

Learning Symmetry-Independent Jet Representation via Jet Joint **Embedding Predictive Architecture**

Haoyang "Billy" Li^{\dagger} , Subash Katel[†], **Zihan Zhao**[†], Farouk Mokhtar, Javier Duarte (UCSD) Raghav Kansal (Caltech)

Larger than Larger Ep1 2025 Jan 7

†: equal contribution

https://arxiv.org/abs/2412.05333

Outline

- Motivation
- Introduction to JEPA
- Our J-JEPA approach
- Dataset
- Pretraining + fintuning setup
- Pretraining result
- Pretraining + fine-tuning result
- Ongoing and Future work

Motivations for Self-Supervised Learning (SSL) Learning without labels

- representations from unlabeled data
- data such as images or sounds, rather than from manually assembled labeled datasets.

Self-Supervised Learning: A type of machine learning where models learn useful features and

• To learn effectively (like human), system must learn these representations directly from unlabeled • With the HL-LHC upgrade [1] in the near future, we will need to simulate an order of magnitude more events with a more complicated detector geometry to keep up with the recorded data [2].

SSL for foundation model

- 1. [HL-LHC] https://arxiv.org/abs/1705.08830
- 2. [Computing for HL LHC] https://doi.org/10.1051/epjconf/201921402036

JEPA: Different SSL Architectures

- not mask the input

Difference between JEPA and (b): JEPA predicts in the latent space and does

JEPA: Joint Embedding Predictive Architecture

- Predict the masked parts in the representation space
- Augmentation free to minimize bias

Example: The I-JEPA Architecture I: Image

J (Jet) - JEPA

J-JEPA Cluster subjets with radius 0.2

An AK8 Jet

J-JEPA: Define Target and Context Subjets Randomly divide subjets into target/context categories

An AK8 Jet

J-JEPA: Define Target and Context Subjets Randomly divide subjets into target/context categories

Target Subjets

Context Subjets

Particle: p_T, η, ϕ, E
Particle N: p_T, η, ϕ, E

Particle 1: p_T, η, ϕ, E
Particle: p_T, η, ϕ, E
Particle N: p_T, η, ϕ, E

Particle 1: p_T, η, ϕ, R	
Particle: p_T, η, ϕ ,	Ε
Particle N: p_T, η, ϕ, J	E

Particle 1: p_T, η, ϕ, E
Particle: p_T, η, ϕ, E
Particle N: p_T, η, ϕ, E

Particle 1: p_T, η, ϕ, E
Particle: p_T, η, ϕ, E
Particle N: p_T, η, ϕ, E

Particle 1: p_T, η, ϕ, E
Particle: p_T, η, ϕ, E
Particle N: p_T, η, ϕ, E

J-JEPA: Subjet Embedding Layer (SEL) Each subjet creates its embedding independently

Other options:

Subjet Embedding Layer (SEL)

J-JEPA: Calculate Subjet Representations Using Transformer Encoder Blocks

J-JEPA: Predict in the Representation Space Providing the target subjets' coordinates to the predictor **Target subjets'** representations

J-JEPA: Pretraining

SEL: Subjet Embedding Layer

Questions?

Datasets

We use JetClass for pretraining and TopTagging for finetuning

Dataset name	Size	Description	Portions we used	Role in transfer learning
JetClass	100 Million AK8 Jets	Contains 10 classes of jets	500K Top jets 500k q/g jets	Stand in for the large pretaining unlabeled dataset
Top Tagging	1.2 Million AK8 Jets	Only Top and QCD jets	760K mixed jets*	Stand in for the small fine- tuning dataset

* We only used jets with more than 10 subjets

Top Tagging Dataset 1902.09914

Information collapse: The model fails to capture the meaningful variations in the data, leading to poor performance in tasks like classification or regression.

