

李一鸣 LI Yiming 中国科学院高能物理研究所 (liyiming@ihep.ac.cn)

Institute of High Energy Physics, CAS

第三届BESIII-BelleII-LHCb粲强子物理联合讨论会 @ 长沙 The 3rd BESIII-BelleII-LHCb Charm Physics Workshop, Jun 2025

Content

■ Upgrade I ... or the status of upgraded LHCb detector

Future plan: Upgrade II

Conclusion

LHCb as we knew

Data taking

Most physics output using data before 2019

Data taking

Most physics output using data before 2019

Limitation due to trigger saturation

■ Previous luminosity of 4×10³²cm⁻²s⁻¹ limited by detector capability!

Goal of LHCb Upgrade I

- Removing the hardware trigger
- Increase lumi by a factor of 5: 4×10^{32} cm⁻²s⁻¹ \rightarrow 2×10^{33} cm⁻²s⁻¹

Upgraded LHCb: what it looks like now

Tracking system

Chinese contribution in UT

- Played a key role in UT installation, FE verification and commissioning
 - Verifying irradiation performance of SALT Frontend chip using Chinese facilities
 - Control software (ECS) and detector safety software
 - Installation of UT from the very first stave to completion despite pandemic

ECS and DSS panels designed by IHEP

Completion of UT A-/C-side

Irradiation test at CIAE and CSNS

Chinese contribution to SciFi

- Development and production of FE electronics boards (> 2,500 PCB)
 - Installed and working in SciFi
- Development of quality assurance system used in all SciFi assembly sites
- Study of radiation damage on SiPM

LI Yiming: LHCb status and future upgrade

Run 3 ongoing!

UT efficiency

- Completion of installation in Mar 2023, commissioning since 2022, physics production since 2024
- 2025 data-taking smooth
 - DAQ stability improved wrt 2024; All subdetectors working as designed!
 - Record lumi (> 2×10³³ cm⁻² s⁻¹) → Design goal achieved
- 50 fb⁻¹ by end of Run 4: > 5 times of data now

 $\mathcal{L}(2024) > \mathcal{L}(\text{Run } 1 + 2)$

VELO efficiency

Performance

- Trigger efficiency significantly improved removal of L0 working
 - For hadron and electron as intended, and also for muons

- Efficient use of CPU on WLCG grid to process huge amount of data
 - > 75 PB transferred from online farm
 - Contribution from Beijing Tier-1, Lanzhou Tier-2 operating since 2024

Performance

First glimpse at the mass peaks ...

1.1e6 per fb⁻¹, 3× Run2

1.8e6 per pb⁻¹, 2.8× Run2

Future plan

- In LS3: consolidation work (Upgrade lb)
 - ECAL, RICH, DAQ, ...
- Upgrade II to fully exploit flavour physics potential in HL-LHC
- Target luminosity:
 - $1.0 \sim 1.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$
 - $300 \sim 350 \text{ fb}^{-1}$
- High-lumi operation challenges:
 - Pile-up: $\mu \sim 1 \to 5 \text{ (UI)} \to 40 \text{ (UII)}$,
 - High multiplicity (→ occupancy)
 - Severe radiation damage
 - High data rates (200 Tb/s)

LHCb in Upgrade II

Expression of interest CERN-LHCC-2017-003

Physics case CERN-LHCC-2018-027

Framework TDR CERN-LHCC-2021-012

Scoping Document CERN-LHCC-2024-010

Baseline, $1.5 \times 10^{34} cm^{-2} s^{-1}$ Middle-descoping, $1.0 \times 10^{34} cm^{-2} s^{-1}$ Low-descoping, $1.0 \times 10^{34} cm^{-2} s^{-1}$

Recommended by LHCC to proceed with 'middle-scenario' $(1.0 \times 10^{34} \text{cm}^{-2} \text{s}^{-1})$

... an ultimate flavour experiment at HL-LHC

Upstream Pixel detector

- Challenges for UT due to higher luminosity
 - Increased track density (hit rate ~160 MHz/cm²) → higher granularity
 - Higher bandwidth (up to 9 Gb/s on innermost chip)
 - Increased radiation level:

NIEL up to $3 \times 10^{15} \, n_{eq}/cm^2$, TID up to 240 MRad

- A MAPS based pixel detector proposed
 - Sensor options: HVCMOS / small electrode CMOS
- R&D collaboration formed mainly by Chinese and French institutes

UP simulation and performance

- UP geometry implemented in scoping document
- Upstream and downstream tracks UP is crucial
 - Ensure tracking efficiency
 - Reduce ghost rate
 - Momentum resolution

