=
UCSD
Learning Symmetry-Independent
Jet Representation via Jet Joint

Embedding Predictive Architecture

Haoyang "Billy" Li*, Subash Katel, Zihan Zhao', Farouk Mokhtar, Javier Duarte (UCSD)
Raghav Kansal (Caltech)

Larger than Larger Ep1 2025
Jan 7
f: equal contribution : https://arxiv.org/abs/2412.05333



https://arxiv.org/abs/2412.05333

Outline

* Motivation

* Introduction to JEPA

 Our J-JEPA approach
 Dataset

* Pretraining + fintuning setup

* Pretraining result

* Pretraining + fine-tuning result

* Ongoing and Future work



Motivations for Self-Supervised Learning (SSL)

Learning without labels

e Self-Supervised Learning: A type of machine learning where models learn useful features and

representations from unlabeled data

e To learn effectively (like human), system must learn these representations directly from unlabeled
data such as images or sounds, rather than from manually assembled labeled datasets.

e With the HL-LHC upgrade [1] in the near future, we will need to simulate an order of magnitude

more events with a more complicated detector geometry to keep up with the recorded data [2].

Pretrain on simuation -

large

dataset 1

u n Iabeled Fine-tune on

dataset imulation -

dataset 2

SSL for foundation model

1. [HL-LHC] https://arxiv.org/abs/1705.08830
3 2. [Computing for HL LHC] https://doi.org/10.1051/epjconf/201921402036
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JEPA: Different SSL Archltectures
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https://arxiv.org/abs/2108.04253 https://arxiv.org/abs/2401.13537

Contrastive Learnlng Masked I\/Iodellng Our Work

» Difference between JEPA and (a): JEPA is augmentation free and predictive

* Difference between JEPA and (b): JEPA predicts in the latent space and does
not mask the input

Assran et al., “Self-supervised learning from images with a joint-embedding predictive architecture”, 2023.
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Example: The I-JEPA Architecture
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J (Jet) - JEPA



An AKS8 Jet



An AKS8 Jet




J-JEPA

Cluster subjets with radius 0.2




J-JEPA: Define Target and Context Subjets

Randomly divide subjets into target/context categories

An AKS8 Jet




J-JEPA: Define Target and Context Subjets

Randomly divide subjets into target/context categories

Target
Subjets

Particle 1: p;,n, ¢, E
ﬂ Particle ...: p;.n, ¢, E
Particle N: p;,n, ¢, E
Particle 1: p;,n, ¢, E
é % 9 Particle ...: p;.n, ¢, E
Particle N: p;,n, ¢, E
Particle 1: p,n, ¢, E
Particle ...: p;.n, ¢, E

Particle N: p;,n, ¢, E

Particle 1: p;,n, ¢, E

e ——— Particle ...: prsts . E
Particle N: p;,n, ¢, E

Particle 1: p;,n, ¢, E

L —— Particle ...: p;.n, ¢, E

Particle N: p;,n, ¢, E

- Particle 1: p;,n, ¢, E
: Particle ...: p;.n, ¢, E

Particle N: p;,n, ¢, E
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J-JEPA: Subjet Embedding Layer (SEL)

Each subjet creates its embedding independently

Target/
Subjet

%

Subjet Embedding Layer (SEL)

Particle Embeddings

Particle 1: p;,n.¢.E

Particle ...: p;.n. ¢, E

Particle N: p;,n, ¢, E
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J-JEPA: Calculate Subjet Representations

Using Transformer Encoder Blocks
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J-JEPA: Predict in the Representation Space

Providing the target subjets’ coordinates to the predictor Target subjets’

representations

Target Subjet
eta and phi

N x
-»  Transformer ——p

blocks

Concat
Target extraction token
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J-JEPA: Pretraining

Context
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Datasets

We use JetClass for pretraining and TopTagging for finetuning

Dataset Size Description Portions we Role in transfer learning
name used
JetClacs | 100 Milion | Contains 10 | 500K Top jets Straert‘sr:.”nfor ;T:b';f; :hWe %ny “bs.ef Jets with more
AK8 Jets |classes of jets| 500k g/g jets pretaining u an 14 subjets
dataset
Too Taqain 1.2 Million | Only Top and | 760K mixed |Stand in for the small fine-
P 1agging AK8 Jets QCD jets jets” tuning dataset
oof H — bb oot H — cc oot H — gg ool H — 4q ool H — lvqq o ko
“F N SR L
1t — bqq’ “l t — blv 1 W — qq “ Z —qq *“14/9g 12 10-2 iz :: r o
) & 1072
v - > el 0 i _:.:l Lo-3
JetClass Dataset Top Tagging Dataset

