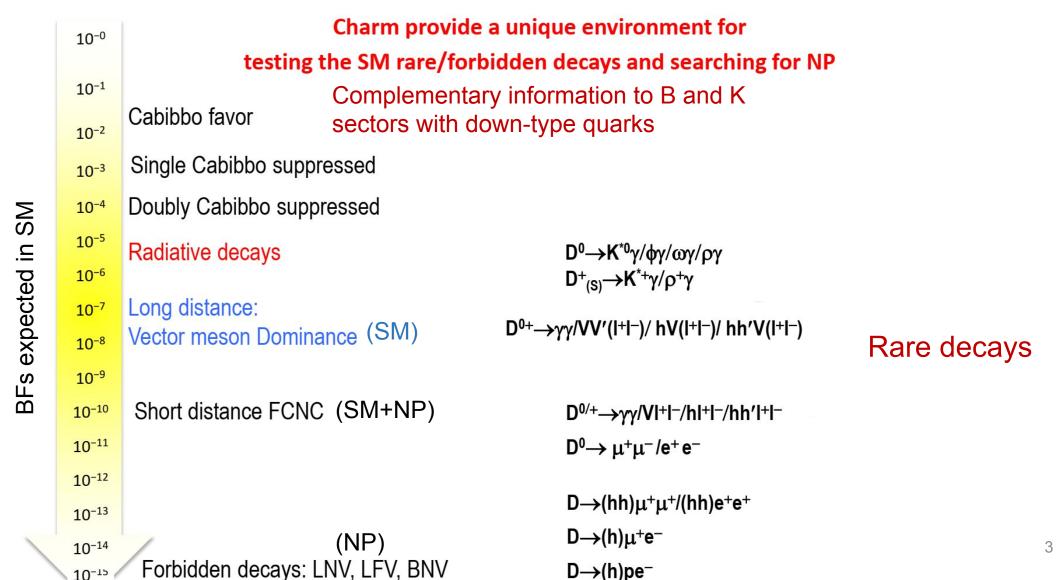


Search for Radiative/Rare/Forbidden Decays of Charm Hadrons

Liang Sun


Wuhan U.

2025/06/30

Outline

- Background info
- A selection of recent results on
 - Weak radiative charm hadron decays
 - FCNC related decays $(h\nu\bar{\nu}, hh'e^+e^-)$
 - LNV decays
 - BNV decays
 - Search for massless dark photon in $c \rightarrow u\gamma'$
- Prospects & summary

Summary of charm decays

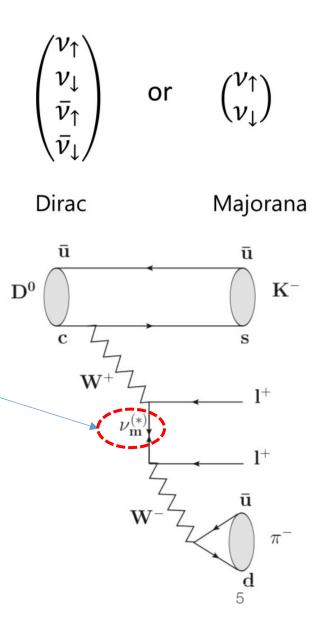
Flavor Changing Neutral Currents in charm

• $c \rightarrow u$ processes forbidden at tree level in SM, only allowed in loop and box diagrams

Strongly suppressed due to GIM cancellation:

- Expected SM BF ~O(10⁻⁹)
- NP might manifest in the loops

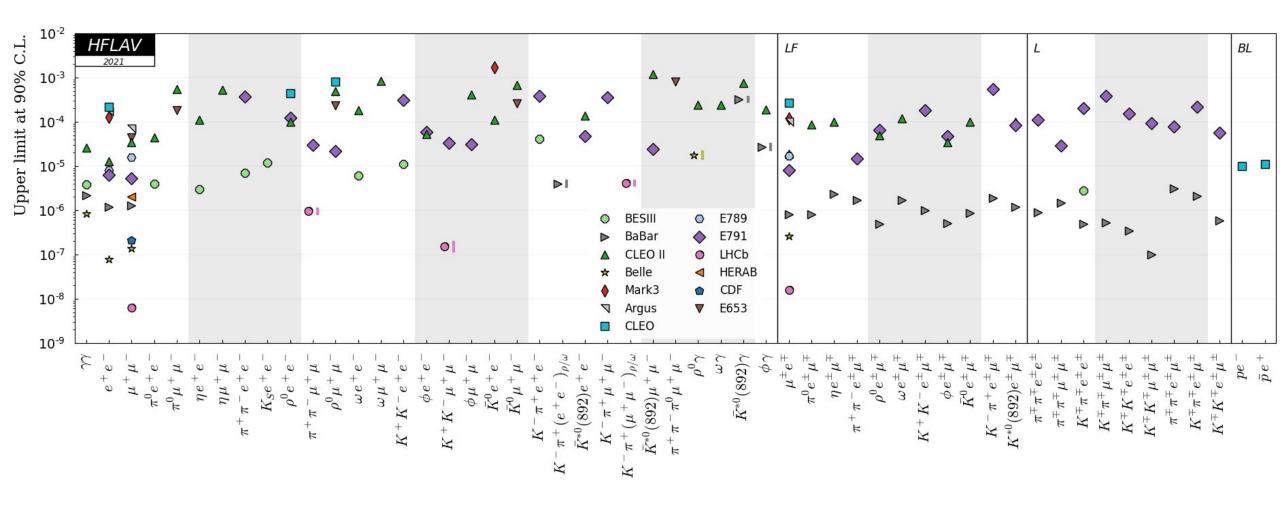
• $D \to X \ell^+ \ell^- \& D \to \gamma X$ dominated by Long-Distance contributions


