

A big "class" on jet physics

(Learning rich jet representation via o(100) classes to accelerate the LHC resonance search programme)

Congqiao Li (李聪乔), Peking University

This talk is mainly based on

Accelerating LHC resonant search via <u>Sophon</u>: arXiv:2405.12972 [Github] [Dataset] [Model] [Google Colab]

Q Development of *Global Particle Transformer (GloParT)* 3 within CMS

Larger than Larger: Large AI Models at the Frontiers of Experimental High-Energy Physics, Beijing 7 January, 2025

1

Let's begin with stories ...

The Large Hadron Collider

COURTESY: CERN

Large Hadron Collider Grand collisionneur de hadrons

BUSINESS

INSIDER

In the age of big data...

- Data analysis is a crucial subjet in the particle physics of this age
- Novel engineering solutions are appearing!
- The advent of deep learning / AI is expected to play a transformative role

Large AI Model × HEP-ex workshop

A big "class" on jet physics

Quick example: how to search for HH→4b

Boosted regime as a booster?

Boosted regime as a booster?

Exp (obs) 95% CL: 0.66 (0.64) $< \kappa_{2V} < 1.37$ (1.41)

1.5

0.5

0

-0.5

-1

κ_{2V}

2.5

Boosted regime as a booster?

Outline

→ I. Backgrounds

- overview of boosted-jet taggers at the LHC
- what's next?

→ II. Introducing Sophon

- "large model for large-scale classification"; how are we led there?
- Sophon details & performance benchmark

→ III. Implications for LHC resonance search

- model-specific and model-agnostic approaches
- Global Particle Transformer, the next-generation model in CMS
- More opportunities by Sophon/GloParT

→ IV. Open discussion

datasets, training targets and scaling capabilities

Inspiring progress on H→bb/cc̄ tagging

CMS-PAS-BTV-22-001

ATL-PHYS-PUB-2023-021

Background rejection D_{Xbb} ATLAS Simulation Preliminary 10° CMS Simulation Preliminary \sqrt{s} = 13 TeV, Anti- $k_{\rm t}$ R=1.0 UFO jets 2 VR *D*^{GN2} (13 TeV) 10³ $p_{\rm T} > 250 \text{ GeV}, 50 < m_{\rm I} < 200 \text{ GeV}, |\eta| < 2$ D^{GN2X} Hbb JINST 15 (2020) P06005 **Background efficiency** $H \rightarrow b\overline{b} vs QCD$ (13 TeV) $p_T > 600 \text{ GeV}, \text{ lnl} < 2.4$ Background efficiency CMS $90 < m_{SD} < 140 \text{ GeV}$ 10-1 Simulation 10 Higgs boson vs. QCD multijet 10- $1000 < p_{\tau}^{gen} < 1500 \text{ GeV}, \, l\eta^{gen} l < 2.4$ Top 90 < m^{AK8}_{SD} < 140 GeV Multiie 10 10^{-2} 2.0 10-2 Top ratio 10-3 10⁻³ ParticleNet-MD bbvsQCD - DeepAK8 Multijet ratio DeepDoubleBvL --- DeepAK8-MD -BEST DeepAK8-MD bbvsQCD -double-b double-b 10 10 0.8 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.8 1.0 0.6 0.7 0.8 0.5 0.9 Signal efficiency $H(b\bar{b})$ efficiency Signal efficiency Transformer-based DeepAK8 \rightarrow ParticleNet: Comparing with early GN2X tagger: x5 📈 QCD background rejection approaches ~x3 📈 QCD and x2 Another ~x5 📈 top background improvement achieved rejection

Congqiao Li (Peking University)

Current boosted taggers in ATLAS/CMS

CMS: DeepAK8 and ParticleNet algorithms

JINST 15 (2020) P06005

	0	utput	
	Category	Label	
		H (<mark>bb</mark>)	
	Higgs	H (<mark>cc</mark>)	
		H (VV*→qqqq)	
		top (<mark>bc</mark> q)	
ents	Ton	top (<mark>b</mark> qq)	
	юр	top (<mark>bc</mark>)	
		top (<mark>b</mark> q)	
	147	W (cq)	
۱I	~~~	W (qq)	
Ш		Z (<mark>bb</mark>)	
	z	Z (cc)	
Ш		Z (qq)	
ut		QCD (<mark>bb</mark>)	
		QCD (cc)	
	QCD	QCD (<mark>b</mark>)	
		QCD (c)	
		QCD (others)	