2202.03772 1 1902.09914



J-JEPA: Pretraining Goals oat Jot reprosentation

Before we finetune the model with labels as this will be the latent

space connected to the
down stream heads

Subjet Representation

Treat Every Subjet Subjet Embedding
As Target
>
'é’
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%% —= [ == 11, Target
— Subjet
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encoder
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Information collapse: The model fails to capture the meaningful variations in the data, leading to poor
performance in tasks like classification or regression.
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Latent after Pre-training: Not Collapsing

J-JEPA model learned a diverse latent space

Cosine Similarity Matrix Between Jets (Flattened Representations)

0%, 1.0 Let A be the features of Jet 1, and B be the features of
6. Jet 2, then the cosine similarity is defined as
N A-B
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J-JEPA: Finetuning Setup

From subjet representation to jet representation

Treat Every Subjet Subjet Embedding Subjet Representation

As Target
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Aggregation Methods for Fine-tuning

3 Different methods of attaching the latent space to a classification head

latent space Aggregation Classification | redicted
(subjet features) Methods Jet features Head probabilities

Top QCD

Jet 1| 0.71 | 0.29
_|_ _|_ _”_ > Jet 2| 0.94 | 0.06
Jet 3| 0.32 | 0.68

Top QCD

Subjets Sum

0.71 | 0.29

Flatten

0.94 | 0.06

0.32 | 0.68

Top QCD

0.71 | 0.29

a )

Class Class

| Attention Attention [r— 0.94 | 0.06
> Block Block
. J & J

| uoljejuasaiday 190 |

0.32 | 0.68
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Our training and evaluation setup

Baseline refers to the same model directly trained on the finetuning dataset without pretraining

Attach :
class : | Finetuneon |: Evaluate on
Pretrain on attention _> Top Tagging Top Tagging
JetClass Blocks :
J-JEPA
Hoce : | Train on Top |:
Atltach Tagglngé frr]om E Evaluate on
class ! scratc Top Tagging
attention .
Blocks

This Is our
baseline
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Metrics

Accuracy: correctly predicted / total number of samples

Rejection: inverse of background rejection (FPR) at 50% signal efficiency (TPR)
ROC Curve
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g Significance: In a background dominant
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g 0.4 - reject while letting in a certain number of
7 signal samples (the more the better)
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J-JEPA Performance

Pretrain on JetClass and finetune on Top Tagging
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Visualizing learned features

UMAP and direct comparison show that the

features have good separation power
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Our results

1. J-JEPA improves the downstream performance compared with from scratch
(for most models)

Model Aggregation | Baseline 10%  Baseline Full  Finetuned 10%  Finetuned Full
Accuracy (%]

S)T-T Flatten 87.02+0.16  89.13 = 0.10 88.21 £ 0.55 89.95 £ 0.13

S)T-T Cls Attn 88.30 £0.18  89.67 £ 0.13 88.67 £ 0.02 90.00 £ 0.07
AE-S)T-T Flatten 88.92 +£0.15 90.01+£0.08 88.94+0.13 90.03 +£0.07
AE-S)T-T Cls Attn 88.84 £0.21 90.03 =0.05 88.82+0.11 90.00 £ 0.12
1/63(85 — 0.5)

S)T-T Flatten 40.50 = 1.26 :70.70£1.46 : 53.67 £9.97 :90.06 &= 3.80 :

SiT-T Cls Attn | 52.56 +1.54 :79.75+5.12 : 61.32+0.66 :91.51+1.20 *
AE-SjT-T Flatten 67.34 +£1.40 “O7T70E390 7047 +1.09 OTEXETTTT
AE-S)T-T Cls Attn 67.19 £1.54 9938 +2.80 68.25+1.64 95.47 £ 1.83
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Our results

2. Class attention blocks are more effective than simply flattening
(for most models)

Model Aggregation | Baseline 10%  Baseline Full  Finetuned 10%  Finetuned Full
Accuracy (%]
S)T-T Flatten 87.021+0.16  89.13 £ 0.10 88.21 £+ 0.55 89.95 £ 0.13

SjT-T Cls Attn | 88.30+£0.18 89.67+0.13  88.67+0.02  90.00 & 0.07
AE-SjT-T  Flatten 88.92+0.15 90.01+0.08 88.94+0.13 90.03+0.07
AE-SjT-T  ClsAttn | 88.84 £0.21 90.03 +0.05 88.82+0.11  90.00 + 0.12
1/63(63 — 0.5)