Latent after Pre-training: Not Collapsing J-JEPA model learned a diverse latent space

- 0.8

- 0.6

- 0.4

- 0.2

0.0

Let A be the features of Jet 1, and B be the features of Jet 2, then the cosine similarity is defined as

 $\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$

- 1. Randomly select 128 Jets.
- 2. Represent each jet by their flattened subjet representations
- 3. Calculate cosine similarity between each pair of jets

Average Cosine Similarity: 0.457

J-JEPA: Finetuning Setup From subjet representation to jet representation

Aggregation Methods for Fine-tuning 3 Different methods of attaching the latent space to a classification head

Our training and evaluation setup

Baseline refers to the same model directly trained on the finetuning dataset without pretraining

Metrics

Accuracy: correctly predicted / total number of samples **Rejection: inverse of background rejection (FPR) at 50% signal efficiency (TPR)**

background rejection

Significance: In a background dominant dataset, how much background can you reject while letting in a certain number of signal samples (the more the better)

1.0

J-JEPA Performance Pretrain on JetClass and finetune on Top Tagging

Attention-based SEL

MLP-based SEL

Visualizing learned features **UMAP** and direct comparison show that the features have good separation power

Our results 1. J-JEPA improves the downstream performance compared with from scratch (for most models)

Model	Aggregation	Baseline 10%	Baseline Full	Finetuned 10%	Finetuned Full
		Accuracy [%]			
SjT-T	Flatten	87.52 ± 0.16	89.13 ± 0.10	88.21 ± 0.55	89.95 ± 0.13
SjT-T	Cls Attn	88.30 ± 0.18	89.67 ± 0.13	88.67 ± 0.02	90.00 ± 0.07
AE-SjT-T	Flatten	88.92 ± 0.15	90.01 ± 0.08	88.94 ± 0.13	90.03 ± 0.07
AE-SjT-T	Cls Attn	88.84 ± 0.21	90.03 ± 0.05	88.82 ± 0.11	90.00 ± 0.12
		$1/\varepsilon_B(\varepsilon_S=0.5)$			
SjT-T	Flatten	40.50 ± 1.26	70.70 ± 1.46	53.67 ± 9.97	90.06 ± 3.80
SjT-T	Cls Attn	52.56 ± 1.54	79.75 ± 5.12	61.32 ± 0.66	91.51 ± 1.20
AE-SjT-T	Flatten	67.34 ± 1.40	97.79 ± 3.90	70.47 ± 1.09	97.52 ± 1.71
AE-SjT-T	Cls Attn	67.19 ± 1.54	99.38 ± 2.80	68.25 ± 1.64	95.47 ± 1.83

Our results 2. Class attention blocks are more effective than simply flattening (for most models)

Model	Aggregation	Baseline 10%	Baseline Full	Finetuned 10%	Finetuned Full
		Accuracy [%]			
SjT-T	Flatten	87.52 ± 0.16	89.13 ± 0.10	88.21 ± 0.55	89.95 ± 0.13
SjT-T	Cls Attn	88.30 ± 0.18	89.67 ± 0.13	88.67 ± 0.02	90.00 ± 0.07
AE-SjT-T	Flatten	88.92 ± 0.15	90.01 ± 0.08	88.94 ± 0.13	90.03 ± 0.07
AE-SjT-T	Cls Attn	88.84 ± 0.21	90.03 ± 0.05	88.82 ± 0.11	90.00 ± 0.12
			$1/\varepsilon_B(\varepsilon$	$c_S = 0.5$	
SjT-T	Flatten	40.50 ± 1.26	70.70 ± 1.46	53.67 ± 9.97	90.06 ± 3.80
SjT-T	Cls Attn	52.56 ± 1.54	79.75 ± 5.12	61.32 ± 0.66	91.51 ± 1.20
AE-SjT-T	Flatten	67.34 ± 1.40	97.79 ± 3.90	70.47 ± 1.09	97.52 ± 1.71
AE-SjT-T	Cls Attn	67.19 ± 1.54	99.38 ± 2.80	68.25 ± 1.64	95.47 ± 1.83

785767 Number of Labeled Training Samples

Our results 3. Our custom attention-based embeddings offer a significant improvement in downstream performance compared with the traditional MLP-based embeddings

