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Motivations for Self-Supervised Learning (SSL)
Learning without labels
• Self-Supervised Learning: A type of machine learning where models learn useful features and 

representations from unlabeled data 
• To learn effectively (like human), system must learn these representations directly from unlabeled 

data such as images or sounds, rather than from manually assembled labeled datasets. 
• With the HL-LHC upgrade [1] in the near future, we will need to simulate an order of magnitude 

more events with a more complicated detector geometry to keep up with the recorded data [2].
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SSL for foundation model
1. [HL-LHC] https://arxiv.org/abs/1705.08830  
2. [Computing for HL LHC] https://doi.org/10.1051/epjconf/201921402036 

https://arxiv.org/abs/1705.08830
https://doi.org/10.1051/epjconf/201921402036


JEPA: Different SSL Architectures
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• Difference between JEPA and (a): JEPA is augmentation free and predictive


• Difference between JEPA and (b): JEPA predicts in the latent space and does 
not mask the input

Assran et al., “Self-supervised learning from images with a joint-embedding predictive architecture”, 2023.

https://arxiv.org/abs/2401.13537https://arxiv.org/abs/2108.04253 https://arxiv.org/abs/2412.05333

Our WorkContrastive Learning Masked Modeling

https://arxiv.org/abs/2301.08243
https://arxiv.org/abs/2401.13537
https://arxiv.org/abs/2412.05333


JEPA: Joint Embedding Predictive Architecture

• Predict the masked parts in the representation space 
• Augmentation free to minimize bias
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Example: The I-JEPA Architecture
I: Image
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J (Jet) - JEPA
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An AK8 Jet
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An AK8 Jet
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J-JEPA
Cluster subjets with radius 0.2

An AK8 Jet
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J-JEPA: Define Target and Context Subjets
Randomly divide subjets into target/context categories

An AK8 Jet
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J-JEPA: Define Target and Context Subjets
Randomly divide subjets into target/context categories
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J-JEPA: Subjet Embedding Layer (SEL)
Each subjet creates its embedding independently
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J-JEPA: Calculate Subjet Representations
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Providing the target subjets’ coordinates to the predictor
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J-JEPA: Pretraining
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Datasets
We use JetClass for pretraining and TopTagging for finetuning

JetClass Dataset Top Tagging Dataset

Dataset 
name Size Description Portions we 

used Role in transfer learning

JetClass 100 Million 
AK8 Jets

Contains 10 
classes of jets

500K Top jets 
500k q/g jets

Stand in for the large 
pretaining unlabeled 

dataset

Top Tagging 1.2 Million 
AK8 Jets

Only Top and 
QCD jets

760K mixed 
jets*

Stand in for the small fine-
tuning dataset

1902.099142202.03772

* We only used jets with more 
than 10 subjets
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J-JEPA: Pretraining Goals
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Before we finetune the model with labels
Goal: Jet representation 
space does not collapse 
as this will be the latent 
space connected to the 

down stream heads

Information collapse: The model fails to capture the meaningful variations in the data, leading to poor 
performance in tasks like classification or regression.



Latent after Pre-training: Not Collapsing
J-JEPA model learned a diverse latent space
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cos(θ) =
A ⋅ B

∥A∥∥B∥

Let A be the features of Jet 1, and B be the features of 
Jet 2, then the cosine similarity is defined as

1. Randomly select 128 Jets.


2. Represent each jet by their 
flattened subjet representations


3. Calculate cosine similarity 
between each pair of jets

Average Cosine Similarity: 0.457



J-JEPA: Finetuning Setup
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Aggregation Methods for Fine-tuning
3 Different methods of attaching the latent space to a classification head
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Our training and evaluation setup
Baseline refers to the same model directly trained on the finetuning dataset without pretraining

J-JEPA 
Model Train on Top 

Tagging from 
scratch
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Metrics
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Rejection: inverse of background rejection (FPR) at 50% signal efficiency (TPR)
Accuracy: correctly predicted / total number of samples

Significance: In a background dominant 
dataset, how much background can you 
reject while letting in a certain number of 
signal samples (the more the better)



J-JEPA Performance
Pretrain on JetClass and finetune on Top Tagging

Attention-based SEL MLP-based SEL



Visualizing learned features
UMAP and direct comparison show that the 
features have good separation power 
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Our results
1. J-JEPA improves the downstream performance compared with from scratch 
(for most models)





Our results
2. Class attention blocks are more effective than simply flattening 
(for most models)





Our results
3. Our custom attention-based embeddings offer a significant improvement in 
downstream performance compared with the traditional MLP-based embeddings





Summary
• J-JEPA: A subject-based Joint-Embedding Predictive Architecture


• Pre-train J-JEPA on a large dataset and finetune the target encoder on a small 
dataset achieves better performance than training the encoder from scratch,