SiT-T Flatten [{40.50£1.26 70.70£1.46 ~ 53.67 £9.97  90.06 £ 3.80 :

SjT-T Cls Attn  |:52.56 +1.54 79.75+5.12  61.324+0.66  91.51 4 1.20 :
AE-SjT-T  Flatten | 67341409770 £3.90" "70.47 £1.09 " 9752° 171
AE-SjT-T  ClsAttn | 67.19+1.54 99.38+2.80 68.25+1.64 9547+ 1.83
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Our results

3. Our custom attention-based embeddings offer a significant improvement in
downstream performance compared with the traditional MLP-based embeddings

Model Aggregation | Baseline 10%  Baseline Full  Finetuned 10%  Finetuned Full
Accuracy | %]
SiT-T Flatten 87.52+0.16 89.13 £ 0.10 88.21 4+ 0.55 89.95 1+ 0.13
S)T-T Cls Attn 88.30 £0.18  89.67 £0.13 88.67 £ 0.02 90.00 £ 0.07
AE-S)T-T Flatten 88.92+0.15 90.01 £0.08 88.94+0.13 90.03 £0.07
AE-S)T-T Cls Attn 88.84 =0.21 90.03 £0.05 88.82+0.11 90.00 £ 0.12
1/63(63 — 0.5)

)T Flatten  |L40.50 £ 1,96 70,70 £ 146, 5367 £0.07 . 90,06 & 3.80 :
S)T-T Cls Attn 52.56 £1.54  79.75 £ 5.12 61.32 £+ 0.66 91.51 +1.20
AE-SJT-T  Flatten ;67,34 +£1.40  97.79 £390 7047 +1.09  97.52+1.71 :

AE-S)T-T Cls Attn 67.19 154 99.38+2.80 68.25+1.64 95.47 = 1.83
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Summary

 J-JEPA: A subject-based Joint-Embedding Predictive Architecture

* Pre-train J-JEPA on a large dataset and finetune the target encoder on a small
dataset achieves better performance than training the encoder from scratch,

» Different encoder architectures has different response to the J-JEPA pre-
training, but overall positive.

/
A set of

object
components




Ongoing Work

Implementing a particle-based JEPA
Training shorter models to reduce overfitting
Experiment different ways to provide information to the predictor

Generalize the JEPA scheme to different physics objects: particles, events,
detector readout, etc.

/
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object
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Intro to SSL strategies

As opposed to supervised learning, which is limited by the
availability of labeled data, self-supervised approaches can learn
from vast unlabeled data (2304.12210)

To learn useful features from the data itself without using labels
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https://arxiv.org/abs/2412.05333

Necessity of SSL in LHC Physics

e Simulations don't model the data perfectly: need a way to directly train on data

e |t will be even harder and more computationally expensive to produce high-quality
simulations for High Luminosity LHC (1803.04165)

-1
35.9 fb (13 TeV, 2016) - 35910 (13 TeV, 2016)
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%) T N
. . . = -
discriminant [CMS DP 2017-0095]
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First Goal of the Project

 To show that we can leverage SSL to learn powerful, generic, and transferable
features directly from vast unlabeled data.

] Fine-tune on
Traln on labeled

labeled simulation

simulation ]
dataset 1 Pretrain on

dataset 1

Train on unlabeled data Fine-tune on

labeled simulation | Iab_eled
simulation

dataset 2 dataset 2

Current workflow using only

Supervised Learning Workflow incorporating SSL
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Toward Foundation Model

CMS Experiment at the LHC, CERN k
Data recorded: 2016-Aug-13 16:51:13.749568 GMT TaS S
Run / Event / LS: 278803 / 465417690 / 259

H — bb

—_— *ff'h [/
’ =
s

Adaptation

Training

Foundation
Model
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Towards Foundation Model in HEP

Masked Particle
Type Prediction

Contrastive Learning:
Symmetry Augmentation
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Primary Goal of the Project

 Focus on studying the effect of scaling up the sizes of pretraining datasets on the

performance of foundation model.