- Vector Meson Dominance (VMD)
- BF \sim O(10⁻⁶) for $D \rightarrow X\ell^+\ell^-$
- BF up to 10⁻⁴ for $D \rightarrow \gamma X$
- VMD insignificant in $D \to X \nu \overline{\nu}$

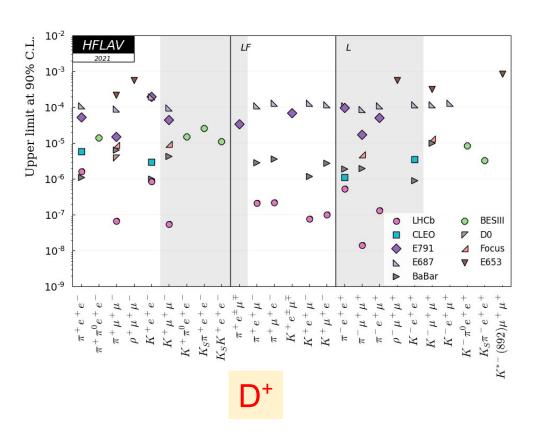
 ν or $\ell\ell$

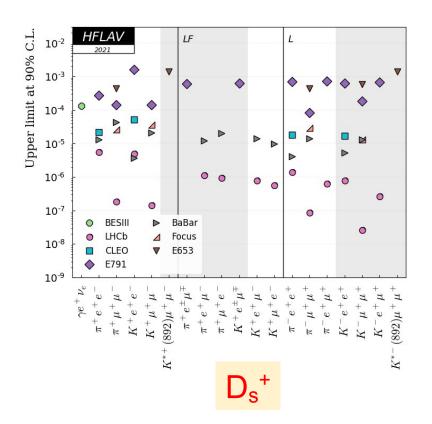

Lepton Number Violation

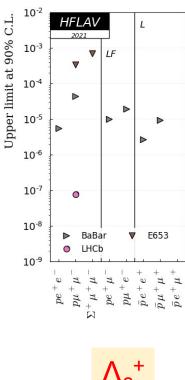
- Lepton Number Violation ($\Delta L \neq 0$) is forbidden in SM
- Neutrino oscillation $\rightarrow m_{\nu} \neq 0 \rightarrow$ New Physics needed to explain mass origin
- Nature of neutrino: Dirac or Majorana ($\nu_{\rm m}$)?
- Majorana neutrino can lead to $\Delta L = 2$ LNV processes
- LNV is introduced in many NP models:
 - 4th quark generation, SO(10) SUSY GUT, exotic Higgs, etc.
- LNV processes have been widely searched for in τ , K, D, and B decays


Baryon Number Violation

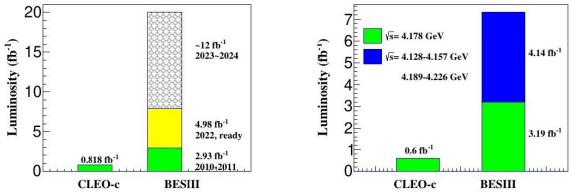
- Excess of baryons over antibaryons in the Universe
 → BNV processes exist
- BNV is allowed in GUTs and some SM extensions
 - Accompanied by LNV
- BFs of $D \rightarrow B\ell$, $B = \Lambda, \Sigma, p, n$ expected to be no more than $O(10^{-29})$ [PRD 72, 095001 (2005)]

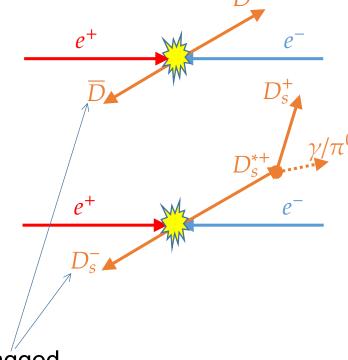



with dimension seven


Results on rare charm decays (D⁰)

Results on rare charm decays




Still lots of unexplored channels...

Charm datasets @ BESIII

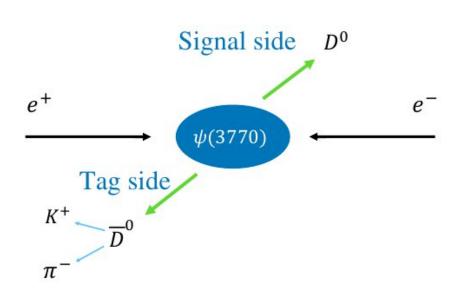
Pairs of charm hadrons produced near threshold w/o additional hadrons

- $e^+e^- \to \psi(3770) \to D\bar{D}$, $\mathcal{L}_{\rm int} = 2.93 + 4.98 \ (+12) \ {\rm fb}^{-1}$
- $e^+e^- o D_sD_s^*$, $\sqrt{s}=4.128-4.226$ GeV, $\mathcal{L}_{\mathrm{int}}{=}7.33~\mathrm{fb}^{-1}$
- Advantages:
 - Low background level
 - Full event info, neutrino kinematics can be inferred
 - Absolute branching fraction measurement possible with one $\overline{D}_{(s)}$ tagged
 - Superb EMC performance on e / γ / π^0

