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Introduction
● Topics covered in lectures:

– Lecture 2. Applications in neutrino physics
● Case of EXO-200: Successful examples of MLP, CNN, 

GAN, and data-based training
● Examples of much larger detectors: NOvA, SBND
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Introduction
● For the tutorials/activity, I will use Jupyter notebooks and realistic data from a 0ν 

and another experiment

– Password: cUaw (please don’t share further)

● Confirmed to work with:

– python 3.7.1, torch 1.13.1, cpu

– python 3.11.9, torch 2.5.1, gpu (cuda 12.5, Tesla T4)

– python 3.12.11, torch 2.7.1, gpu (cuda 12.5, A100)

● You don’t have to run the scripts, can just follow the tutorial on the screen

– Or feel free to join forces with others to be able to play with the scripts yourselves

https://mail.ihep.ac.cn/coremail/common/nfFile.jsp?share_link=8ED2C520F15A4256A4876F3A6C3AE4BD&uid=igor.ostrovskiy@ihep.ac.cn
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EXO-200
• Time projection chamber (TPC). Each 

side detects both charge and light

• 38x2 U-wire channels for charge 
collection

• 800 e- noise per wire on average

• 38x2 V-wire channels for charge 
induction

• Crossed at 60o with U-wires

• 74x2 APD channels for light
• Each channel is a chain of 7 LAAPDs
• Cathode is mostly transparent (mesh)
• Cylindrical Teflon reflector
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EXO-200 data
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EXO analysis in broad strokes: reconstruction

• Multiple algorithmic steps

• Done by different people over the course of several years        “grey” boxes

• Imperfections in each step can add systematics

Data

MC Fit to WF template

Signal extraction
(time, amplitude, rise time …)

Clustering

Calibration Energy

Position
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EXO analysis in broad strokes: point/interval estimation

• Two classes of events, single-site (SS) and multi-site (MS)

• MC based PDFs, binned extended NLL with systematics constraints

• Profile likelihood for interval construction

• Systematics due to recon and MC errors. Measured or estimated using calibration data

SS Data set
MS Data set

SS MC set
MS MC set

SS PDF = f(xi,pi)
MS PDF = f(xi,pi)

External studies Constraint = f(pi)

SS Hist = f(xi)
MS Hist = f(xi)

NLL

GOF

Minuit Best fit values

Interval/Limits
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Deep Neural Networks in EXO

• Can circumvent intermediate steps and extract high level 
information directly from raw waveforms? 

• YES

• Can validate results on real detector data, not just MC?
• YES

• Even then, if using MC truth during training, would be limited by 
how well MC models data (as some standard analysis steps are). 
Can reduce reliance on traditional MC?

• YES (Sometimes)

JINST 13 P08023 (2018), Phys. Rev. Lett. 123 161802 (2019), JINST 18 P06005 (2023)
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First application: charge energy reconstruction

• The main challenges of charge reconstruction are nontrivial noise 
and disentangling U-wire signal into induction and collection

– Somewhat covered by the yesterday’s tutorial 
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First application: charge energy reconstruction
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First application: charge energy reconstruction

• Now full events – all 76 U-wire waveforms (1024 time samples)

• Minimal Preprocessing: correct channel gains + crop waveforms
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First application: charge energy reconstruction

• Input waveform image

• Convolutional part extracts features from image

• Dense part extracts target variable(s) from features
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Charge reconstruction training details

• Training data:
• Simulated events
• Gamma ray source
• Detector response uniform in energy

• Training:
• 720 000 training events
• 100 epochs

• Technical details:
• Adam optimizer
• Minimize mean square error
• L2 regularization
• ReLU activation
• Uniform Glorot initialization
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First application: charge energy reconstruction

• Reconstruction works on MC over the 
energy range under study

• Resolution (σ) at the 208Tl full absorption 
peak (2615 keV): 

• DNN: 1.21% (SS: 0.73%)
• EXO Recon: 1.35% (SS: 0.93%)

• Network outperforms in disentangling 
mixed induction and collection signals

• See valley before 208Tl peak, right in 0ν ROI!
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First application: charge energy reconstruction

• Applied to data and anti-corrleated 
with scintillation, the DNN based 
„rotated“ resolution outperforms EXO 
by 2-6%, depending on the week

• The better performance of the DNN 
alerted that something was lacking in 
the traditional approach and triggered 
improvements in EXO-recon 

• While the cause is now largely 
understood (handling of mixed 
induction and collection signals), the 
developed traditional solution in EXO-
recon is still outperformed by the 
DNN
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First application: Pitfalls of DNNs 

• Potential danger of DNN is that they learn to 
reproduce the training data well but perform 
poorly on real data. 

