

粲重子非轻衰变实验研究

李培荣

(prli@lzu.edu.cn)

兰州大学 2025年6月30日

第三届BESIII-Belle II-LHCb桑强子物理联合研讨会

Outline

- > Introduction to the charmed baryons
- Selected recent results on charmed baryons from BESIII/LHCb/Belle/Belle II
- Prospect and Summary

The charmed baryon family

- Singly charmed baryons
 - ✓ Established ground states:

$$\Lambda_c^+, \; \Sigma_c^-, \; \Xi_c^{(\prime)}, \; \Omega_c^-$$

- ✓ Excited states are being explored
- Observation of other doubly charmed baryon \mathcal{Z}_{cc}^{++}

- $ightharpoonup \Lambda_c^+$: decay only weakly, many recent experimental progress since 2014
- $\succ \Sigma_c : \mathbf{B}(\Sigma_c \to \Lambda_c^+ \pi) \sim 100\%; \mathbf{B}(\Sigma_c \to \Lambda_c^+ \gamma)?$
- \triangleright Ξ_c : decay only weakly; absolute BF measured with poor precision
- $\triangleright \Omega_c$: decay only weakly; no absolute BF measured

Λ_c^+ : The lightest charmed baryon spectroscopy

- Most of the charmed baryons will eventually decay to Λ_c^+ .
- The Λ_c^+ is one of important tagging hadrons in c-quark counting in the productions at high energy experiment.
- Naïve quark model picture: a heavy quark (c) with an unexcited spin-zero diquark (u-d). Diquark correlation is enhanced by weak Color Magnetic Interaction with a heavy quark(HQET).
- Λ_c^+ may reveal more information of strong- and weak-interactions in charm region, complementary to D/Ds

Λ_c^+ weak decay picture in theory

• Contrary to charmed meson, W-exchange contribution is important. (No color suppress and helicity

suppress)

- Phenomenology aim at explain data and predict important observables.
- Calculate what they can(HQET, factorization)+parametrize what they cannot + some non-perturbations **extracted from data**=> explain and predict.