Double-Tag method

- Fully reconstructed \overline{D} at tag side (ST)
- Requiring signal decay at the other side (DT)

ST yields:

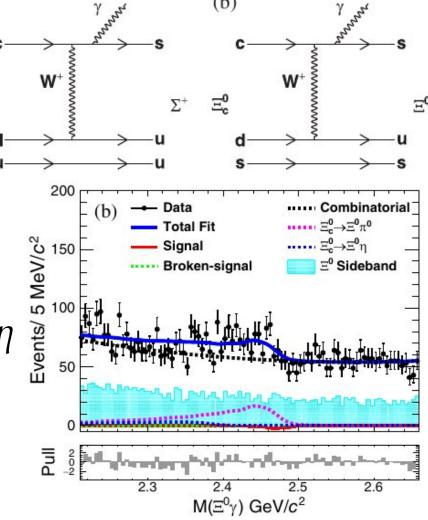

$$N_{D_{(s)}}^{\text{ST}} = 2 \times N_{D\overline{D}} \times B_{ST} \times \varepsilon_{ST}$$

DT yield:

$$N_{\mathrm{DT}}^{\mathrm{signal}} = 2 \times N_{D\overline{D}} \times B_{ST} \times B_{sig} \times \varepsilon_{ST,sig}$$

The signal branching fraction:

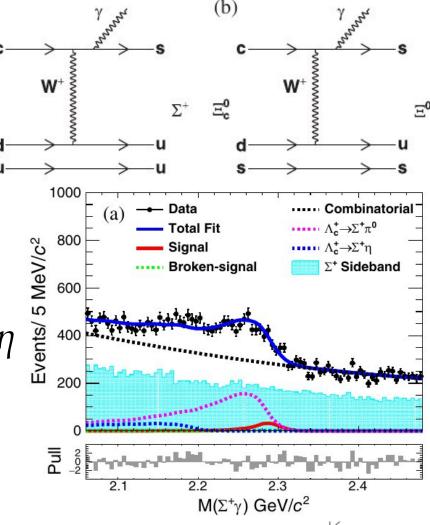
$$B_{\mathrm{sig}} = rac{N_{\mathrm{DT}}^{\mathrm{signal}}}{N_{D_{(s)}}^{\mathrm{ST}} imes arepsilon}$$



Search for $\Lambda_{\rm c}^+ o \Sigma^+ \gamma$ and $\Xi_{\rm c}^0 o \Xi^0 \gamma$

- First search for weak radiative decays of charm baryons
- Using 980 fb⁻¹ Belle data
- Normalized to decays of $\Lambda_c^+ \to p K^- \pi^+$ and $\Xi_c^0 \to \Xi^+ \pi^+$
- Data-driven method to determine peaking contributions from $\Xi_c^0 \to \Xi^0 \pi^0$ and $\Xi_c^0 \to \Xi^0 \eta$
- No obvious signal found, upper limit determined @ 90% CL:

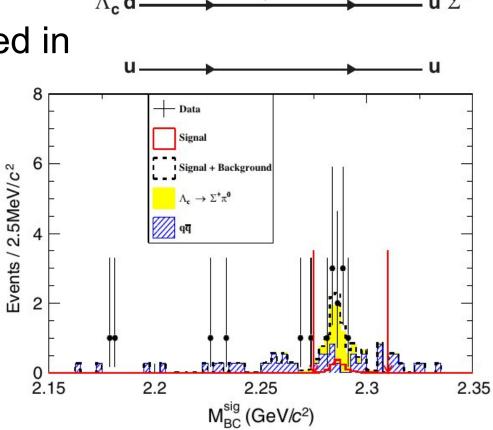
$$\mathcal{B}(\Xi_c^0 \to \Xi^0 \gamma) < 1.8 \times 10^{-4}$$



Search for $\Lambda_{\rm c}^+ o \Sigma^+ \gamma$ and $\Xi_{\rm c}^0 o \Xi^0 \gamma$

- First search for weak radiative decays of charm baryons
- Using 980 fb⁻¹ Belle data
- Normalized to decays of $\Lambda_c^+ \to p K^- \pi^+$ and $\Xi_c^0 \to \Xi^+ \pi^+$
- Data-driven method to determine peaking contributions from $\Xi_c^0 \to \Xi^0 \pi^0$ and $\Xi_c^0 \to \Xi^0 \eta$
- No obvious signal found, upper limit determined @ 90% CL:

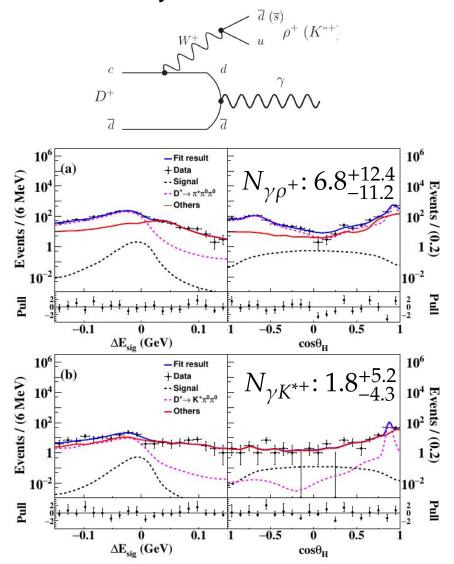
$$\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \gamma) < 2.6 \times 10^{-4}$$