DeepAK8-MD, ParticleNet-MD, and DeepDoubleX algorithms

CMS-PAS-BTV-22-001

- Focus on variable-mass resonance decays
- X→bb, cc, qq and QCD (5 subclasses)

GN2X tagger

ATL-PHYS-PUB-2023-021

Jackson's slides

 including flat-mass H→bb, cc and t→bqq samples, with QCD

GN2X Outputs

- GN2X adds a H → cc output class in addition to the H → bb, top and QCD classes from the previous tagger
- A discriminant score is built using a weighted log likelihood ratio similar to what's used for small-R tagging
- GN2X also includes the same auxiliary vertexing and track origin classification tasks present in GN1/GN2

$$D_{\text{Hbb}}^{\text{GN2X}} = \ln\left(\frac{p_{\text{Hbb}}}{f_{\text{Hcc}} \cdot p_{\text{Hcc}} + f_{\text{top}} \cdot p_{\text{top}} + (1 - f_{\text{Hcc}} - f_{\text{top}}) \cdot p_{\text{QCD}}}\right)$$

How can we accelerate the pace?

CMS: DeepAK8 and GN2X tagger DeepAK8-MD, ParticleNet-ATL-PHYS-PUB-2023-021 ParticleNet MD, and DeepDoubleX • including flat-mass $H \rightarrow bb$, cc and $t \rightarrow bqq$ algorithms algorithms samples, with QCD JINST 15 (2020) P06005 CMS-PAS-BTV-22-001 Jackson's slides Output **GN2X Outputs** Focus on variable-mass Category Label resonance decays ATLAS Simulation Preliminar \sqrt{s} = 13 TeV, Anti- $k_{\rm t}$ R=1.0 UFO jets $p_{\rm T}$ > 250 GeV, 50 < $m_{\rm J}$ < 200 GeV, $|\eta|$ < 2 --- H(cc) H (bb) GN2X adds a H \rightarrow cc output class in addition to the H \rightarrow bb, • X→bb, cc, qq and QCD - Multije Higgs H (cc) top and QCD classes from the previous tagger //// stat uncerta H (VV*→qqqq) (5 subclasses) 0.05 A discriminant score is built using a weighted log likelihood top (bcq) ratio similar to what's used for small-R tagging 0.04 top (bqq) 0.03 Top • GN2X also includes the same auxiliary vertexing and track top (bc) rents 0.02 origin classification tasks present in GN1/GN2 top (bq) W (cq) W W (qq) $\left(\frac{p_{\text{Hbb}}}{f_{\text{Hcc}} \cdot p_{\text{Hcc}} + f_{\text{top}} \cdot p_{\text{top}} + (1 - f_{\text{Hcc}} - f_{\text{top}}) \cdot p_{\text{QCD}}}\right)$ Z (bb) Ζ Z (cc) All final states! but Major types Index range Label names Resonant jets: 0 - 14bb, cc, ss, gq, bc, cs, bq, cq, sq, qq, ee, $\mu\mu$, $\tau_{\rm h}\tau_{e}$, $\tau_{\rm h}\tau_{\mu}$, $\tau_{\rm h}\tau_{h}$