• Validation on real data is critical

• We saw this in EXO-200:
• DNN over-trains on sharp MC training peaks 

and shuffles independent validation events 
towards the sharp peaks  resolution too good 
to be true

• Mitigated by using training events with uniform 
energy distribution
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Event position is encoded
in APD pattern The time dimension adds

information on waveform
shape and noise

x = 132.7mm
y = -7.0mm
z = -118.5mm

Truth information
extracted from ionization
signal

• Event position reconstruction from scintillation light
• Truth label provided by ionization information of real data
• Input are all 74 raw APD real data waveforms cropped to 350 µs

Second application: light position reconstruction
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• Waveform image is fed to CNN consisting of 4 convolutional and 3 fully connected layers
• Output has three units corresponding to event x-, y-, z-coordinates
• Loss function is Euclidean loss with L2 regularization

Light reconstruction details

• Training is done on real calibration data 

with uniform distribution in space and 

energy
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• Loss function reaches 200 mm2 after training the DNN for 200 epochs
• The corresponding resolution in 3D is 25 mm
• The model is tested on different types of source data at different locations
• No alternative light position reconstruction in standard analysis, so uncontested

Second application: light position reconstruction

Accuracy: 22.5mm (dx = 13.6mm, dy = 11.3mm, dz = 8.1mm) corresponding to R2 = 0.99
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• Loss function reaches 200 mm2 after training the DNN for 200 epochs
• The corresponding resolution in 3D is 25 mm
• The model is tested on different types of source data at different locations
• No alternative light position reconstruction in standard analysis, so uncontested

Second application: light position reconstruction
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Third application: Signal/Background Discrimination

• Binary (ββ vs ) DNN based 
discriminator as an additional 
variable to the “traditional” ML fit 

• DNN trained on waveforms re-
generated from EXO recon’d 
signals (not on raw waveforms)

• Shared weights on the two TPC-
halves  branches

• Training events with uniform energy 
distribution, 50/50 
signal/background 
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Third application: Signal/Background Discrimination

• DNN outperforms previously 
used BDT discriminator

• Overall, a 25% sensitivity 
improvement, compared to 
non-ML based analysis

• Phys. Rev. Lett. 123, 2019, 161802

• Kudos to grad. students who made 
this happen (Tobias Ziegler&Mike 
Jewel most of all)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.161802
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.161802
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.161802
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Third application: Signal/Background Discrimination

• ββ events are more localized than 
• DNN efficiency demonstrates 

correlation with the true event size 
in the MC

• Indicates that the DNN picks up 
correct features of the waveform 
when reconstructing events

• Data/MC agreement of the “DNN 
variable” validated with real 
calibration data 

• Agreement not perfect, but 
comparable to other “shape” errors. 
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More recent: MC with GANs

• EXO-200’s earlier attempts to develop a detailed photon-tracking MC did not 
succeed

• Poor agreement with data, possibly due to imperfect knowledge of optical properties or 
shortcuts in geometry implementation

• It was also very resource-consuming to track photons
• A simple parametric simulation of the overall light yield per one array of APDs was 

used instead, only for limited purposes 

• We showed that one can train a GAN network directly with waveforms from 
calibration data, bypassing the needs for detailed knowledge of optical 
properties and detector geometry

• Importantly, we compared the output at all levels – from raw waveforms to signal 
amplitude and its position dependency, to reconstructed energy spectra

• JINST 18 P06005 (2023). Led by UCSD grad. student Shaolei Li
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More recent: MC with GANs