Search for $\Lambda_c^+ \to \Sigma^+ \gamma$

- Using 4.5 fb⁻¹ data @ $E_{cm} \in [4.6, 4.7]$ GeV
- Double-tag method with $\overline{\Lambda}_{\rm c}^-$ reconstructed in 10 hadronic decay modes
- Peaking background of $\Lambda_c^+ \to \Sigma^+ \pi^0$ determined from MC
- Upper limit @ 90% CL is set:

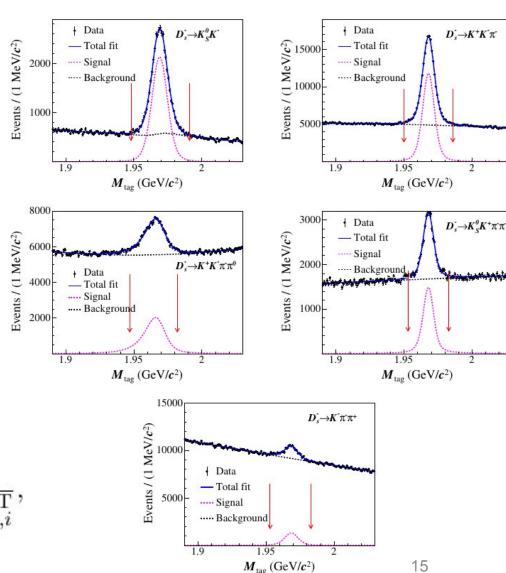
$$\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \gamma) < 4.4 \times 10^{-4}$$



W⁺

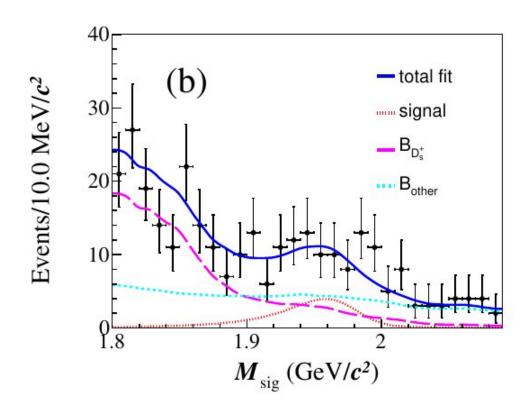
Search for $D^+ \to \gamma \rho^+$ and $D^+ \to \gamma K^{*+}$

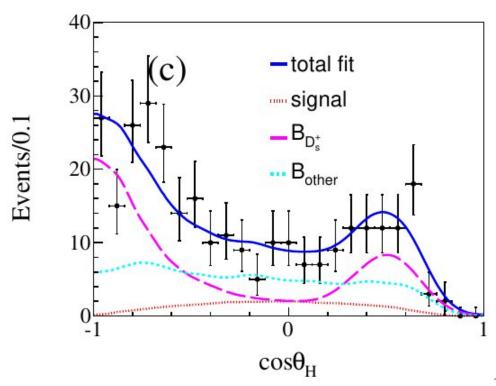
- First search for radiative D⁺ decays
- Using 20.3 fb⁻¹ data @ $E_{cm} = 3.773$ GeV
- Double-tag method with D⁻ reconstructed in 6 hadronic decay modes
- Requiring $\rho^+(K^{*+}) \to \pi^+(K^+)\pi^0$
- Upper limits @ 90% CL are set:
 - $B(D^+ \to \gamma \rho^+) < 1.3 \times 10^{-5}$
 - $B(D^+ \to \gamma K^{*+}) < 1.8 \times 10^{-5}$



Search for $D_s^+ \to \gamma \rho (770)^+$

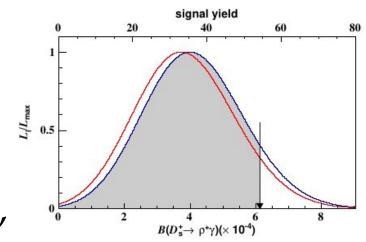
- First search for a radiative D_s^+ decay
- BF important to test QCD-based LD calculations & predictions of CPV in D decays
- 7.33 fb⁻¹ data @ $E_{cm} \in [4.128, 4.226]$ GeV
- Double-tag method with five modes

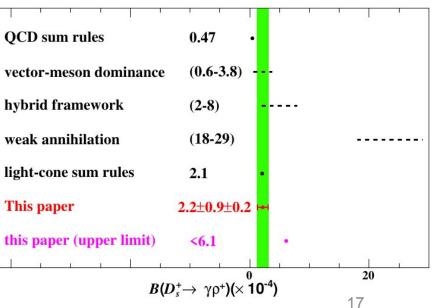

$$\mathcal{B}(D_s^+ \to \gamma \rho(770)^+) = \frac{N_{\rm total}^{\rm DT}}{B(\pi^0 \to \gamma \gamma) \sum_{\alpha,i} N_{\alpha,i}^{\rm ST} \epsilon_{\alpha,i}^{\rm DT} / \epsilon_{\alpha,i}^{\rm ST}},$$



Search for $D_s^+ \to \gamma \rho (770)^+$

• 2D fit to extract signal yield N_{DT} = 33 ± 14 with statistical significance of 2.5 σ