Λ_c^+ Mode	$BF(\times 10^{-3})$	Experiment	Λ_c^+ Mode	BF(×10 ⁻³)	Experiment
	$23.7 \pm 5.1 (37\%)^{\dagger}$	ARGUS(1991)[24]	$\Lambda_c^+ \to pK^-e^+\nu_e$	$0.88 \pm 0.18 (20\%)$	BESIII(2022)[29]
$\Lambda_c^+ \to \Lambda e^+ \nu_e$	$26.8{\pm}5.1(19\%)^{\dagger}$	CELO(1994)[25]	$\Lambda_c^+ \to \Lambda(1405)e^+\nu_e$	$0.42 \pm 0.19 (45\%)$	BESIII(2022)[29]
$\Lambda_c \rightarrow \Lambda e \cdot \nu_e$	$36.3{\pm}4.3(12\%)$	$\mathrm{BESIII}(2015)[30]$	$\Lambda(1405) \rightarrow pK^-$	$0.42\pm0.19(45\%)$	DESIII(2022)[29]
	$35.6 \pm 1.3 (3.6\%)$	$\mathrm{BESIII}(2022)[31]$	$\Lambda_c^+ \to \Lambda(1520)e^+\nu_e$	$1.0 \pm 0.5 (50\%)$	BESIII(2022)[29]
$\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu$	$34.9 \pm 5.3 (15\%)$	BESIII(2017)[32]	$\int \Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu_e$	< 0.33	$\mathrm{BESIII}(2023)[33]$
$\Lambda_c \to \Lambda \mu \cdot u_{\mu}$	$34.8 \pm 1.7 (4.9\%)$	$\mathrm{BESIII}(2023)[34]$	$\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e$	< 0.39	$\mathrm{BESIII}(2023)[33]$
${\Lambda_c^+ \to e^+ X}$	$39.5 \pm 3.5 (8.9\%)$	BESIII(2018)[35]	$\Lambda_c^+ \to ne^+\nu_e$	$3.57 \pm 0.37 \; (10\%)$	$\mathrm{BESIII}(2025)[36]$
$\Lambda_c \rightarrow e \cdot \Lambda$	$40.6 \pm 1.3 (3.2\%)$	BESIII(2023)[37]			
$\Xi_c \text{ Mode}$	$BF(\times 10^{-3})$	Experiment	Ξ_c Mode	$BF(\times 10^{-3})$	Experiment
	$13.7 \pm 7.7 (56\%)^{\dagger}$	ARGUS(1993)[26]	$\Xi_c^0 \rightarrow \Xi^- \mu^+ \nu_\mu$	$10.1 \pm 2.1 (21\%)^{\dagger}$	Belle(2021)[38]
$\Xi_c^0 \! o \! \Xi^- e^+ u_e$	$44.3^{+16.6}_{-17.8}(40\%)^{\dagger}$	CLEO(1995)[27]	$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	$67 \pm 39 (58\%)^{\dagger}$	$\mathrm{CLEO}(1995)[27]$
$\Xi_c \to \Xi_c e \cdot \nu_e$	$19.7 \pm 5.3 (27\%)^\dagger$	ALICE(2021)[39]			
	$10.4 \pm 2.1 (20\%)^{\dagger}$	Belle(2021)[38]			
Ω_c^0 Mode	Ratio	Experiment	Ω_c^0 Mode	Ratio	Experiment
00 \ 00 0+	$2.4 \pm 1.1 (47\%)$	CLEO(2002)[28]	$\Omega_c^0 \to \Omega^0 \mu^+ \nu_\mu$	$1.94 \pm 0.21 (11\%)$	Belle(2022)[40]
$\Omega_c^0 \to \Omega^0 e^+ \nu_e$	$1.98 \pm 0.15 (7.7\%)$	$\mathrm{Belle}(2022)[40]$			

Table 2. Measurements of the BFs for the CF decays of the Λ_c^+ (in units of %).