$X \to 2 \text{ prong}$		
Resonant jets: $X \rightarrow 3 \text{ or } 4 \text{ prong}$	15–160	$bbbb, bbcc, bbss, bbqq, bbgg, bbee, bb\mu\mu, bb\tau_h\tau_e, bb\tau_h\tau_\mu, bb\tau_h\tau_h, bbb, bbc, bbs, bbq, bbg, bbe, bb\mu, cccc, ccss, ccqq, ccgg, ccee, cc\mu\mu, cc\tau_h\tau_e, cc\tau_h\tau_\mu, cc\tau_h\tau_h, ccb, ccc, ccs, ccq, ccg, cce, cc\mu, ssss, ssqq, ssgg, ssee, ss\mu\mu, ss\tau_h\tau_e, ss\tau_h\tau_\mu, ss\tau_h\tau_h, ssb, ssc, sss, ssq, ssg, sse, ss\mu, qqqq, qqgg, qqee, qq\mu\mu, qq\tau_h\tau_e, qq\tau_h\tau_\mu, qq\tau_h\tau_h, qqb, qqc, qqs, qqq, qqg, qqe, qq\mu, gggg, ggee, gg\mu\mu, gg\tau_h\tau_e, gg\tau_h\tau_\mu, gg\tau_h\tau_h, ggb, ggc, ggs, ggq, ggg, gge, gg\mu, bee, cee, see, qee, gee, b\mu\mu, c\mu\mu, s\mu\mu, q\mu\mu, g\mu\mu, b\tau_h\tau_e, c\tau_h\tau_e, s\tau_h\tau_e, q\tau_h\tau_e, g\tau_h\tau_e, b\tau_h\tau_\mu, c\tau_h\tau_\mu, s\tau_h\tau_\mu, q\tau_h\tau_\mu, g\tau_h\tau_\mu, b\tau_h\tau_h, c\tau_h\tau_h, s\tau_h\tau_h, qqdb, qqqc, qqqs, bbcq, ccbs, ccbq, ccsq, sscq, qdbc, qqbs, qqcs, bcsq, bcs, bcq, bsq, csq, bce\nu, cse\nu, bqe\nu, cqe\nu, sqev, qqe\nu, bc\mu\nu, cs\mu\nu, bq\mu\nu, cq\mu\nu, sq\mu\nu, qq\mu\nu, bc\tau_e\nu, cs\tau_e\nu, bq\tau_e\nu, cq\tau_e\nu, sq\tau_e\nu, bc\tau_\mu\nu, cs\tau_\mu\nu, bq\tau_h\nu, cq\tau_\mu\nu, sq\tau_\mu\nu, bc\tau_h\nu, cs\tau_h\nu, bq\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, bc\tau_h\nu, cs\tau_h\nu, bq\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, qd\tau_h\nu, bc\tau_h\nu, cs\tau_h\nu, bq\tau_h\nu, cq\tau_h\nu, qq\tau_h\nu, bc\tau_h\nu, cs\tau_h\nu, bq\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, qd\tau_h\nu, bc\tau_h\nu, cst\mu, bqt_h\nu, cq\tau_h\nu, sq\tau_h\nu, bc\tau_h\nu, cst\mu, bqt_h\nu, cq\tau_h\nu, sq\tau_h\nu, bc\tau_h\nu, csth, bqt_h\nu, cq\tau_h\nu, sq\tau_h\nu, bc\tau_h\nu, csth, bqt_h\nu, cq\tau_h\nu, sq\tau_h\nu, qq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, qq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, qq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, qq\tau_h\nu, bc\tau_h\nu, bqt_h\nu, cq\tau_h\nu, sq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, bq\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, qq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, dq\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, bq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, qq\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, qq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, qq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, qq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, dq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, bq\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, qq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, dq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, sq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, cq\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu, bc\tau_h\nu$
QCD jets	161–187	bbccss, bbccs, bbcs, bbcs, bbcs, bbc, bbss, bbs, bb

How can we accelerate the pace?

Sophon (智子): Signature-Oriented Pre-training for Heavy-resonant ObservatioN

	Index range	Label names
$X \to 2 \text{ prong}$	0-14	$bb, cc, ss, qq, bc, cs, bq, cq, sq, gg, ee, \mu\mu, \tau_{\rm h}\tau_e, \tau_{\rm h}\tau_\mu, \tau_{\rm h}\tau_{\rm h}$
Resonant jets: $X \to 3 \text{ or } 4 \text{ prong}$	15–160	bbbb, bbcc, bbss, bbqq, bbgg, bbee, bbµµ, bb $\tau_h \tau_e$, bb $\tau_h \tau_\mu$, bb $\tau_h \tau_h$, bbb, bbc, bbs, bbq, bbg, bbe, bbµ, cccc, ccs, ccq, ccg, cce, ccµ, ssss, ssqq, ssgg, ssee, ssµµ, ss $\tau_h \tau_e$, ss $\tau_h \tau_\mu$, ss $\tau_h \tau_h$, ssb, ssc, sss, ssq, ssg, sse, ssµ, qqqq, qqgg, qqee, qqµµ, qq $\tau_h \tau_e$, qq $\tau_h \tau_h$, qq $t_h \tau_h$, qqb, qqc, qqs, qqq, qqg, qqe, qqµ, gggg, ggee, ggµµ, gg $\tau_h \tau_e$, gg $\tau_h \tau_\mu$, gg $\tau_h \tau_h$, gg $\tau_h \tau_h$, gg $\tau_h \tau_e$, st $\tau_h \tau_h$, st $\tau_h \tau_h$, gt $\tau_h \tau_h$, gt $\tau_h \tau_h$, qt $\tau_h \tau_h$, q
QCD jets	161–187	bbccss, bbccs, bbcs, bbcs, bbcs, bbc, bbss, bbs, bb