Model	Aggregation	Baseline 10%
SjT-T	Flatten	87.52 ± 0.16
SjT-T	Cls Attn	88.30 ± 0.18
AE-SjT-T	Flatten	88.92 ± 0.15
AE-SjT-T	Cls Attn	88.84 ± 0.21
SjT-T	Flatten	40.50 ± 1.26
SjT-T	Cls Attn	52.56 ± 1.54
AE-SjT-T	Flatten	$ 67.34 \pm 1.40$
AE-SjT-T	Cls Attn	67.19 ± 1.54

/85/6/ Number of Labeled Training Samples

Summary

- J-JEPA: A subject-based Joint-Embedding Predictive Architecture
- Pre-train J-JEPA on a large dataset and finetune the target encoder on a small dataset achieves better performance than training the encoder from scratch,
- Different encoder architectures has different response to the J-JEPA pretraining, but overall positive.

Ongoing Work

- Implementing a particle-based JEPA lacksquare
- Training shorter models to reduce overfitting
- Experiment different ways to provide information to the predictor
- Generalize the JEPA scheme to different physics objects: particles, events, detector readout, etc.

Large-Scale Pretraining and **Finetuning for Efficient Jet** Classification **Zihan Zhao**, Farouk Mokhtar, Raghav Kansal, Billy Li, Javier Duarte

Larger than Larger Ep1 2025 Jan 7

https://arxiv.org/abs/2408.09343

Intro to SSL strategies

As opposed to supervised learning, which is limited by the availability of labeled data, self-supervised approaches can learn from vast unlabeled data (2304.12210)

To learn useful features from the data itself without using labels

Masked Modeling

2401.13537

JEPA

2108.04253

2412.05333

Necessity of SSL in LHC Physics

- Simulations don't model the data perfectly: need a way to directly train on data
- It will be even harder and more computationally expensive to produce high-quality simulations for High Luminosity LHC (1803.04165)

First Goal of the Project

features directly from vast unlabeled data.

Current workflow using only Supervised Learning

• To show that we can leverage SSL to learn powerful, generic, and transferable

Workflow incorporating SSL

Toward Foundation Model

Towards Foundation Model in HEP

Contrastive Learning: Symmetry Augmentation

Dillon, Kasieczka, Olischlager Plehn, Sorrenson, Vogel, 2108.04253

Masked Particle Type Prediction

Kishimoto, Morinaga, Saito Tanaka, 2312.06909

Masked Particle Modeling

Contrastive Learning: **Re-Simulation**

Harris, MK, Krupa, Maier, Woodward, 2403.07066

Supervised Pre-training and Joint Optimization

Supervised Classification and Generation

2401.13537

Vigl, Hartman, Heinrich, 2401.13536

Mikuni, Nachman 2404.16091

Credit: This slide is copied from Michael Kagan's talk in the FM Mini Workshop in October 2024

Next Token Predictoin

A set of

object

component

Target 2

Target .

Birk, Hallin, Kasieczka, 2403.05618

Context repr. **Context encode** Context 2 Representation Space Target

Target encode

J-JEPA

Katel, Li, Zhao, et al. https://arxiv.org/abs/2412.05333

https://indico.cern.ch/event/1386125/contributions/6139666/

Large-Scale Fine-Grained Classification

Li, Li, et al. 2405.12972

Towards Foundation Model in HEP

Contrastive Learning: Symmetry Augmentation

Dillon, Kasieczka, Olischlager Plehn, Sorrenson, Vogel, 2108.04253

Masked Particle Type Prediction

Kishimoto, Morinaga, Saito Tanaka, 2312.06909

Contrastive Learning: **Re-Simulation**

Harris, MK, Krupa, Maier, Woodward, 2403.07066

Supervised Pre-trai and Joint Optimization

Vigl, Hartman, Heinrich, 2401.13536

Mikuni, Nachman 2404.16091

Credit: This slide is copied from Michael Kagan's talk in the FM Mini Workshop in October 2024

Li, Li, et al. 2405.12972

https://indico.cern.ch/event/1386125/contributions/6139666/

Primary Goal of the Project

performance of foundation model.