Mode	BF	Experiment	Mode	BF	Experiment
Nucleon-involved					
$\Lambda_c^+ \to p K_S^0$	1.52 ± 0.09	BESIII(2016)[80]		1.82 ± 0.25	BESIII(2017)[90]
$\frac{\Lambda_c \rightarrow pK_S}{\Lambda_c^+ \rightarrow pK_L^0}$	1.67 ± 0.07	BESIII(2010)[80] BESIII(2024)[89]	$\Lambda_c^+ \rightarrow n K_S^0 \pi^+$	1.82 ± 0.23 1.86 ± 0.09	BESIII(2014)[90] BESIII(2024)[91]
$\frac{\Lambda_c \to pK_L}{\Lambda_c^+ \to p\bar{K}_0^*(700)^0 \to pK^-\pi^+}$	0.19 ± 0.06	LHCb(2023)[86]	$\Lambda_c^+ \rightarrow n K_S^0 \pi^+ \pi^0$	0.85 ± 0.09	
$\frac{\Lambda_c \to pK_0(700)^2 \to pK^-\pi^+}{\Lambda_c^+ \to p\bar{K}_0^*(892)^0 \to pK^-\pi^+}$. , , , .	$\Lambda_c^+ \rightarrow nK_S^-\pi^+\pi^+$ $\Lambda_c^+ \rightarrow nK^-\pi^+\pi^+$		BESIII(2024)[92]
$\frac{\Lambda_c^+ \to p K_0^- (892)^+ \to p K^- \pi^+}{\Lambda_c^+ \to p \bar{K}_0^* (1430)^0 \to p K^- \pi^+}$	1.38±0.08	LHCb(2023)[86]	_	1.90±0.12	BESHI (2023)[129]
- 0 - , -	0.92±0.18	LHCb(2023)[86]	$\Lambda_c^+ \rightarrow p K_S^0 \pi^0$	1.87 ± 0.14	BESIII(2016)[80]
$\Lambda_c^+ \to \Delta (1232)^{++} K^- \to p\pi^+ K^-$	1.78±0.05	LHCb(2023)[86]	A + . 750 0	2.12±0.11	Belle(II)(2025)[144
$\Lambda_c^+ \to \Delta (1600)^{++} K^- \to p \pi^+ K^-$	0.28±0.10	LHCb(2023)[86]	$\Lambda_c^+ \to p K_L^0 \pi^0$	2.02±0.14	BESIII(2024)[89]
$\Lambda_c^+ \to \Delta(1700)^{++} K^- \to p\pi^+ K^-$	0.24 ± 0.06	LHCb(2023)[86]	$\Lambda_c^+ \to p K_S^0 \eta$	0.41 ± 0.09	BESIII(2021)[145
			4 + zz0 + -	0.44 ± 0.03	Belle(2023)[146]
			$\Lambda_c^+ \to p K_S^0 \pi^+ \pi^-$	1.53±0.14	BESIII(2016)[80]
			$\Lambda_c^+ \rightarrow p K_L^0 \pi^+ \pi^-$	1.69 ± 0.11	BESIII(2024)[89]
			$\Lambda_c^+ \rightarrow p K^- \pi^+$	$6.84^{+0.32}_{-0.36}$	Belle(2014)[81]
				5.84±0.35	BESIII(2016)[80]
			$\Lambda_c^+ \rightarrow pK^-\pi^+\pi^0$	4.53 ± 0.38	BESIII(2016)[80]
				4.42 ± 0.21	Belle(2017)[147]
Λ-involved			T		
$\Lambda_c^+ \to \Lambda \pi^+$	1.24 ± 0.08	BESIII(2016)[80]	$\Lambda_c^+ \to \Lambda \pi^+ \pi^0$	7.01 ± 0.42	BESIII(2016)[80]
	1.31 ± 0.09	BESIII(2023)[126]		1.84 ± 0.26	BESIII(2019)[94]
$\Lambda_c^+ \to \Lambda \rho(770)^+$	4.06 ± 0.52	BESIII(2022)[93]	$\Lambda_c^+ \to \Lambda \pi^+ \eta$	1.84 ± 0.13	Belle(2021)[95]
$\Lambda_c^+ \to \Lambda a_0(980)^+$	1.23 ± 0.21	BESIII(2025)[94]		1.94 ± 0.13	BESIII(2025)[148
$\Lambda_c^+ \to \Lambda(1405)\pi^+ \to pK^-\pi^+$	0.48 ± 0.19	LHCb(2023)[86]	$\Lambda_c^+ \to \Lambda \pi^+ \pi^- \pi^+$	3.81 ± 0.30	BESIII(2016)[80]
$\Lambda_c^+ \to \Lambda(1520)\pi^+ \to pK^-\pi^+$	0.12 ± 0.02	LHCb(2023)[86]	$\Lambda_c^+ \rightarrow \Lambda K_S^0 K^+$	0.30 ± 0.03	BESIII(2025)[134