→ Major concerns:

- Will the model achieve the best performance for each specific task?
- What can we use this model for, beyond its identification task supported by its final states?

How can we accelerate the pace?

Sophon (智子): Signature-Oriented Pre-training for Heavy-resonant ObservatioN

	Index range	Label names
	0–14	$bb,cc,ss,qq,bc,cs,bq,cq,sq,gg,ee,\mu\mu, au_{ m h} au_{e}, au_{ m h} au_{\mu}, au_{ m h} au_{ m h}$
$X \rightarrow 2 \text{ prong}$		
Resonant jets: $X \to 3 \text{ or } 4 \text{ prong}$	15–160	bbbb, bbcc, bbss, bbqq, bbgg, bbee, bbµµ, bb $\tau_h \tau_e$, bb $\tau_h \tau_\mu$, bb $\tau_h \tau_h$, bbb, bbc, bbs, bbq, bbg, bbe, bbµ, cccc, ccs, ccq, ccg, cce, ccµ, ssss, ssqq, ssgg, ssee, ssµµ, ss $\tau_h \tau_e$, ss $\tau_h \tau_\mu$, ss $\tau_h \tau_h$, ssb, ssc, sss, ssq, ssg, sse, ssµ, qqqq, qqgg, qqee, qqµµ, qq $\tau_h \tau_e$, qq $\tau_h \tau_h$, qq $t_h \tau_h$, qq $t_h \tau_h$, qq $t_h \tau_h$, qq $t_h \tau_h$, qd $t_h \tau_h$, qd $t_h \tau_h$, sth the cee, see, qee, gee, bµµ, cµµ, sµµ, gg $\tau_h \tau_h$, gg $\tau_h \tau_h$, gg $t_h \tau_h$, gg $t_h \tau_e$, sth the cee, see, qee, gee, bµµ, crh the sth the cee, see, qqe, gee, bµµ, crh the sth the s
QCD jets	161–187	bbccss, bbccs, bbcs, bbcs, bbcs, bbc, bbss, bbs, bb

➔ Major concerns:

Yes, it does. The Particle Transformer can support each task to reach its optimal performance

We can regard it as a true **"based model"** and fine-tune it for wider ranges of downstream tasks

- ✤ Will the model achieve the best performance for each specific task?
- What can we use this model for, beyond its identification task supported by its final states?

Propose "Large model for large-scale classification"

View from jet tagging

- → Instead of training dedicated jet taggers, we consider multiclass classification with N(class) reaches o(100)
 - statistical insights: an ideal multi-class classifier is a stack of ideal binary classifiers
- → The model should be **large** → carry enough capacity
- → The classes should be comprehensive → tagging ability can be further generalized by fine-tuning

Propose "Large model for large-scale classification"

View from jet tagging

- → Instead of training dedicated jet taggers, we consider multiclass classification with N(class) reaches o(100)
 - statistical insights: an ideal multi-class classifier is a stack of ideal binary classifiers
- → The model should be **large** → carry enough capacity
- → The classes should be comprehensive → tagging ability can be further generalized by fine-tuning

View from a pre-training solution

- → Based on a comprehensive jet dataset, we hope to pre-train a base model to facilitate all LHC analyses exploring the large-R jet
- → Set the training task: let the model learn to connect
 "what a jet is like" to "which truth signature the jet reveals"
 (= jet label in our case)
 - ◆ "jet labels" are simple signatures to explore
 → pre-training it as a classifier is just a starting point in this sense!

Statistical essence of jet tagging problem

→ Question: where is the limit of jet tagging?