• Generator starts from white noise and 
label with requested position, energy

• Critic (discriminator) compares the 
generated waveform to data sample

• Wasserstein (Васерштейн) distance, 
aka Kantorovich distance, as a metric 
for comparison (more stable than 
standard GAN, outputs a continuous 
variable, instead of classification 
real/fake)

• Constrainer: supervises training and 
ensures the generated waveform 
conforms to the requested label
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More recent: MC with GANs

• Wasserstein (Васерштейн) distance, aka Kantorovich 
distance, aka Earth’s Mover Distance as a metric for 
comparison  (loss)

– The “distance” the generator must “move” the fake 
data to match the real one

• In practice, this is realized by two ingredients:

– Output neuron of the discriminator is linear (not 
sigmoid)

– The output is made into a ~1-Lipschitz function by 
constraining the norm of the critic’s gradient (wrt 
interpolated input) to 1

– When trained under these conditions, the 
difference between (averaged over batch) the 
descriminator’s outputs for fake and real images is 
a direct estimate of the Mover’s distance between 
them

generated                       real     interpolated
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More recent: 
MC with GANs

• Raw waveform 
comparison

• GAN generates 
waveforms more than 
an order of magnitude 
faster than the standard 
EXO approach

• that does not even 
include photon tracking
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More recent: MC with GANs

• Summed amplitude per 
APD gang

• GAN reproduces the dead 
channels
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More recent: MC with GANs

• Position dependence of light response reproduced
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More recent: MC with GANs

• Anti-correlation between charge and light signals reproduced 

• Optimal angle is slightly different 

• Light-only energy spectrum looks good but does not reproduce the resolution exactly

• Consistent with the extra uncertainty added by imperfect truth labels. Experiments that could train on calibration 
data with more precise labels can do better
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NOvA

• Long-baseline neutrino oscillation 
experiment at Fermilab’s NuMI beam

• Two functionally identical detectors 809 km 
apart

– Plastic extrusions filled with a liquid 
scintillator

– Light routed by WLS fibers to APDs

• Far detector consists of 896 alternating 
horizontal and vertical planes

– Each plane contains 384 4 cm x 6 cm 
x 155 cm cells for a total of 344,064 
cells
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NOvA

• Reconstruction of the ν energy and flavor 
state at the detector is essential to oscillation 
measurements

• The flavor state can be determined in 
charged-current (CC) interactions which 
leave a charged lepton in the final state

• Neutral-current (NC) interactions bear no 
signature of the flavor of the interacting 
neutrino and are thus a background for the 
charged-current analyses
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NOvA: First result, CVN

• A convolutional neural network to classify events into:

– νμ CC (long, low dE/dx track)

– νe CC (wide shower, rather than a track)

– ντ CC (varying τ decay final states)

– ν NC (flavor impossible to identify)

• Directly from pixel maps

– 100 (planes) x 80 (cells) image

– Two views (x-z and y-z) for each event

– Pixel intensity = calibrated energy
● 8-bit representation used for an 8-fold 

savings over floating point, w/o 
substantial reduction in performance

2016 JINST 11 P09001
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NOvA: First result, CVN

• Two-path CNNs, with each branch based on GoogLeNet

– “Inception modules” distribute input from preceding layers into 
branches with filters of different scales

– “Local response normalization”  normalizes the response of a 
given cell in a kernel map relative to the activity of adjacent 
kernel maps. This helps the network avoid local minima and to 
converge to a more optimal set of weights

• Training details:

– ~105 training events per class

– 32 events per batch

– Regularization by L2, dropout, and data increase by 
augmentation
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NOvA: First result, CVN

● Modest improvement (58% vs 57%) for recon efficiency of νμ CC interactions, cf. traditional approach
● Bigger gain (49% vs 35%) for νe. Significant as νe-appearance measurements (θ13, mass hierarchy) are 

stat-limited in NOvA
● Similar sensitivity to the systematic uncertainty of the inputs
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NOvA: Second result, ProngCVN

● Extension of the initial 
approach to classify 
individual particles (cf., 
events) using both views of 
the particle and both views of 
the entire event

● This gives the network 
contextual information 
about individual particles

Physical Review D 100, 073005 (2019)
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NOvA: Second result, ProngCVN