• Different encoder architectures has different response to the J-JEPA pre-
training, but overall positive.
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Ongoing Work
• Implementing a particle-based JEPA


• Training shorter models to reduce overfitting


• Experiment different ways to provide information to the predictor


• Generalize the JEPA scheme to different physics objects: particles, events, 
detector readout, etc.
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Large-Scale Pretraining and 
Finetuning for Efficient Jet 
Classification
Zihan Zhao, Farouk Mokhtar, Raghav Kansal, Billy Li, Javier Duarte

34 https://arxiv.org/abs/2408.09343 
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Intro to SSL strategies

To learn useful features from the data itself without using labels

As opposed to supervised learning, which is limited by the 
availability of labeled data, self-supervised approaches can learn 
from vast unlabeled data (2304.12210)

352401.13537

Masked Modeling Contrastive Learning
2108.04253

JEPA
2412.05333

https://arxiv.org/abs/2412.05333


Necessity of SSL in LHC Physics

• Simulations don’t model the data perfectly: need a way to directly train on data 

• It will be even harder and more computationally expensive to produce high-quality 
simulations for High Luminosity LHC (1803.04165)
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First Goal of the Project

• To show that we can leverage SSL to learn powerful, generic, and transferable 
features directly from vast unlabeled data.

Current workflow using only 
Supervised Learning
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Towards Foundation Model in HEP

Credit: This slide is copied from Michael Kagan’s talk in the FM Mini Workshop in October 2024

Katel, Li, Zhao, et al. 
https://arxiv.org/abs/2412.05333 

J-JEPA

https://indico.cern.ch/event/1386125/contributions/6139666/ 

https://indico.cern.ch/event/1459124/contributions/6150087/
https://arxiv.org/abs/2412.05333
https://indico.cern.ch/event/1386125/contributions/6139666/


Towards Foundation Model in HEP

Credit: This slide is copied from Michael Kagan’s talk in the FM Mini Workshop in October 2024

Katel, Li, Zhao, et al. 
https://indico.cern.ch/event/1386125/contributions/6083379/ 

J-JEPA

https://indico.cern.ch/event/1386125/contributions/6139666/

Question: will foundation models 
in HEP benefit from large scale pretraining?

https://indico.cern.ch/event/1459124/contributions/6150087/
https://indico.cern.ch/event/1386125/contributions/6083379/


Primary Goal of the Project

• Focus on studying the effect of scaling up the sizes of pretraining datasets on the 
performance of foundation model.
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labeled simulation 
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labeled simulation 
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Perform downstream 
task 1

41

Pretrain on 
varying amounts 
of unlabeled data



Outline

• Toward Foundation Model in HEP 

• Goals of the Project 

• Intro to JetCLR 

• Transfer Learning: from JetClass to Top Tagging 

• Scaling up pretraining dataset size 

• Some technical details 

• Classification head for finetuning: MLP vs Linear Projection 

• Techniques to speed up training 

• Ongoing and Future work
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Intro to JetCLR

SimCLR loss

43

2108.04253

Augmentations

https://arxiv.org/abs/2108.04253


• Started with a simple Transformer encoder 

• Working on switching to more advanced architectures such as Particle Transformer

Model Architecture for encoder

44

Transformer Encoder Particle Transformer
2202.037721706.03762



Datasets
JetClass for unlabeled pretraining, Top Tagging for labeled finetuning

JetClass Dataset
45

Top Tagging Dataset

Dataset name Size Description Role in transfer learning

JetClass 
Dataset 100 Million Jets Contains 10 

classes of jets
Stand in for unlabeled “data”, 

use for pretraining

Top Tagging 
Dataset 1.2 Million Jets Only Top and 

QCD jets
Stand in for labeled 

“simulation”, use for fine-tuning 

1902.099142202.03772



Metrics
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Rejection: inverse of background rejection (FPR) at 50% signal efficiency (TPR)
Accuracy: correctly predicted / total number of samples

Significance: In a background dominant 
dataset, how much background you can 
reject while letting in a certain fraction of 
signal samples (the more the better)



• The averages and standard deviations over 5 trainings are shown in solid lines and 
uncertainty bands, respectively 

•

Pretraining on JetClass and fine-tuning on Top Tagging
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The pre-trained model requires significantly fewer samples to 
achieve high accuracy and rejection rate: higher data efficiency

Rejection: inverse of background rejection at 50% signal 
efficiencyPretrained: pretrained with 1M jets



The pre-trained model converges much faster: higher computational efficiency
Pretraining on JetClass and fine-tuning on Top Tagging
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• The averages and standard deviations over 5 trainings are shown in solid lines and 
uncertainty bands, respectively 

•

Pretrained: pretrained with 1M jets



Scaling up pretraining dataset size
By scaling up the pretraining dataset, the model demonstrated enhanced performance and 
faster convergence: both data and computational efficiency improve as we use larger 
datasets for pretraining

Number of epochs required to reach within 1% of the 
final accuracy

Background rejection at 50% signal efficiency
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Rejection: inverse of background rejection at 50% signal 
efficiency



Conclusion

• Through large-scale pretraining followed by finetuning, our SSL approach has 
demonstrated  

• Enhanced data efficiency—requiring fewer labeled training samples to achieve 
superior performance compared to the fully supervised approach.  