→ Answer: the probability density ratio of two classes provides the optimal tagging

Statistical property of multi-class classifier

→ Statistical theory shows that:

A <u>multi-class</u> classifier with minimum <u>cross-</u> <u>entropy loss</u> <u>estimates the probability ratios</u> on the input classes:

$$g_i(\mathbf{x}) = \frac{p(\text{class} = i | \mathbf{x})}{\sum_{j=1}^{N_{\text{out}}} p(\text{class} = j | \mathbf{x})}$$

hence it contains all the information the ideal N(N-1) binary classifiers can do Large AI Model × HEP-ex workshop

Statistical property of multi-class classifier

Large AI Model × HEP-ex workshop

Statistical property of multi-class classifier

A glance into fine-tuning spirits

Large AI Model × HEP-ex workshop

Introducing Sophon (智子)

arXiv:2405.12972

THREE-BOD

https://github.com/jet-universe/sophon

- → Signature-Oriented Pre-training for Heavy-resonant ObservatioN
- → the model is based on Particle Transformer (**ParT**) architecture
- → a pre-trained model on <u>a newly developed comprehensive dataset</u>: JetClass-II

A big "class" on jet physics

finely categorized labels:

contributed final states:

bb/cc/ss/qq/gg/ee/µµ/тт bc/bq/cs/cq all combination of Y decays, resulting to 4-prong or 3-prong

Key property: we do not focus on any specific *X* and *Y* masses Their masses are variables: ranges from 20-500 GeV

Introducing Sophon (智子)

- https://github.com/jet-universe/sophon
- → Signature-Oriented Pre-training for Heavy-resonant ObservatioN
- → the model is based on Particle Transformer (**ParT**) architecture
- → a pre-trained model on <u>a newly developed comprehensive dataset</u>: **JetClass-II**
 - *finely categorized labels:*

Major types	Index range	Label names All fin	nal states!
Resonant jets: $X \to 2$ prong	0–14	$bb,cc,ss,qq,bc,cs,bq,cq,sq,gg,ee,\mu\mu,\tau_{\rm h}\tau_e,\tau_{\rm h}\tau_\mu,\tau_{\rm h}\tau_{\rm h}$	
Resonant jets: $X \rightarrow 3 \text{ or } 4 \text{ prong}$	15–160	bbbb, bbcc, bbss, bbqq, bbgg, bbee, bbµµ, bb $\tau_h \tau_e$, bb $\tau_h \tau_\mu$, bb $\tau_h \tau_h$, bbb, bbc, bbs, bbq, bbg, bbe, ccss, ccqq, ccgg, ccee, ccµµ, cc $\tau_h \tau_e$, cc $\tau_h \tau_\mu$, cc $\tau_h \tau_h$, ccb, ccc, ccs, ccq, ccg, cce, ccµ, ssss, ssee, ssµµ, ss $\tau_h \tau_e$, ss $\tau_h \tau_\mu$, ss $\tau_h \tau_h$, ssb, ssc, sss, ssq, ssg, sse, ssµ, qqqq, qqgg, qqee, qq qq $\tau_h \tau_\mu$, qq $\tau_h \tau_h$, qqb, qqc, qqs, qqq, qqg, qqe, qqµ, gggg, ggee, ggµµ, gg $\tau_h \tau_e$, gg $\tau_h \tau_e$, g $\tau_h \tau_e$, g $\tau_h \tau_e$, b $\tau_h \tau_\mu$, c $\tau_h \tau_\mu$, s $\tau_h \tau_\mu$, q $\tau_h \tau_\mu$, g $\tau_h \tau_e$, b $\tau_h \tau_\mu$, s $\tau_h \tau_\mu$, q $\tau_h \tau_\mu$, g $\tau_h \tau_e$, b $\tau_h \tau_\mu$, c $\tau_h \tau_\mu$, s $\tau_h \tau_\mu$, q $\tau_h \tau_\mu$, g $\tau_h \tau_\mu$, c $\tau_h \tau_\mu$, s $\tau_h \tau_\mu$, q $\tau_h \tau_\mu$, g $\tau_h \tau_\mu$, c $\tau_h \tau_\mu$, s $\tau_h \tau_\mu$, q $\tau_h \tau_\mu$, g $\tau_h \tau_\mu$, cc $\tau_e \nu$, see, dee, bcsq, bcs, bcq, bsq, csq, bcev, csev, bqev, bbcq, ccbs, ccbq, ccsq, sscq, qqbc, qqbs, qqcs, bcsq, bcs, bcq, bsq, csq, bcev, csev, bqev, qqev, bcµv, csµv, bqµv, cqµv, sqµv, qqµv, bc $\tau_e \nu$, cs $\tau_e \nu$, bq $\tau_e \nu$, cq $\tau_e \nu$, sq $\tau_e \nu$, qq $\tau_e \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_\mu \nu$, de $\tau_\mu \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_\mu \nu$, de $\tau_\mu \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_h \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_h \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_h \nu$, bc $\tau_h \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_h \nu$, bc $\tau_h \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_\mu \nu$, bc $\tau_h \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_h \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_h \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_h \nu$, bc $\tau_h \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_h \nu$, bc $\tau_h \nu$, cs $\tau_h \nu$, bq $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_h \nu$, bc $\tau_h \nu$, bc $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_h \nu$, bc $\tau_h \nu$, bc $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_h \nu$, bc $\tau_h \nu$, bc $\tau_h \nu$, cq $\tau_h \nu$, sq $\tau_h \nu$, bc $\tau_h \nu$, bc $\tau_h \nu$, cq $\tau_h \nu$, bq $\tau_h \nu$, bc $\tau_h \nu$, bc $\tau_h \nu$, cq $\tau_h \nu$, bq $\tau_h \nu$, bc $\tau_h \nu$, bc $\tau_h \nu$, cq $\tau_h \nu$, bc $\tau_h \nu$, bc $\tau_h \nu$, cq $\tau_h \nu$, bc $\tau_h \nu$, bc $\tau_h \nu$, bc $\tau_h \nu$, bc $\tau_h \nu$, cq	$e, bb\mu, cccc, ssqq, ssgg, \mu\mu, qq au_{ m h} au_e, ggb, T_{ m h} au_h, ggb, T_{ m h} au_e, s au_{ m h} au_e, s au_{ m h} au_e, qqqc, qqqs, cqe u, sqe u, cs au_{\mu} u, cs au_{\mu} u, cs au_{\mu} u, cs au_{\mu} u, cs au_{ m h} u, c$
QCD jets	161–187	bbccss, bbccs, bbcc, bbcss, bbcs, bbc, bbss, bbs, bb	b, ccss, ccs,