• Focus on studying the effect of scaling up the sizes of pretraining datasets on the

Outline

- Toward Foundation Model in HEP
- Goals of the Project
- Intro to JetCLR
- Transfer Learning: from JetClass to Top Tagging
- Scaling up pretraining dataset size
- Some technical details
 - Classification head for finetuning: MLP vs Linear Projection
 - Techniques to speed up training
- Ongoing and Future work

Intro to JetCLR

$$\mathcal{L}_i = -\log rac{e^{s(z_i,z_i)/ au}}{\sum_{j
eq i \in ext{batch}} \left[e^{s(z_i,z_j)/ au} + e^{s(z_i,z_j')/ au}
ight]}$$

2108.04253

Augmentations

Model Architecture for encoder

- Started with a simple Transformer encoder

Transformer Encoder 1706.03762

Working on switching to more advanced architectures such as Particle Transformer

Particle Transformer 2202.03772

Datasets

JetClass for unlabeled pretraining, Top Tagging for labeled finetuning

2202.03772

Description	Role in transfer learning
Contains 10	Stand in for unlabeled "data",
classes of jets	use for pretraining
Only Top and	Stand in for labeled
QCD jets	"simulation", use for fine-tuning

Top Tagging Dataset 1902.09914

Metrics

Accuracy: correctly predicted / total number of samples **Rejection: inverse of background rejection (FPR) at 50% signal efficiency (TPR)**

background rejection

Significance: In a background dominant dataset, how much background you can reject while letting in a certain fraction of signal samples (the more the better)

1.0

Pretraining on JetClass and fine-tuning on Top Tagging

The pre-trained model requires significantly fewer samples to achieve high accuracy and rejection rate: higher data efficiency

uncertainty bands, respectively

• The averages and standard deviations over 5 trainings are shown in solid lines and

Pretraining on JetClass and fine-tuning on Top Tagging

The pre-trained model converges much faster: higher computational efficiency

uncertainty bands, respectively

• The averages and standard deviations over 5 trainings are shown in solid lines and

Scaling up pretraining dataset size By scaling up the pretraining dataset, the model demonstrated enhanced performance and faster convergence: both data and computational efficiency improve as we use larger datasets for pretraining

Background rejection at 50% signal efficiency

Rejection: inverse of background rejection at 50% signal efficiency

Conclusion

- Through large-scale pretraining followed by finetuning, our SSL approach has demonstrated
 - superior performance compared to the fully supervised approach.
 - faster than its fully supervised counterpart.
 - Both efficiencies increase as the pretraining dataset size increases.
- understanding of the potential of SSL for scientific discovery.

• Enhanced data efficiency—requiring fewer labeled training samples to achieve

• Greater computational efficiency—enabling the model to converge significantly

• This paves the way for the use of unlabeled data in HEP and contributes to a better

Ongoing and Future work

Ongoing work

•

- encoder
- Pretrain on JetClass v2, an even larger dataset, or the <u>Aspen Open Jets</u> dataset, a real CMS dataset
- Evaluate on different SSL strategies beyond JetCLR lacksquare
- Explore other physically motivated augmentations
 - Pairing the two jets from dijet events
 - Using two subjets clustered with smaller radii \bullet
 - Using tracks and clusters as two views of the same jet

• Study the effectiveness of more advanced architectures like the ParticleTransformer as the backbone

Support **Thank you for listening!**

- Alfred P. Sloan Foundation, and the U.S. Department of Energy
- This work was performed using the National Research Platform Nautilus HyperCluster supported by NSF

 This work is supported by the National Science Foundation under award number 2117997 (A3D3 Institute), Research Corporation For Science Advancement, the

Back Up (Part 1)

Example: The I-JEPA Architecture I: Image

Details of the Top Tagging Dataset

$$p_{T,j} = 55$$

For the signal only, we further require a matched parton-level top to be within $\Delta R = 0.8$, and all top decay partons to be within $\Delta R = 0.8$ of the jet axis as well. No matching is performed for the QCD jets. We also require the jet to have $|\eta_j| < 2$. The constituents are extracted through the Delphes energy-flow algorithm, and the 4-momenta of the leading 200 constituents are stored. For jets with less than 200 constituents we simply add zero-vectors.