Tracking efficiency

UP sensor development

Parameter **UP** Specification Pixel size, square $\leq 85 \times 85 \, \mu \text{m}^2$ rectangular $\leq 50 \times 200 \, \mu \text{m}^2$ Substrate thickness $< 200 \, \mu m$ Pixel orientation Max. Particle Rate (R_{Part}) $74(34) \text{ MHz/cm}^2$ Max. Hit Rate $150 \text{ Mhit s}^{-1}\text{cm}^{-2}$ Max. length of data word 32 Overall efficiency >96% >99% within 25 ns In-time efficiency Noise rate (End of life) $\leq 400 \text{kHz/cm}^2$ Transmission rate $N \times 1.28 \text{ Gbit/s}$ $3 \times 10^{15} n_{\rm eq}/{\rm cm}^2$ NIEL TID 240 MRad Power Consumption $< 200 \text{ mW/cm}^2$

- Development of High Voltage CMOS sensor with advanced process from domestic foundry
- Synergies with Mighty Tracker pixel part with other sensor candidates

COFFEE 2

First HVCMOS 55nm prototype chip

- Breakdown at -70V
- Responsive to laser, X-ray and beta-ray sources

		\	\	
クロクク	> 2023 T	> 2024	> 2025	
2022	/ 2023	ZUZ4	/ 2020	

COFFEE1

- Prototype in LL process
- Validation of deep
 N-well structure
- Breakdown at -9V

COFFEE3

- Two pixel arrays with data-driven readout
- Designed for good timing resolution and moderate power consumption

Large prototype planned around 2027

2025 / 06 / 30

UP module and mechanics

- Module design updated to reduce dead area
- Prototyping starting with dummy components
 - Dummy silicon sensors produced with similar thermal mechanical properties
 - Tools designed for assembly procedure
 - Thermal simulation + market survey for realistic mechanical design

1st dummy sensor

1st dummy hybrid

1st dummy module assembled 22 Apr 2025

PicoCAL

Maintaining ECAL performance

- CERN-LHCC-2023-005
- Inner part using SpaCal and outer keeps Shashlik technology
- Timing of O(10) ps expected
- Chinese groups active in the R&D:
 - Software and simulation
 - Fast GAGG crystal fibre development
 - 3D printed tungsten absorbers
 - Light-guide system development
 - LS3 SpaCal-W-Polystyrene module assembly
 - (just started) PMT R&D

scintillator

front

absorber

PicoCAL: progress

- Software and simulation
 - Performance studies for LHCb Upgrade II (U2) Scoping Document
 - Software development & optimization of reconstruction algorithm in full swing towards U2 TDR
- Fast GAGG crystal fibre development
 - Collaborating with SiPAT (电科芯片)+CERN starting from end of 2021
 - Gradually reducing effective decay time $\tau_{\rm eff}$: 50 ns (2022) \rightarrow 20 ns (2024) \rightarrow 8 ns (2025)
 - SpaCal-W-GAGG prototype with GAGG with $\tau_{\rm eff} \approx 20~{\rm ns}$, testbeam at SPS+DESY in 2024
- 3D printed tungsten absorbers
 - Finalising details for PRR (Production Readiness Review) in June
- Light-guide system development
 - Light-guide design for LS4 and market investigation for material candidates in China
- LS3 SpaCal-W-Polystyrene module assembly
 - Module assembly starting from 1 cell, to 4 cells, and finally full-size (36 cells)
 - Many inputs for optimising the design and the assembly process
 - o Beam-test planned at SPS end of May, results for EDR review in June
- PMT R&D started, collaborating with NNVT(北方夜视)+IHEP

To conclude ...