● Improvements for 
all particle types 
compared to 
particle-only 
network

● In particular, 10% 
improvement in 
efficiency of 
selecting s and 
s
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NOvA: More recent, Joint particle/event classification

● NOvA events leave >99% of pixels empty
– SparseCNN concept applies convolution only in 

regions where data exist, saving on resources

– Replaces traditional convolution and pooling 
with Minkowski sparse convolution

● Number of prongs varies between events, 
requiring to classify variable-length sets

– Transformer architecture, commonly used for  
language processing, is well-suited for this

– Transformer is attention-based, focusing on 
regions with high importance, further reducing 
computation burden; Provides means to study 
interpretability

arXiv:2303.06201v1

https://arxiv.org/abs/1904.08755
https://dl.acm.org/doi/10.5555/3295222.3295349
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NOvA: More recent, Joint particle/event classification

● Comparable to the earlier CVN 
for event reconstruction

● Few percent improvement in 
particle reconstruction

● Personal note: this is not 
particularly impressive. Could 
probably be achieved with old 
architecture and much larger 
training dataset size,   
hyperparameter optimization 
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SBND: Cosmogenic background removal

● SBND is a large LAr TPC searching for 
sterile νs

● Anode Plane Assemblies per for charge 
readout each half-TPC

– 3 wire planes per assembly

– ~11k wire channels total

● Scintillation light readout and veto used to 
remove backgrounds, but not sufficient for 
cosmic ray contamination (shallow location)

– Pattern recognition applied to TPC data  
needed to discern cosmic- from ν-
induced activity

Front. Artif. Intell. 4(555), 370–385 (2021)
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SBND: Cosmogenic background removal

● Tagging the raw TPC data as cosmic- or ν-induced on a pixel-by-pixel basis

● Original GENIE+CORSIKA MC dataset with event images as a combination of three planes with 1280 (time) x 2048 
(wire) pixels

– Too large for GPU memory available at the time. Decreased resolution to 640 x 1024. Plans to rerun with full resolution 
once better hardware is available

● Pixel-level Truth information (red - neutrinos, grey - cosmics, white - background)
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SBND: Cosmogenic background removal

● “Semantic segmentation” - associating parts of the image 
(pixels) with distinct classes based on UNet architecture

– Encoder downsamples input using residual convolutional units 
(sums convolutional/nonlinearity output with input) to produce 
compressed representation in the bottleneck

– Decoder upsamples the image back to input resolution

– Shortcut connections between the two improve localization, mitigate 
gradient issues

● Addition - per-plane filters are concatenated together into one 
set of convolutional filters and proceed through convolutions 
together

– Learns cross-plane geometrical features

● Note: three planes are used as input, only two are shown on 
the right for simplicity

● Convolutional weights are shared across all three planes for 
up-sampling and down-sampling of the network
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SBND: Cosmogenic background removal

● IoU metric - overlap between 
pixels’ true and predicted labels
– Computed as the ratio of 

intersection (common pixels in 
both sets) to union (all pixels in 
either set) 

● Hard to directly compare to 
traditional background rejection 
algorithms

● But estimated to be an 
improvement
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Finishing remarks
● MLP and CNN are here to stay

– Remember they are “universal function approximators”, so be creative about inputs 
(e.g., “image” can be amplitude vs time, recon’d energy vs PMT index, or whatever). 
They can figure it out

– Keep in mind the “relational inductive bias” table when picking the best architecture
● More complicated architectures used in generative networks, semantic 

segmentation, et cetera, often still use these as building blocks, so learn 
them well
– Don’t just let PyTorch do all the job for you, invest some effort to understand a bit 

better what’s going on “under the hood”. It will help avoid silly mistakes
● Critically assess the new fancy architectures before investing time in them. 

Make sure the improvement is clearly demonstrated
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Now, let’s start Tutorial
● Jupyter notebook and some waveform data 
● Password: cUaw (please don’t share further)

https://mail.ihep.ac.cn/coremail/common/nfFile.jsp?share_link=8ED2C520F15A4256A4876F3A6C3AE4BD&uid=igor.ostrovskiy%40ihep.ac.cn
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