The top signal and mixed quark-gluon background jets are produced with using Pythia8 [25] with its default tune for a center-of-mass energy of 14 TeV and ignoring multiple interactions and pile-up. For a simplified detector simulation we use Delphes [26] with the default ATLAS detector card. This accounts for the curved trajectory of the charged particles, assuming a magnetic field of 2 T and a radius of 1.15 m as well as how the tracking efficiency and momentum smearing changes with η . The fat jet is then defined through the anti- k_T algorithm [27] in FastJet [28] with R = 0.8. We only consider the leading jet in each event and require

> $550 \dots 650 \text{ GeV}$. (1)

1902.09914

Details of the JetClass Dataset

Simulation setup. Jets in this dataset are simulated with standard Monte Carlo event generators used by LHC experiments. The production and decay of the top quarks and the W, Z and Higgs bosons are generated with MAD-GRAPH5_aMC@NLO (Alwall et al., 2014). We use PYTHIA (Sjöstrand et al., 2015) to evolve the produced particles, i.e., performing parton showering and hadronization, and produce the final outgoing particles¹. To be close to realistic jets reconstructed at the ATLAS or CMS experiment, detector effects are simulated with DELPHES (de Favereau et al., 2014) using the CMS detector configuration provided in DELPHES. In addition, the impact parameters of electrically charged particles are smeared to match the resolution of the CMS tracking detector (CMS Collaboration, 2014). Jets are clustered from DELPHES E-Flow objects with the anti $k_{\rm T}$ algorithm (Cacciari et al., 2008; 2012) using a distance parameter R = 0.8. Only jets with transverse momentum in 500–1000 GeV and pseudorapidity $|\eta| < 2$ are considered. For signal jets, only the "high-quality" ones that fully contain the decay products of initial particles are included².

2202.03772 56

Transformer Embedding Layer Effects Correlation between subjets is reduced

Correlation Matrix of Subjets for Jet 102, mean=0.6697532534599304

- 1.0 - 0.8 - 0.6 - 0.4 - 0.2

0.0

WIP: Study of how to provide the additional info Pre-train and fine-tune on Top Tagging

Experiments	Encode subjet coordinates at both (encoder and predictor)	Encode coordinates only at predictor	Encode pT ranking at both	Use a MLP to encode subjet coordinates
Inverse Rejection Power	63.99	45.33	45.02	Converging

Study of subjet embedding Pre-training and fine-tuning on Toptagging dataset

Inverse Rejection Power	Dimension Reduction	Dimension Expansion
Attention	86.42	73.81
MLP	73.55	63.99
Linear	44.31	

Strategies to prevent collapse

- Targets being padded subjets
- Most particles are padded so all subjets look the same to the model
- Information bottleneck in the predictor is too big
- Dataset was not normalized

- We only select targets from non-empty subjets
 - We implemented Attentionbased embedding
 - We decreased the size of the predictor dimension
- We normalized the dataset
- Plus: EMA updating the Target Encoder

J-JEPA: Splitting jets into subjets number of subjets per jet

Percentage of Subjets per Jet (10% Sample) by Algorithm

J-JEPA: Splitting jets into subjets number of particles per subjet

Percentage of Constituents per Subjet (10% Sample) by Algorithm

Back Up (Part 2)

Techniques to speed up training Steps we took to ensure the model finished pretraining within a reasonable amount of time

- Removed unnecessary CPU-GPU synchronizations, especially read-out from GPU for recording losses
- Modified the default model dimensions to be multiples of 8 to make use of CUDA matrix multiplication kernels more efficiently
- Fused point-wise operations into a single CUDA kernel when computing the contrastive loss.
- Utilized the Automatic Mixed Precision (AMP) package
 - Measures to mitigate the numerical instability caused by using AMP in backup.