Fine-tune on
labeled simulation
dataset 1

Fine-tune on
labeled simulation
dataset 2
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Outline

e Toward Foundation Model in HEP

e Goals of the Project

e Intro to JetCLR

e Transfer Learning: from JetClass to Top Tagging

e Scaling up pretraining dataset size

e Some technical detalls
o Classification head for finetuning: MLP vs Linear Projection
 Techniques to speed up training

 Ongoing and Future work
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Augmentations
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https://arxiv.org/abs/2108.04253

Model Architecture for encoder

e Started with a simple Transformer encoder

 Working on switching to more advanced architectures such as Particle Transformer
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Datasets

JetClass for unlabeled pretraining, Top Tagging for labeled finetuning

Dataset name Size Description Role in transfer learning
JetClass . Contains 10 Stand in for unlabeled “data”,
100 Million Jets . .
Dataset classes of jets use for pretraining
Top Tagging - Only Top and Stand in for labeled
1.2 Million Jets . . L . .
Dataset QCD jets simulation”, use for fine-tuning
oot H — bb o« H — cc ! H — gg ot H — 4q ot H — lvqq
20 Signal 20 Background
35-'.- 1' ‘ 351 ! . :.-'ii
1t — bqq 1 t — bly W — qq N Z —qq “1.q/g 2 | Il §1o—2 2] - N
10 A 10 A -‘ 10-2
: i Z_. . , , - I103 Z_'. | .:" 10-3
JetClass Dataset Top Tagging Dataset

2202.03772 45 1902.09914



Metrics

Accuracy: correctly predicted / total number of samples

Rejection: inverse of background rejection (FPR) at 50% signal efficiency (TPR)
ROC Curve
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>
o
S Significance: In a background dominant
o dataset, how much background you can

o
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o
IN
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reject while letting in a certain fraction of
signal samples (the more the better)

signal

0.2 A

0.0 I I | I I
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Pretraining on JetClass and fine-tuning on Top Tagging

The pre-trained model requires significantly fewer samples to
achieve high accuracy and rejection rate: higher data efficiency

* The averages and standard deviations over 5 trainings are shown in solid lines and
uncertainty bands, respectively

Model Accuracy Comparison Model Rejection Comparison
—e— Pre-trained — | —e— Pre-trained -
0.901 —e— From scratch 102 - —&— From scratch
0.85 -
> 5
© 0.80 =
v o
O D
< 0.75 o
101 -
0.70 |
10° 104 10° 10° 10° 104 10° 10°
N labeled training samples N labeled training samples
Pretrained: pretrained with 1M jets - Rejection: inverse of background rejection at 50% signal

efficiency



Pretraining on JetClass and fine-tuning on Top Tagging

The pre-trained model converges much faster: higher computational efficiency

* The averages and standard deviations over 5 trainings are shown in solid lines and
uncertainty bands, respectively

Model Training Comparison

N epochs it takes to reach within ~1% of final accuracy
500 -

—e— Pre-trained

—&— From scratch
400 -

300 -

N epochs

104 10° 10°
N labeled training samples
Pretrained: pretrained with 1M jets 48



tion

Rejec

Scaling up pretraining dataset size

By scaling up the pretraining dataset, the model demonstrated enhanced performance and

faster convergence: both data and computational efficiency improve as we use larger
datasets for pretraining

Background rejection at 50% signal efficiency Number of epochs required to reach within 1% of the
final accuracy
B T ] n ] T
- —— 1M [ — 1M
200[- —* 5M - 8 4001 —— 10M
 —— 10M > —— 5M
From scratch From scratch 1
— 200 7
Okt ] A A B o—llk L l Y
103 104 10° 10° 104 105 10°

Labeled training samples Labeled training samples

Rejection: inverse of background rejection at 50% signal
efficiency
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Conclusion

 Through large-scale pretraining followed by finetuning, our SSL approach has
demonstrated

* Enhanced data efficiency—requiring fewer labeled training samples to achieve
superior performance compared to the fully supervised approach.

 Greater computational efficiency—enabling the model to converge significantly
faster than its fully supervised counterpart.

e Both efficiencies increase as the pretraining dataset size increases.