$\Lambda_c^+ \to \Lambda(1600)\pi^+ \to pK^-\pi^+$	0.32 ± 0.12	LHCb(2023)[86]	116 71111511	0.31 ± 0.05	BESIII(2025)[108
$\Lambda_c^+ \to \Lambda(1670)\pi^+ \to pK^-\pi^+$	0.07 ± 0.02	LHCb(2023)[86]			
$\Lambda_c^+ \rightarrow \Lambda(1670)\pi^+ \rightarrow \Lambda \eta \pi^+$	0.27 ± 0.06	Belle(2021)[95]			
ne / n(1010)n / min	0.27 ± 0.06	BESIII(2025)[148]			
$\Lambda_c^+ \to \Lambda(1690)\pi^+ \to pK^-\pi^+$	0.07 ± 0.02	LHCb(2023)[86]			
$\Lambda_c^+ \to \Lambda(2000)\pi^+ \to pK^-\pi^+$	0.60 ± 0.07	LHCb(2023)[86]			
Σ -involved					
$\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$	1.18 ± 0.10	BESIII(2016)[80]	$\Lambda_c^+ \rightarrow \Sigma^+ \pi^+ \pi^-$	4.25 ± 0.31	BESIII(2016)[80]
	0.41 ± 0.20	BESIII(2018)[96]	$\Lambda_c^c \rightarrow \Sigma^+\pi^+\pi^-$	4.57 ± 0.28	Belle(2018)[149]
$\Lambda_c^+ \to \Sigma^+ \eta$	0.31 ± 0.05	Belle(2023)[98]	$\Lambda_c^+ \rightarrow \Sigma^+ \pi^0 \pi^0$	1.57 ± 0.15	Belle(2018)[149]
	0.38 ± 0.06	BESIII(2025)[97]	$\Lambda_c^+ \rightarrow \Sigma^0 \pi^+ \pi^0$	3.65 ± 0.30	Belle(2018)[149]
	1.34 ± 0.56	BESIII(2018)[96]	$\Lambda_c^+ \rightarrow \Sigma^0 \pi^+ \eta$	0.76 ± 0.08	Belle(2021)[95]
$\Lambda_c^+ \to \Sigma^+ \eta'$	0.42 ± 0.09	Belle(2023)[98]	$\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+$	1.81 ± 0.19	BESIII(2017)[105
	0.57 ± 0.18	BESIII(2025)[97]	$\Lambda_c^+ \rightarrow \Sigma^- \pi^+ \pi^+ \pi^0$	2.11 ± 0.36	BESIII(2017)[105
$\Lambda_c^+ \to \Sigma^+ \omega$	1.56 ± 0.21	BESIII(2016)[80]	$\Lambda_c^+ \rightarrow \Sigma^+ K^+ K^-$	0.38 ± 0.05	BESIII(2023)[150
$\Lambda_c^+ \to \Sigma^+ \phi$	0.41 ± 0.09	BESIII(2023)[150]	$\Lambda_c^+ \rightarrow \Sigma^+ K^+ K^{\text{non-}\phi}$	0.20 ± 0.04	BESIII(2023)[150
	1.27 ± 0.09	BESIII(2016)[80]	$\Lambda_c^+ \rightarrow \Sigma^0 K_c^0 K^+$	0.08 ± 0.03	BESIII(2025)[108
$\Lambda_c^+ \to \Sigma^0 \pi^+$	1.22 ± 0.11	BESIII(2023)[126]	- 3		()[
$\Lambda_c^+ \rightarrow \Sigma(1385)^+ \pi^0$	0.59 ± 0.08	BESIII(2022)[93]	1		
÷ (/ "	0.91±0.20	BESIII(2019)[94]	1		
$\Lambda_c^+ \to \Sigma(1385)^+ \eta$	1.21 ± 0.12	Belle(2021)[95]			
- \/ ·1	0.68 ± 0.08	BESIII(2025)[148]			
$\Lambda_c^+ \to \Sigma(1385)^0 \pi^+$	0.65 ± 0.10	BESIII(2022)[93]			
Ξ-involved		(2022)[00]	<u> </u>		
$\Lambda_c^+ \to \Xi^0 K^+$	0.50 ±0.00	DECIII/2010\[1001	$\Lambda_c^+ \rightarrow \Xi^0 K^+ \pi^0$	0.70_L0.17	DECIII/0004\[107
$\Lambda_c \rightarrow \Xi^* K$	0.59 ± 0.09	BESIII(2018)[106]	-	0.78±0.17	BESIII(2024)[107
$\Lambda_c^+ \rightarrow \Xi(1530)^0 K^+$	0.50 ± 0.10	BESIII(2018)[106]	$\Lambda_c^+ \rightarrow \Xi^0 K_S^0 \pi^+$	0.37 ± 0.06	BESIII(2025)[108
	0.60 ± 0.11	BESIII(2024)[107]			