LHC and Jet Tagging

Proton beams

Outgoing particles: tracks electromagnetic energy. hadron energy

Collision point

÷.....

Collision event

Measures to mitigate the numerical instability caused by using AMP

- Monitor loss and gradient values regularly with tensorboard
- Gradient clipping with a maximum norm of 0.1
- Set the ϵ parameter to 10⁽⁻⁴⁾ in the Adam optimizer.
- Manually run certain parts of the code in full precision

Pretraining on JetClass and fine-tuning on Top Tagging

The pre-trained model shows a much clearer separation between signal and background

Trained from scratch

68

Pretraining on JetClass and fine-tuning on Top Tagging

The pre-trained model shows a much clearer separation between signal and background

Trained from scratch

Pre-trained

Pretraining on JetClass and fine-tuning on Top Tagging Despite limited data, the pre-trained model achieves higher accuracy and converges faster

- A linear layer was added to the encoder for fine-tuning.
- Blue curve was pre-trained on 1% of the JetClass dataset (1 Million jets) with SimCLR
- Red curve was trained from scratch
- Both models share the same hyperparameters
- Both models are trained with 100k jets (1/12 of the Top Tagging Dataset)

Accuracies of two trials trained with 1000 labeled samples

The CMS detector coordinate system

 $\eta \equiv -\ln \left| an \left(rac{ heta}{2}
ight)
ight|$

https://tikz.net/axis3d_cms/

Details of the Top Tagging Dataset

$$p_{T,j} = 55$$

For the signal only, we further require a matched parton-level top to be within $\Delta R = 0.8$, and all top decay partons to be within $\Delta R = 0.8$ of the jet axis as well. No matching is performed for the QCD jets. We also require the jet to have $|\eta_j| < 2$. The constituents are extracted through the Delphes energy-flow algorithm, and the 4-momenta of the leading 200 constituents are stored. For jets with less than 200 constituents we simply add zero-vectors.

The top signal and mixed quark-gluon background jets are produced with using Pythia8 [25] with its default tune for a center-of-mass energy of 14 TeV and ignoring multiple interactions and pile-up. For a simplified detector simulation we use Delphes [26] with the default ATLAS detector card. This accounts for the curved trajectory of the charged particles, assuming a magnetic field of 2 T and a radius of 1.15 m as well as how the tracking efficiency and momentum smearing changes with η . The fat jet is then defined through the anti- k_T algorithm [27] in FastJet [28] with R = 0.8. We only consider the leading jet in each event and require

> $550 \dots 650 \text{ GeV}$. (1)

Details of the JetClass Dataset

Simulation setup. Jets in this dataset are simulated with standard Monte Carlo event generators used by LHC experiments. The production and decay of the top quarks and the W, Z and Higgs bosons are generated with MAD-GRAPH5_aMC@NLO (Alwall et al., 2014). We use PYTHIA (Sjöstrand et al., 2015) to evolve the produced particles, i.e., performing parton showering and hadronization, and produce the final outgoing particles¹. To be close to realistic jets reconstructed at the ATLAS or CMS experiment, detector effects are simulated with DELPHES (de Favereau et al., 2014) using the CMS detector configuration provided in DELPHES. In addition, the impact parameters of electrically charged particles are smeared to match the resolution of the CMS tracking detector (CMS Collaboration, 2014). Jets are clustered from DELPHES E-Flow objects with the anti $k_{\rm T}$ algorithm (Cacciari et al., 2008; 2012) using a distance parameter R = 0.8. Only jets with transverse momentum in 500–1000 GeV and pseudorapidity $|\eta| < 2$ are considered. For signal jets, only the "high-quality" ones that fully contain the decay products of initial particles are included².

2202.03772

Training on Top Tagging Are the features correlated?