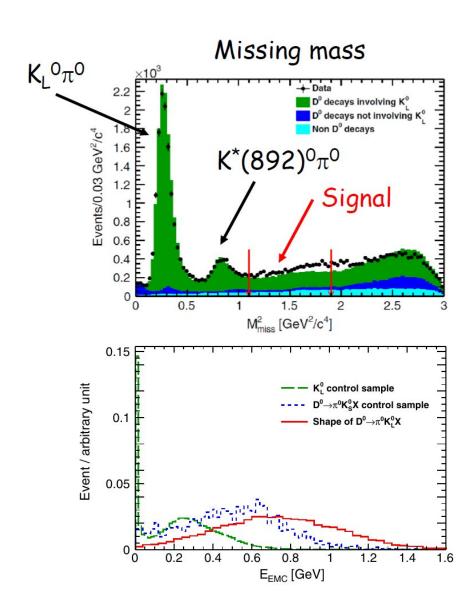



Search for $D_s^+ \to \gamma \rho (770)^+$

- 2D fit to extract signal yield N_{DT} = 33 ± 14 with statistical significance of 2.5 σ
- The BF is measured to be

$$B(D_s^+ \to \gamma \rho(770)^+) = (2.2 \pm 0.9 \pm 0.2) \times 10^{-4}$$

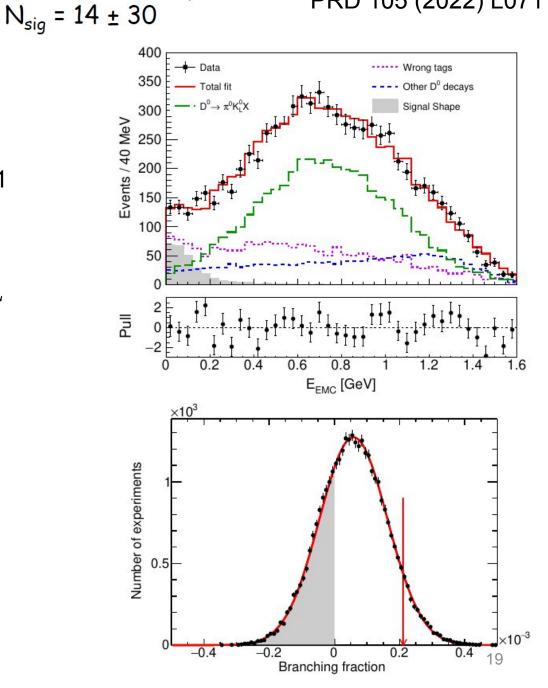
with UL set at $< 6.1 \times 10^{-4}$ @ 90% CL



Search for $D^0 \to \pi^0 \nu \overline{\nu}$

- First search on charm hadron decays into $\nu \overline{\nu}$ final states
- Reliable modeling of K^0_L backgrounds crucial for this analysis with $D^0 \to \pi^0 K^0_L X$ decays as dominating residual background
- Two steps based on data-driven methods:
 - Model K_L^0 energy deposit $(E_{\rm EMC}^{K_L^0})$ using high-purity samples of $J/\psi \to \phi K^\pm \pi^\mp K_L^0$ and $J/\psi \to K^\pm \pi^\mp K_L^0$
 - Model energy deposit of X ($E^X_{\rm EMC}$) and K^0_L kinematics using data sample of $D^0 \to \pi^0 K^0_S(\pi^+\pi^-)X$
 - $E_{\text{EMC}} = E_{\text{EMC}}^{K_L^0} + E_{\text{EMC}}^X$

Fit with MC shape

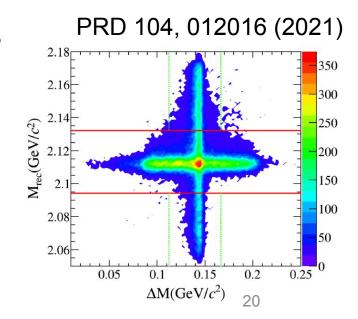

Search for $D^0 \to \pi^0 \nu \overline{\nu}$

• First upper limit based on 2.93 fb⁻¹ data @ 3.773 GeV:

$$B(D^0 \to \pi^0 \nu \bar{\nu}) < 2.1 \times 10^{-4} @ 90\% CL$$

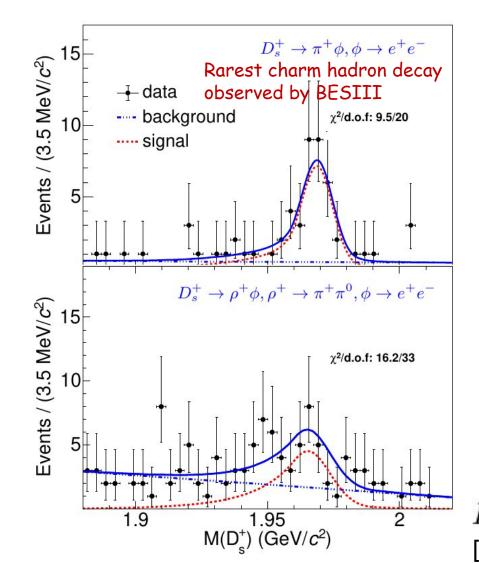
TABLE I. Summary of systematic uncertainties on the signal yield and detection efficiencies.