Sophon: performance benchmark

- Apply tagger selection
- Check discrimination power of
 - X (200 GeV) → **bb** signal vs. all backgrounds

Sophon (training on 188 classes) has best performance

discr(X
$$\rightarrow bb$$
 vs. QCD) = $\frac{g_{X \rightarrow bb}}{g_{X \rightarrow bb} + \sum_{l=1}^{27} g_{\text{QCD}_l}}$

- Performance gain does come from largescale classification (compared to Sophon* (42 classes))
- ParT and ParticleNet for binary classification: they represent the best performance we can reach in experiment now

arXiv:2405.12972

Sophon: performance benchmark

arXiv:2405.12972

Transfer learning ability

(adapt the tagger to a new classification task)

- Sophon (training on 188 classes) reaches the best performance after fine-tuned (via transfer learning)
- ParT and ParticleNet for binary X→bs vs QCD classification: they reveal the best performance we can reach in the experiment now

Sophon: close to real experimental performance?

★ marks
QCD BKG rej at
signal eff. = 60%

CMS results CMS-PAS-BTV-22-001

Sophon results

Congqiao Li (Peking University)

Implications for LHC resonance search

Using Sophon

Using Sophon

Use it out of the box!

Construct a dedicated discr. → perform a bump hunt

Can we rediscover the SM particles?

- → Simulate 40fb⁻¹ LHC collision events, $\sqrt{s} = 13$ TeV, nPU=50
 - focus on the large-R jet trigger (triggered with Σp_T threshold and trimmed mass)
 - abundant QCD backgrounds
 - rediscover Z/W/t particles simply from the large-R jet's mass spectrum

More heavy resonances

More heavy resonances

Sophon's transfer learning

- Transfer to uncovered tagging scenarios...
- facilitate anomaly detection (<u>weakly</u>supervised, autoencoder)...
- more potential to unlock!

Use it out of the box!

