input step by step

– Scales much better with input size!

● They are also touted as translation-invariant

– Only they really are not by default (arXiv:2110.05861)

credit: http://deeplearning.stanford.edu

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 35

Convolutional Neural Nets
● Depth (D): number of filters we

would like to use, each learning to
look for something different in the
input

● Stride (S): Filter sliding step. If 1
(common) then filters move one
“pixel” at a time

● Zero-padding (P): Adding zeros to
the input image around the borders.
Commonly used to ensure input and
output sizes are the same

1D example

Input (W=5, P=1):

Filter (F=3):
D=1

Result (S=1)
OV=5

Result (S=2)
OV=3

Output volume: (W−F+2P)/S+1 (xD) credit: Stanford CS231n (cs231n.github.io)

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 36

Convolutional Neural Nets
● In this example, the

convolutional layer (CL) is
represented by one neuron and
contributes only nine weights
and a bias (shared for the whole
image), so a total of 10
parameters

2D example

W = 5, H = 5 (5x5x1)
Filter: F = 3
S = 1, P = 0
OV = 3x3x1 (D=1, one filter)

Output volume (WxHxD):

(W−F+2P)/S+1 x (H−F+2P)/S+1 x D

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 37

Convolutional Neural Nets
● Input: 5x5x3, P=1
● Two filters with F=3, S=2
● OV = 3 x 3 x 2
● 2 neurons, 56 parameters

– 27 weights and 1 bias per kernel

“3D” example (2D with 3 colors)

Output volume (WxHxD):

(W−F+2P)/S+1 x (H−F+2P)/S+1 x D

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 38

Convolutional Neural Nets
● After a CL, a nonlinearity is applied as usual

● In a deep NN, several CLs are used, with different
number of filters and F

● To further reduce number of parameters and
control overfitting, a pooling layer (PL) is
commonly applied between CLs

– 4x2 max PL here reduces 1024x76 data frame to
256x38, taking maximum value in each 4x2 element
of the original frame

– PL does reduce level of detail in the data, so don’t
overdo it. https://arxiv.org/abs/1412.6806

● In the end, the usual FC layers are used to reduce
output to the desired outcome

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 39

Other designs
● In the past few years, several extensions potentially more

applicable to specific types of inputs

– Spherical CNN (JUNO’s detectors are on a sphere, not
planar)

– Hexagonal CNN (Some Cerenkov cosmic ray/nu
detectors)

– Sparse CNN (Some long-baseline nu detectors often
have just a few % of non-zero pixels)

● “But as a universal function approximator with 1M+
parameters, can’t a vanilla CNN simply learn by itself how
to map a plane to a sphere? Why an extra complication
with new designs?”

– It can, but - like with MLP cf. CNN - will be less efficient
(more parameters, longer/finicky training) than a design
that naturally includes the relevant geometric prior

– Still, it’s up to you to evaluate critically whether some
new design has a clear-enough advantage for your
specific goal before investing time in it

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 40

Other designs
● Relational Inductive Bias - a set of built-in assumptions on how entities interact or relate to one another

● Guides learning by constraining the space of possible functions to those that respect the underlying relational structure of the data

● Choose design with an appropriate rel. inductive bias

08/2025, JUNO SmmrSchl ML Lecture 1, I. Ostrovskiy 42

Now, let’s start Tutorial
● Jupyter notebook and some waveform data
● Password: cUaw (please don’t share further)

https://mail.ihep.ac.cn/coremail/common/nfFile.jsp?share_link=8ED2C520F15A4256A4876F3A6C3AE4BD&uid=igor.ostrovskiy%40ihep.ac.cn

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 42