 This paves the way for the use of unlabeled data in HEP and contributes to a better
understanding of the potential of SSL for scientific discovery.
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Ongoing and Future work

e Ongoing work

e Study the effectiveness of more advanced architectures like the Particle Transformer as the backbone
encoder

e Pretrain on JetClass v2, an even larger dataset, or the Aspen Open Jets dataset, a real CMS dataset
e Evaluate on different SSL strategies beyond JetCLR
e EXxplore other physically motivated augmentations

e Pairing the two jets from dijet events

e Using two subjets clustered with smaller radii

e Using tracks and clusters as two views of the same jet
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Example: The I-JEPA Architecture
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Details of the Top Tagging Dataset

The top signal and mixed quark-gluon background jets are produced with using Pythia8 [25]
with its default tune for a center-of-mass energy of 14 TeV and ignoring multiple interactions
and pile-up. For a simplified detector simulation we use Delphes [26]| with the default ATLAS
detector card. This accounts for the curved trajectory of the charged particles, assuming a
magnetic field of 2 T and a radius of 1.15 m as well as how the tracking efficiency and momen-
tum smearing changes with 7. The fat jet is then defined through the anti-kr algorithm |27
in FastJet 28] with R = 0.8. We only consider the leading jet in each event and require

pr; =550 .... 650 GeV . (1)

For the signal only, we further require a matched parton-level top to be within AR = 0.8,
and all top decay partons to be within AR = 0.8 of the jet axis as well. No matching is
performed for the QCD jets. We also require the jet to have |n;| < 2. The constituents are
extracted through the Delphes energy-flow algorithm, and the 4-momenta of the leading 200
constituents are stored. For jets with less than 200 constituents we simply add zero-vectors.

190209914



Details of the JetClass Dataset

Simulation setup. Jets in this dataset are simulated with
standard Monte Carlo event generators used by LHC ex-
periments. The production and decay of the top quarks
and the W, Z and Higgs bosons are generated with MAD-
GRAPHS_aMC@NLO (Alwall et al., 2014). We use PYTHIA
(Sjostrand et al., 2015) to evolve the produced particles, 1.e.,
performing parton showering and hadronization, and pro-
duce the final outgoing particles'. To be close to realistic
jets reconstructed at the ATLAS or CMS experiment, detec-
tor effects are stmulated with DELPHES (de Favereau et al.,
2014) using the CMS detector configuration provided in
DELPHES. In addition, the impact parameters of electrically
charged particles are smeared to match the resolution of the
CMS tracking detector (CMS Collaboration, 2014). Jets
are clustered from DELPHES E-Flow objects with the anti-
kt algorithm (Cacciari et al., 2008; 2012) using a distance
parameter i = 0.8. Only jets with transverse momentum
in 500-1000 GeV and pseudorapidity |n| < 2 are consid-
ered. For signal jets, only the “high-quality’ ones that fully
contain the decay products of initial particles are included?.

2202.03772 56



Subjet Index

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Transformer Embedding Layer Effects

Correlation between subjets is reduced
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WIP: Study of how to provide the additional info

Pre-train and fine-tune on Top Tagging

Experiments

Encode subjet
coordinates at both
(encoder and predictor)

Encode coordinates only
at predictor

Encode pT ranking at
both

Use a MLP to encode
subjet coordinates

Inverse
Rejection
Power

63.99

45.33

45.02

Converging...
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Study of subjet embedding

Pre-training and fine-tuning on Toptagging dataset

Inverse Rejection

Dimension Reduction

Dimension Expansion

Power
Attention 86.42 73.81
MLP 73.55 63.99
Linear 44.31
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Strategies to prevent collapse

Targets being padded subjets e We only select targets from
non-empty subjets
Most particles are padded so

all subjets look the same to e \We implemented Attention-
the model based embedding

——> |
Information bottleneck in the e \We decreased the size of the
predictor is too big predictor dimension
Dataset was not normalized ° We normalized the dataset

Plus: EMA updating the Target Encoder
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J-JEPA: Splitting jets into subjets

number of subjets per jet

Percentage of Subjets per Jet (10% Sample) by Algorithm

1 CA
] kt
I antikt

0 5 10 15 20 25 30
Number of Subjets 61



J-JEPA: Splitting jets into subjets
number of particles per subjet

Percentage of Constituents per Subjet (10% Sample) by Algorithm

1 CA
1 kt
T antikt

0 10 20 30 40 50 60 70

Number of Constituents -
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Techniques to speed up training

Steps we took to ensure the model finished pretraining within a
reasonable amount of time

e Removed unnecessary CPU-GPU synchronizations, especially read-out from GPU
for recording losses

e Modified the default model dimensions to be multiples of 8 to make use of CUDA
matrix multiplication kernels more efficiently

 Fused point-wise operations into a single CUDA kernel when computing the
contrastive loss.

e Utilized the Automatic Mixed Precision (AMP) package

e Measures to mitigate the numerical instability caused by using AMP in backup.
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LHC and Jet Tagging

Proton_bea ms
5 Higgs boson?