Construct a dedicated discr. → perform a bump hunt

Background: anomaly detection in weakly-supervised approach

JHEP 10 (2017) 174

Equivalent effect for training **S** vs **B**

- → Recall the early work: CWoLa (classification without labels) Hunting
 - allow to detect anomalies purely from data
 - train a classifier for mass window vs mass sideband (mixed sample 1 vs 2)
 - ★ many improved approaches in recent years → very active field

Background: anomaly detection in weakly-supervised approach

JHEP 10 (2017) 174

- → Recall the early work: CWoLa (classification without labels) Hunting
 - allow to detect anomalies purely from data
 - train a classifier for mass window vs mass sideband (mixed sample 1 vs 2)
 - ★ many improved approaches in recent years → very active field

Equivalent effect for training **S** vs **B**

 ${}^{3500}_{m_{JJ}}/{}^{2500}_{{
m GeV}}$

Congqiao Li (Peking University)

3000

With signal

10%

1%

0.2%

3500

Dijet search capabilities

"If signal events reach this point, **with initial Z=5**,

then we have already discovered the signal without needing to make a cut"

Dijet search capabilities

Combining Sophon's transfer learning (using Sophon's "knowledge") with AD marks a success

- More sensitive at low signal injection (even starting at ~0.6σ)
- Much improved S vs B distinguishability than using high-level input

Dijet search capabilities

CMS's path to develop Global Particle Transformer

Philosophy to develop Global Particle Transformer (GloParT) in CMS

Good probability density estimators

- What is *p*? the "differential cross section" of a process *A* on very high-dim space
- discriminating process A vs. B: estimate $p_A(\mathbf{x})/p_B(\mathbf{x})$ as best as we can
- need a model to **cover a variety of processes** *A*, *B*, *C*, *D*,

• one upstream pre-training, broad downstream applicability

CMS's path to develop Global Particle Transformer

Process	Final state/ prongness	heavy flavour	# of classes	9 4
H→VV	qqqq	00/10/20	3	$H \longrightarrow \bar{q} H \longrightarrow \bar{q}$
(full-hadronic)	qqq	00/10/20	3	- and a - and a
H→WW (comi loptonio)	evqq	0c/1c	2	q q
	μvqq		2	H q q q q q
	τ _e vqq		2	- anne q - anne q
	τ _µ vqq		2	ι $(\tau_{\ell}\nu)$
	τ _h ∨qq		2	
		bb	1	II. a
H→aa		СС	1	H q
11 '44		SS	1	\bar{q}
		qq (q=u/d)	1	$H = (\tau_{\ell}) = \ell$
	$\tau_e \tau_h$		1	
Η→ττ	$\tau_{\mu}\tau_{h}$		1	
	$\tau_h \tau_h$		1	
t→bW	bqq	1b + 0c/1c	2	$t \qquad q \qquad t \qquad f \qquad t \qquad f \qquad t \qquad f \qquad f \qquad f \qquad f \qquad f$
(hadronic)	bq		2	
	bev		1	
t→b\\/	bμv	1b	1	t t $(t_e t)$
t→bw (leptonic)	bτ _e v		1	$\rightarrow b$
	bτ _µ v		1	
	bτ _h v		1	
QCD		b	1	g q(b/c) q(b/c)
		bb	1	$\bar{q}(\bar{b}/\bar{c})$
		С	1	
		CC	1	
		others (light)	1	q doddor g

CMS-PAS-HIG-23-012

The early version (GloParT stage-1) has been released with the HH→bbWW search

- GloParT stage-1: a fatjet tagger for 37category classification
 - bbWW is the second work in the series of "boosted HH search"
 - tagging boosted H→WW→4q signature for the first time
 - set a tight constraint to κ_{2V}

g

00000

CMS's path to develop Global Particle Transformer

October, 2024

Discussion: Implications to ATLAS/CMS experiments?

- → "Sophon/GloParT methodology" releases a lot of new opportunities for future LHC experiments
 - it creates a "global large-R jet tagger" → bring benefits of the advanced NN to ~all hadronic final-state searches
 - Also viewed as a pre-trained jet model: a base model tailored for a broad range of LHC analyses
- → How to use the experimental version of the Sophon model?
 - used in conventional analyses: except for some well-calibrated nodes, the major challenge will be the calibration of peculiar signals (not easy to find proxies)
 - ★ analyses that only use data (simulation-free): develop discriminants dedicated to different signals → cut tight on the data events → peak finding on some mass observable (single jet / di-jet / jet+lepton...)
 - could be helpful in broadly searching for BSM resonance!
 - anomaly detection: weakly-supervised approaches / further improvements? (see backup for recent ATLAS/CMS results)