Source	Size
Number of π^0	4.0%
π^0 reconstruction	2.0%
Number of charged tracks	1.6%
$M_{\rm miss}^2$ requirement	0.7%
Signal model	0.5%
Wrong-tag background	1.7
$\pi^0 K_I^0 X$ background shape	Negligible
Branching fraction of $\pi^0 \to \gamma \gamma$	Negligible


Search for $D_s^+ \rightarrow hh'ee$ decays

- First search for four-body D_s^+ decays to an electron pair
- Using 7.33 fb⁻¹ data @ 4.128-4.226 GeV
- D_s^+ mainly from $e^+e^- \to D_s^{*\pm}D_s^{\mp}$, with total number of $N_{D_s^{\pm}D_s^{\mp}} = (64.7 \pm 0.3) \pm 10^5$
- Single-tag method, the BF for a given channel is given by:

$$\mathcal{B}(D_s^+ \to h^+(h^0)e^+e^-) = \frac{N_{\text{sig}}}{2 \cdot N_{D_s^{*\pm}D_s^{\mp}} \cdot \epsilon \cdot \mathcal{B}_{\text{inter}}}$$


• 2D optimization of requirements on M_{rec} vs. ΔM

$$M_{\text{rec}} = \sqrt{\left(E_{\text{cm}} - \sqrt{|\vec{P}_{D_s^+}|^2 + m_{D_s^+}^2}\right)^2 - |P_{D_s^+}|^2},$$

$$\Delta M = M(D_s^+ \gamma) - M(D_s^+),$$

Results on $D_s^+ \rightarrow h(h^0)\phi(e^+e^-)$

- $M(e^+e^-) \in [0.98, 1.04] \text{ GeV}/c^2$
- $M(\pi^+\pi^0) \in [0.60, 0.95] \text{ GeV}/c^2$
- Unbinned maximum likelihood fits to the $M(D_s^+)$ distributions

Decay	$N_{ m sig}$	ϵ (%)	\mathcal{B} (×10 ⁻⁵)
$D_s^+ \to \pi^+ \phi, \phi \to e^+ e^-$	$38.2^{+7.8}_{-6.8}$	25.1	$1.17^{+0.23}_{-0.21} \pm 0.03$
$D_s^+ \to \rho^+ \phi, \phi \to e^+ e^-$	$37.8^{+10.3}_{-9.6}$	12.1	$2.44^{+0.67}_{-0.62} \pm 0.16$

7.8
$$\sigma$$
 for $D_s^+ \to \pi^+ \phi$, $\phi \to e^+ e^-$ improved by a factor of three

$$4.4\sigma \text{ for } D_s^+ \to \rho^+ \phi, \, \phi \to e^+ e^-$$
 first

first evidence

NB: Using $D_{(s)}^+ \to \pi^+ \phi$, LHCb measured

$$R_{\phi\pi} = 1.022 \pm 0.012 \, (\mathrm{stat}) \, \pm 0.048 \, (\mathrm{syst})$$
 [JHEP 05 (2024) 293]

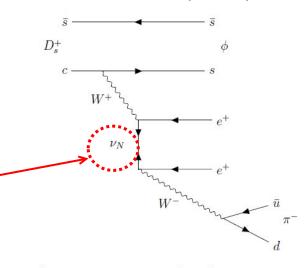

[PRL 133 (2024) 121801] ¹⁵⁰

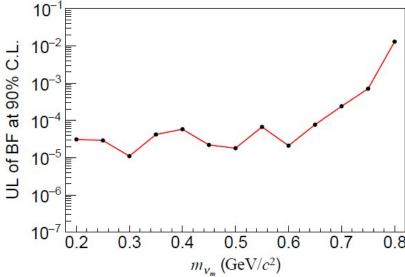
Upper limits on $D_s^+ \rightarrow hh'e^+e^-$

- FCNC $c \rightarrow ue^+e^-$ process, highly suppressed in SM
- Exclusion of events with $M(e^+e^-) \in [0.96, 1.05]$ GeV for mode $\pi^+\pi^0e^+e^-$

Decay	$N_{ m sig}$	ϵ (%)	\mathcal{B} (×10 ⁻⁵)
$D_s^+ \to \pi^+ \pi^0 e^+ e^-$		7.4	< 7.0
$D_s^+ \to K^+ \pi^0 e^+ e^-$		5.3	< 7.1
$D_s^+ \to K_S^0 \pi^+ e^+ e^-$	•••	6.7	< 8.1

All first upper limits!



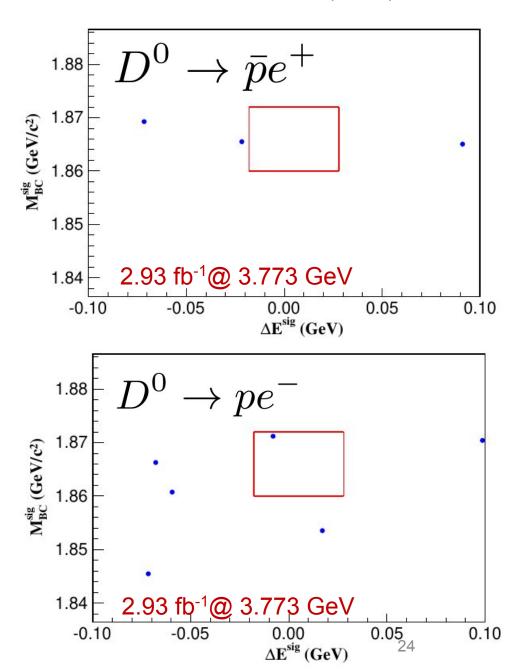

Search for $D_s^+ \rightarrow h^- h^0 e^+ e^+$

- LNV ($\Delta L = 2$) process could be mediated by a single Majorana neutrino
- First upper limits @ 90% CL:

Decay channel	ϵ (%)	$\mathcal{B}_{ ext{UL}} \; (\mathcal{B}_{ ext{UL}}^{ ext{expected}})$
$D_s^+ \to \phi \pi^- e^+ e^+$	3.0 ± 0.1	$6.9 (3.5) \times 10^{-5}$
$D_s^+ \to \phi K^- e^+ e^+$	1.8 ± 0.1	$9.9 (10.8) \times 10^{-5}$
$D_s^+ \to K_S^0 \pi^- e^+ e^+$	6.4 ± 0.1	$1.3~(2.4)\times10^{-5}$
$D_s^+ \to K_S^0 K^- e^+ e^+$	4.0 ± 0.1	$2.9 (2.3) \times 10^{-5}$
$D_s^+ \to \pi^- \pi^0 e^+ e^+$	6.4 ± 0.1	$2.9~(2.7)\times 10^{-5}$
$D_s^+ \to K^- \pi^0 e^+ e^+$	5.1 ± 0.1	$3.4 (3.9) \times 10^{-5}$

$$D_s^+ \to \phi \pi^- e^+ e^+ \text{ (CF)}$$

First mass scan in a $D \rightarrow V\ell\nu_m$ process


Search for $D^0 \rightarrow pe$

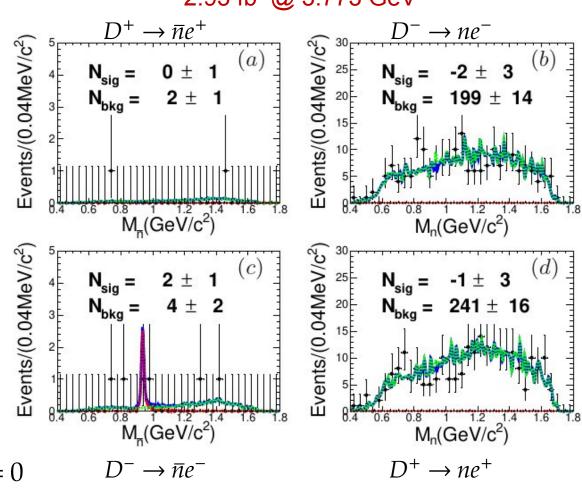
- Flavor of D determined from tag side
- Background suppression with:

Energy difference:
$$\Delta E = E_{D0bar} - E_{beam}$$

Beam constrained mass: $M_{BC} = \sqrt{E_{beam}^2/c^4 - |\vec{p}_{\overline{D}^0}|^2/c^2}$

- Almost background free
- No signal found, upper limits @ 90% CL are set: $\mathcal{B}_{D^0 \to \bar{p}e^+} < 1.2 \times 10^{-6}$

$$\mathcal{B}_{D^0 \to pe^-} < 2.2 \times 10^{-6}$$



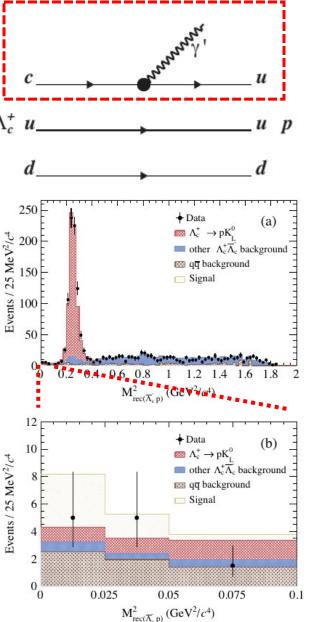
Search for $D^+ \rightarrow n(\bar{n})e^+$

- D^- tagged to suppress non- $D\overline{D}$ backgrounds
- $n(\bar{n})$ regarded as missing particle
- GBDT based on EMC shower shape trained to suppress background
- Fit to $n(\bar{n})$ mass to extract signals
- Upper limits @ 90% CL are set:

$$B(D^{+(-)} \to \overline{n}(n) e^{+(-)}) < 1.43 \times 10^{-5} \text{ w/} \Delta |B - L| = 0$$

 $B(D^{+(-)} \to n(\overline{n}) e^{+(-)}) < 2.91 \times 10^{-5} \text{ w/} \Delta |B - L| = 2$