• Greater computational efficiency—enabling the model to converge significantly 
faster than its fully supervised counterpart.  

• Both efficiencies increase as the pretraining dataset size increases. 

• This paves the way for the use of unlabeled data in HEP and contributes to a better 
understanding of the potential of SSL for scientific discovery.
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Ongoing and Future work

• Ongoing work 

• Study the effectiveness of more advanced architectures like the ParticleTransformer as the backbone 
encoder 

• Pretrain on JetClass v2, an even larger dataset, or the Aspen Open Jets dataset, a real CMS dataset 

• Evaluate on different SSL strategies beyond JetCLR 

• Explore other physically motivated augmentations 

• Pairing the two jets from dijet events 

• Using two subjets clustered with smaller radii 

• Using tracks and clusters as two views of the same jet 

• …
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https://arxiv.org/abs/2412.10504
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Thank you for listening!
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Back Up (Part 1)



Example: The I-JEPA Architecture
I: Image
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Details of the Top Tagging Dataset

1902.0991455



Details of the JetClass Dataset

2202.03772 56



Transformer Embedding Layer Effects
Correlation between subjets is reduced

57MLP subjet embedding Transformer subjet embedding



WIP: Study of how to provide the additional info
Pre-train and fine-tune on Top Tagging
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Experiments
Encode subjet 

coordinates at both 
(encoder and predictor)

Encode coordinates only 
at predictor

Encode pT ranking at 
both

Use a MLP to encode 
subjet coordinates

Inverse 
Rejection 

Power
63.99 45.33 45.02 Converging…



Study of subjet embedding
Pre-training and fine-tuning on Toptagging dataset

Inverse Rejection 
Power Dimension Reduction Dimension Expansion

Attention 86.42 73.81

MLP 73.55 63.99

Linear 44.31
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Strategies to prevent collapse

• Targets being padded subjets


• Most particles are padded so 
all subjets look the same to 
the model


• Information bottleneck in the 
predictor is too big


• Dataset was not normalized

• We only select targets from 
non-empty subjets


• We implemented Attention-
based embedding


• We decreased the size of the 
predictor dimension


• We normalized the dataset
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Plus: EMA updating the Target Encoder



number of subjets per jet
J-JEPA: Splitting jets into subjets
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J-JEPA: Splitting jets into subjets
number of particles per subjet
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Back Up (Part 2)



Techniques to speed up training
Steps we took to ensure the model finished pretraining within a 
reasonable amount of time

• Removed unnecessary CPU-GPU synchronizations, especially read-out from GPU 
for recording losses 

• Modified the default model dimensions to be multiples of 8 to make use of CUDA 
matrix multiplication kernels more efficiently 

• Fused point-wise operations into a single CUDA kernel when computing the 
contrastive loss. 

• Utilized the Automatic Mixed Precision (AMP) package 

• Measures to mitigate the numerical instability caused by using AMP in backup.
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Measures to mitigate the numerical instability 
caused by using AMP 

• Monitor loss and gradient values regularly with tensorboard 

• Gradient clipping with a maximum norm of 0.1 

• Set the ϵ parameter to 10^(−4) in the Adam optimizer. 

• Manually run certain parts of the code in full precision



Pre-trainedTrained from scratch

Pretraining on JetClass and fine-tuning on Top Tagging
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The pre-trained model shows a much clearer separation between signal and background



The pre-trained model shows a much clearer separation between signal and background

Pre-trainedTrained from scratch

Pretraining on JetClass and fine-tuning on Top Tagging
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Despite limited data, the pre-trained model achieves higher accuracy 
and converges faster

• A linear layer was added to the 
encoder for fine-tuning.  

• Blue curve was pre-trained on 
1% of the JetClass dataset (1 
Million jets) with SimCLR 

• Red curve was trained from 
scratch 

• Both models share the same 
hyperparameters 

• Both models are trained with 
100k jets (1/12 of the Top 
Tagging Dataset)

Pretraining on JetClass and fine-tuning on Top Tagging
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Pre-trained



Accuracies of two trials trained with 1000 labeled samples



The CMS detector coordinate system
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https://tikz.net/axis3d_cms/

https://tikz.net/axis3d_cms/


Details of the Top Tagging Dataset

1902.09914



Details of the JetClass Dataset

2202.03772



Are the features correlated?
Training on Top Tagging
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