Discussion: JetClass-II and Sophon

arXiv:2405.12972

- → Developed the JetClass-II dataset and the Sophon model
- → JetClass-II [Hugging Face dataset] covers more comprehensive phase spaces and can be a good playground to develop future foundation models
 - can be used to train models for various jet-related tasks, e.g. jet classification, regression, generation or reconstruction...
 - its extensive phase space coverage and high statistics enable model developers to focus on specific regions of interest, or work with the entire dataset
 - generation details can be found in this <u>repository</u>
- → The Sophon model [Hugging Face] can be helpful in delivering future LHC pheno research
 - optimizing sensitivity for dedicated searches/anomaly detection/ novel paradigms
 - performing studies on the pheno dataset/model can inspire how we do real experiments at the LHC

Discussion: Close-up & Future Fantasies...

→ Future foundation/base model at LHC:

- which dataset will it be trained on (data/simulation)?
- which training targets (generation/classification/embedding prediction)?
- maybe, most importantly, which goal do we want to achieve?

→ Some specific (maybe preliminary) points to discuss

- SSL or signature-oriented pre-training?
 - In HEP, we do not lack data labels; simulation will also reach expected accuracy in future
 - should we do SSL, or supervised pre-training exploring all GEN labels, or both?
- foundation model requires a "foundation dataset"; which will be the foundation dataset in HEP?
 - should cover a vast phase-space (beyond SM simulation/real data): produced by philosophies like JetClass-II?
 - should be in the most general form, e.g. independent of experiments.. GEN-level data be the most suitable playground?
- The limit of scaling capabilities?
 - are we reaching the limit for classification tasks? Will fine-tuning from a large pre-trained model provide better results?

Backup

Recent ATLAS/CMS anomaly detection results

Recent ATLAS/CMS anomaly detection results

Autoencoder approach

input jet

reconstructed jet

a compressed jet representation

- → A view on (variational) autoencoder for anomaly detection
 - Training on SM background jet → anomalous jet will produce outlier latent scores → make selection on the score
- → Use autoencoder for anomaly detection has industry basis

Recent ATLAS/CMS anomaly detection results

- → ATLAS applies full-event-level anomaly detection
- → Train "autoencoder" and select on the score
- → Search in 9 invariant masses including dijet, di-b-jet, with three anomaly regions

7 January, 2025

Evolution of jet NNs

feed-forward NN (high-level inputs) •••••• 1D/2D CNN, RNN (low-level inputs) ••••• graph NN, Transformers ••••• ??

(low-level inputs)

Shallow networks

 Using high-level features directly as input to a shallow network

Evolution of jet NNs

feed-forward NN (high-level inputs) •••• •••• 1D/2D CNN, RNN (low-level inputs)

Shallow networks

 Using high-level features directly as input to a shallow network

Deep NN with low-level inputs

- ✦ Using particle-level features
- Input data structure determines the type of networks
 - jet as a image (fixed-grid data structure)
 - jet as a sequence → 1D CNN or RNN

Typical RNN

......??

graph NN, Transformers

(low-level inputs)

Evolution of jet NNs

feed-forward NN (high-level inputs) ••• ••• 1D/2D CNN, RNN (low-level inputs)

graph NN, Transformers

Shallow networks

 Using high-level features directly as input to a shallow network

Deep NN with low-level inputs

Input data structure determines

• jet as a image (fixed-grid data

• jet as a sequence \rightarrow 1D CNN or

Using particle-level features

the type of networks

structure)

RNN

Graph structure

- ✦ Graph neural networks
 - treat a jet as a permutational-invariant set of particles (or, point cloud)
 - build "edges" between particles
- Transformer networks
 - modern architectural designs; like a full-connected graph

 Typical CNN

Typical graph

??

GNNs and Transformers

- → Modern architectures done right: (which types of DNNs better suit the particle-format data?)
 - inductive bias: particle-format data has their intrinsic symmetries
 - permutational-invariant symmetry: GNN is better than CNN/RNN; native Transformer (w/o positional encoding)
 - Lorentz symmetry: adding "pairwise particle masses" to input features
 - let particles interact:
 - "message passing" in GNNs and attention mechanism in Transformers
 - scale better with data and model size
 - Transformers!