2.93 fb⁻¹@ 3.773 GeV

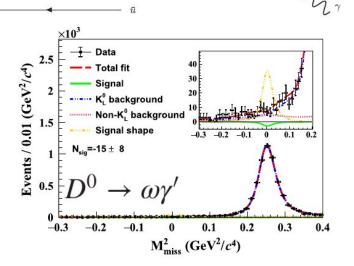

PRD 106 (2022) 072008

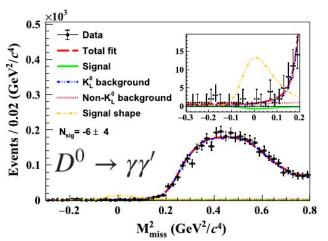
Search for a massless dark photon in

$$\Lambda_{\rm c}^+ \to p \gamma'$$

- Using 4.5 fb⁻¹ data @ $E_{cm} \in [4.6, 4.7]$ GeV
- Double-tag method with $\overline{\Lambda}_c^-$ reconstructed in 10 hadronic decay modes
- Peaking background of $\Lambda_c^+ \to p K_L$ determined from MC
- Upper limit @ 90% CL is set for the first time:

$$\mathcal{B}(\Lambda_c^+ \to p \gamma') < 8.0 \times 10^{-5}$$



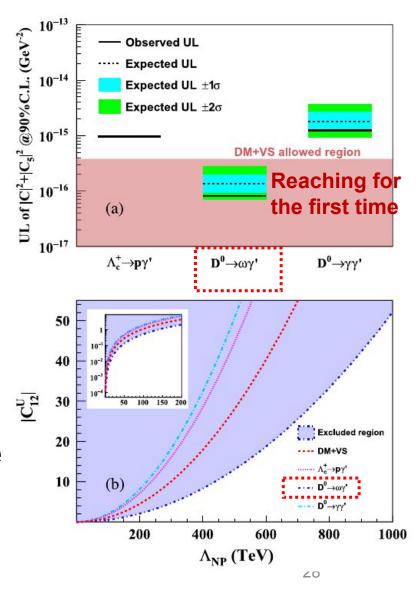

Search for a massless dark photon in

 $D^0 \to \omega \gamma'$ and $D^0 \to \gamma \gamma'$

- Using 7.9 fb⁻¹ data @ 3.773 GeV
- Double-tag method with $\overline{D}{}^0$ reconstructed in 3 hadronic decay modes
- Upper limits @ 90% CL are set for the first time: $\mathcal{B}(D^0 \to \omega \gamma') < 1.1 \times 10^{-5}$

$$\mathcal{B}(D^0 \to \gamma \gamma') < 2.0 \times 10^{-6}$$

Search for a massless dark photon in


 $D^0 \to \omega \gamma'$ and $D^0 \to \gamma \gamma'$

- Using 7.9 fb⁻¹ data @ 3.773 GeV
- Double-tag method with $\overline{D}{}^0$ reconstructed in 3 hadronic decay modes
- Upper limits @ 90% CL are set for the first time: $\mathcal{B}(D^0 \to \omega \gamma') < 1.1 \times 10^{-5}$

$$\mathcal{B}(D^0 \to \gamma \gamma') < 2.0 \times 10^{-6}$$

• Most stringent constraint on NP energy scale associated with $c \to u \gamma'$ coupling:

$$|\mathbb{C}|^2 + |\mathbb{C}_5|^2 < 8.2 \times 10^{-17} \text{ GeV}^{-2}$$

Prospects

10-6

Decay	Upper limit	Experiment	Year	Ref.	BESIII Expected
$D^0 \to \pi^0 e^+ e^-$	0.4	BESIII	2018	[35]	0.1
$D^0 \to \eta e^+ e^-$	0.3	BESIII	2018	[35]	0.1
$D^0 \to \omega e^+ e^-$	0.6	BESIII	2018	[35]	0.2
$D^0 \to K_S^0 e^+ e^-$	1.2	BESIII	2018	[35]	0.5
$D^0 \rightarrow \rho e^+ e^-$	124.0	E791	2001	[36]	0.5
$D^0 o \phi e^+ e^-$	59.0	E791	2001	[36]	0.5
$D^0 \to \bar{K}^{*0} e^+ e^-$	47.0	E791	2001	00 (1.1	0.5
$D^0\to\pi^+\pi^-e^+e^-$	0.7	BESIII	2018	20 fb ⁻¹	0.3
$D^0 \to K^+ K^- e^+ e^-$	1.1	BESIII	2018	9 3.773 GeV	0.4
$D^0 \rightarrow K^-\pi^+e^+e^-$	4.1	BESIII	2018	[35]	1.6
$D^+ \to \pi^+ e^+ e^-$	1.1	BaBar	2011	[37]	0.12
$D^+ \to K^+ e^+ e^-$	1.0	BaBar	2011	[37]	0.46
$D^+ \to \pi^+ \pi^0 e^+ e^-$	1.4	BESIII	2018	[35]	0.5
$D^+ \to \pi^+ K^0_S e^+ e^-$	2.6	BESIII	2018	[35]	1.0
$D^+ \to K_S^0 K^+ e^+ e^-$	1.1	BESIII	2018	[35]	0.4
$D^+ \to K^+ \pi^0 e^+ e^-$	1.5	BESIII	2018	[35]	0.6
$D_s^+ \to \pi^+ e^+ e^-$	13.0	BaBar	201 6 ft	o-1@ 4.18 GeV	70.0
$D_s^+ \rightarrow K^+ e^+ e^-$	3.7	BaBar	201	1971	1.7

Summary

- Rare/forbidden D decays related to $c \to u$ processes offer unique opportunities for indirect NP searches
- LNV & BNV decays are useful to test different NP models
- Synergies among BESIII/BELLEII/LHCb important to narrow down on NP
- A lot of analyses still in the pipeline, stay tuned!
 - Updated searches on $D \rightarrow h(h^{(\prime)})e^+e^-$
 - Radiative $D_{(s)}$ decays
 - LFV $D_{(s)} \rightarrow hh'e\mu$ decays
 - Invisible $(D_{(s)} \to X \nu \overline{\nu})$ decays