Outgoing particles:

Top quark?

W or Z boson?

Collision point .................................................. Gluon?

Jet tagging

Collision event Bottom quark?

66 1709.04464



Measures to mitigate the numerical instability
caused by using AMP

 Monitor loss and gradient values regularly with tensorboard
e Gradient clipping with a maximum norm of 0.1
e Set the € parameter to 10%(—4) in the Adam optimizer.

 Manually run certain parts of the code in full precision



Pretraining on JetClass and fine-tuning on Top Tagging

The pre-trained model shows a much clearer separation between signal and background
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Top Tagging

Pretraining on JetClass and fine-tuning on

The pre-trained model shows a much clearer separation between signa

and background

I
f Jet Features

ION O

AL RN
v... ......JVA %s 3 A G 4 oy
.1“‘z.v. zw..-. iyt 4 iy .. ty ur;,..l \ ik
-t ARy et .um’.sw)\ AT 4 i 9
v T . p 3
oy e .
- —
—

-

YR D ot SRS
3 ] T »@um 53
; V&..
3 ; %ﬂ .. .\.ﬂﬂ\m e
AR Y 24 A Hy 3

:
Pre-trained

t-SNE Visua

69

tion of Jet Features

1Za

Trained from scratch

t-SNE Visual



Pretraining on JetClass and fine-tuning on Top Tagging

Despite limited data, the pre-trained model achieves higher accuracy

and converges faster

Model accuracy comparison
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A linear layer was added to the
encoder for fine-tuning.

Blue curve was pre-trained on
1% of the JetClass dataset (1
Million jets) with SImCLR

Red curve was trained from
scratch

Both models share the same
hyperparameters

Both models are trained with
100K jets (1/12 of the Top
Tagging Dataset)



Accuracies of two trials trained with 1000 labeled samples
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The CMS detector coordinate system

\ center of
N % the LHC
e ATLAS

https://tikz.net/axis3d_cms/


https://tikz.net/axis3d_cms/

Details of the Top Tagging Dataset

The top signal and mixed quark-gluon background jets are produced with using Pythia8 [25]
with its default tune for a center-of-mass energy of 14 TeV and ignoring multiple interactions
and pile-up. For a simplified detector simulation we use Delphes [26]| with the default ATLAS
detector card. This accounts for the curved trajectory of the charged particles, assuming a
magnetic field of 2 T and a radius of 1.15 m as well as how the tracking efficiency and momen-
tum smearing changes with 7. The fat jet is then defined through the anti-kr algorithm |27
in FastJet 28] with R = 0.8. We only consider the leading jet in each event and require

pr; =550 .... 650 GeV . (1)

For the signal only, we further require a matched parton-level top to be within AR = 0.8,
and all top decay partons to be within AR = 0.8 of the jet axis as well. No matching is
performed for the QCD jets. We also require the jet to have |n;| < 2. The constituents are
extracted through the Delphes energy-flow algorithm, and the 4-momenta of the leading 200
constituents are stored. For jets with less than 200 constituents we simply add zero-vectors.

1902.09914



Details of the JetClass Dataset

Simulation setup. Jets in this dataset are simulated with
standard Monte Carlo event generators used by LHC ex-
periments. The production and decay of the top quarks
and the W, Z and Higgs bosons are generated with MAD-
GRAPHS_aMC@NLO (Alwall et al., 2014). We use PYTHIA
(Sjostrand et al., 2015) to evolve the produced particles, 1.e.,
performing parton showering and hadronization, and pro-
duce the final outgoing particles'. To be close to realistic
jets reconstructed at the ATLAS or CMS experiment, detec-
tor effects are stmulated with DELPHES (de Favereau et al.,
2014) using the CMS detector configuration provided in
DELPHES. In addition, the impact parameters of electrically
charged particles are smeared to match the resolution of the
CMS tracking detector (CMS Collaboration, 2014). Jets
are clustered from DELPHES E-Flow objects with the anti-
kt algorithm (Cacciari et al., 2008; 2012) using a distance
parameter i = 0.8. Only jets with transverse momentum
in 500-1000 GeV and pseudorapidity |n| < 2 are consid-
ered. For signal jets, only the “high-quality’ ones that fully
contain the decay products of initial particles are included?.

2202.03772



Training on Top Tagging

Are the features correlated?

Distribution of Pearson Correlation Coefficients for Top features Distribution of Pearson Correlation Coefficients for QCD features

Mean = 0.25 Mean = 0.44
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