Physics Prospects

E	ATT AC	CMC	LHC	D-II- II			
Experiment	ATLAS	$\frac{\text{CMS}}{116\text{-}140\text{fb}^{-1}}$	LHCb	Belle II			
Assumed data sample	$20.3-99.7\mathrm{fb}^{-1}$	116-140 fb 1	$2-9 \mathrm{fb}^{-1}$	364-1075 fb ⁻¹			
CKM angles			0.57° [15]	1.2° 16			
β	_	_	0.57 [15]	6.6° [17]			
α	_	_	2.8° 18	13° [17]			
$\gamma = \phi_s [\mathrm{mrad}]$	42 19	23 20	20 21	15 [17]			
φ_s [mrau] CP violation in loop-dominate		23 20	20 21				
$S(B^0 \to \eta' K_S^0)$			_	0.087 17			
$\phi_s(B_s^0 \to \phi \phi)$ [mrad]			69 22	0.007			
$\phi_s(B_s^0 \to K^{*0}\overline{K}^{*0})$ [mrad]			130 23				
$\varphi_s(B_s \to K - K)$ [illiad] — 130 [25] — CP violation in $B_{(s)}^0 - \overline{B}_{(s)}^0$ mixing							
$a_{\rm sl}^s [10^{-4}]$			26 25	40 26			
CP violation in the charm sector							
ΔA_{CP} [10 ⁻⁵]			29 27	630 16			
$A_{CP}(D^{+,0} \to \pi^{+,0}\pi^0)$ [10 ⁻⁵]			900 28, —	870, 750			
$A_{\Gamma}(KK,\pi\pi)$ [10 ⁻⁵]			11 29	010, 150			
$\Delta x(D^0 \to K_S^0 \pi^+ \pi^-) [10^{-5}]$			18 30	140 31			
Semileptonic B decays							
$ V_{ub} $	_	_	6% 32	6.3% 33			
$ V_{cb} $	_	_	070 02	1.7% 34			
$R(D), R(D^*)$	_	_	14% 35, 6% 36	12%, 7% 17			
Leptonic B decays			1170 05, 570 05	1270, 170 11			
$\mathcal{B}(B_{\circ}^{0} \to \mu^{+}\mu^{-})$ [10 ⁻⁹]	$^{+0.8}_{-0.7}$ [37]	0.45 38	0.48 39				
$\mathcal{B}(B^0 \to \mu^+ \mu^-)$ [10 ⁻¹⁰]	$< 2.1^*$ 37	< 1.5 [38]	0.79 39	_			
$\tau_{\rm eff}(B_s^0 \to \mu^+\mu^-)$ [ps]	+0.45 -0.18 40	0.23 38	0.29 39	_			
$S(B_s^0 \to \mu^+\mu^-)$	-0.18	0.20 [00]	0.20 [00]	_			
$\mathcal{B}(B^+ o au^+ u_ au)$	_	_		34% 17			
$\mathcal{B}(B^+ o \mu^+ \nu_\mu)$	_	_	_	41% 17			
Flavour-changing neutral curr	ent $b \to s\ell\ell$ d	ecavs		2270			
$P_{5}'(B^{0} \to K^{*0}\mu^{+}\mu^{-}) [10^{-3}]^{\dagger}$	390 41	100 42	111 43	_			
$\mathcal{B}(B^{+,0} \to K^{+,*0} \nu \overline{\nu})$				57%, 110% 17			
$\mathcal{B}(B^{+,0} \to K^{+,*0}\tau^+\tau^-)$ [10 ⁻⁴]	1-	_	_	< 10, < 18 44			
Flavour-changing neutral curr	ent $b \to s \gamma$ de	ecavs					
$\mathcal{B}(B \to X_s \gamma; E_{\gamma} > 1.6 \text{GeV})$	_ '		_	(16 - 18)% 17			
$S(B^0 \to K_S^0 \pi^0 \gamma)$	_	_	_	0.27 45			
$S(B_s^0 \to \phi \gamma)$	-	_	0.32 46				
$A_{\rm T}^{(2)}(B^0 \to K^{*0}e^+e^-; \text{very low } q^2)$	1	_	0.10 47	0.76 48			
$\alpha_{\gamma}(\Lambda_b^0 \to \Lambda^0 \gamma)$	_	_	0.26 49				
Lepton flavour violation in τ decays							
$\mathcal{B}(\tau^+ \to \mu^+ \gamma)$ [10 ⁻⁸]	_	_	_	< 7.5 16			
		Feet	4 0 (80)	< 1.8 53			
$\mathcal{B}(\tau^+ \to \mu^+ \mu^+ \mu^-)$ [10 ⁻⁸]	< 37.6 50	< 2.9 [51]	< 4.6 52	< 1.8 [33]			

- No exception for charm hadron related studies
- Some gain can be expected
- Some not

https://www.nikhef.nl/%7Epkoppenb/particles.html

Input to ESPPU 2024-2026: Projections for Key Measurements in Heavy Flavour Physics, arXiv: 2503.24346

Statistics is powerful

Summary

- LHCb upgrade I is completed and continues to take high-quality physics data
- R&D ongoing for Upgrade II
 - LHCb-China are key players in UP and PicoCAL
 - Subsystem TDR expected by end 2026
- A lot more data and potential for physics output, interplay with theory community more important than ever

Thank you for your time!

Reference

- Inputs for European Strategy in Particle Physics Update:
 - Discovery potential of LHCb Upgrade II
 - Technology developments for LHCb Upgrade II
 - Heavy ion physics at LHCb Upgrade II
 - Computing and software for LHCb Upgrade II
 - Projections for Key Measurements in Heavy Flavour Physics[Joint effort with ATLAS, CMS and Belle II]
- LHCb探测器及升级计划,科学通报 2024,69(31):4529
- The LHCb Upgrade I, JINST 19 (2024) P05065
- LHCb Upgrade II Scoping Document, CERN-LHCC-2024-010
- LHCb Framework TDR for the LHCb Upgrade II, CERN-LHCC-2021-012
- Physics case for an LHCb Upgrade II Opportunities in flavour physics, and beyond, in the HL-LHC era, arXiv:1808.08865