010201-10

Table 3. The determined BFs for the CS decays of the Λ_c^+ (in units of 10^{-3}). Upper limits are set at 90% confidence level.

Mode	BF	Experiment	Mode	BF	Experiment
Nucleon-invo	olved				
$\Lambda_c^+ \to n\pi^+$	0.66 ± 0.13	BESIII(2022)[126]	$\Lambda_c^+ \to nK^+\pi^0$	< 0.71	BESIII(2024)[107]
	< 0.27	BESIII(2017)[117]	$\Lambda_c^+ \to n\pi^+\pi^0$	0.64 ± 0.09	BESIII(2023)[129]
$\Lambda_c^+ \to p \pi^0$	< 0.08	Belle(2021)[109]	$\Lambda_c^+ \to n K_S^0 K^+$	$0.39^{+0.17}_{-0.14}$	BESIII(2024)[91]
$\Lambda_c \to p\pi^\circ$	$0.16^{+0.07}_{-0.06}$	BESIII(2024)[118]	$\Lambda_c^+ \to n\pi^+\pi^-\pi^+$	0.45 ± 0.08	BESIII(2023)[129]
	0.18 ± 0.04	BESIII(2025)[119]	$\Lambda_c^+ \to p\pi^+\pi^-$	3.91 ± 0.40	BESIII(2016)[127]
	1.24 ± 0.30	BESIII(2017)[117]	$\Lambda_c \to p\pi^+\pi^-$	4.72 ± 0.28	LHCb(2018)[138]
	1.42 ± 0.12	Belle(2021)[109]	$\Lambda_c^+ \to pK^+K^-$	1.08 ± 0.07	LHCb(2018)[138]
$\Lambda_c^+ \to p\eta$	1.57 ± 0.12	BESIII(2023)[120]	$\Lambda_c^+ \to p(K^+K^-)_{\text{non-}\phi}$	0.55 ± 0.14	BESIII(2016)[127]
	1.63 ± 0.33	BESIII(2024)[118]	$\Lambda_c^+ \to p K_S^0 K_S^0$	0.24 ± 0.02	Belle(2023)[146]
	1.67 ± 0.80	LHCb(2024)[121]	$\Lambda_c^+ \to p\phi\pi^0$	< 0.15	Belle(2017)[147]
A+ /	$0.56^{+0.25}_{-0.21}$	BESIII(2022)[123]	$\Lambda_c^+ \to (pK^+K^-\pi^0)_{NR}$	< 0.06	Belle(2017)[147]
$\Lambda_c^+ \to p \eta'$	0.47 ± 0.10	Belle(2022)[122]	$\Lambda_c^+ \to pK^+\pi^-$	0.16 ± 0.02	Belle(2016)[137]
$\Lambda_c^+ \to p\rho$	1.52 ± 0.44	LHCb(2024)[121]	$\Lambda_c \rightarrow p K + \pi$	0.10 ± 0.01	LHCb(2018)[138]
	0.94 ± 0.39	LHCb(2018)[124]			
A +	0.83 ± 0.11	Belle(2021)[125]			
$\Lambda_c^+ \to p\omega$	1.11 ± 0.21	BESIII(2023)[120]			
	0.98 ± 0.31	LHCb(2024)[121]			
$\Lambda_c^+ \to p\phi$	1.06 ± 0.22	BESIII(2016)[127]			
Λ-involved					
$\Lambda_c^+ \to \Lambda K^+$	0.62 ± 0.06	BESIII(2022)[131]	$\Lambda_c^+ \to \Lambda K^+ \pi^0$	< 2.0	BESIII(2024)[107]
$\Lambda_c \to \Lambda K$	0.66 ± 0.04	Belle(2023)[132]	$\Lambda_c \to \Lambda K + \pi^{\circ}$	1.49 ± 0.29	BESIII(2024)[135]
	$2.40 \pm 0.59 (\theta_0 = 0^\circ)$	BESIII(2025)[134]	$\Lambda_c^+ \to \Lambda K_S^0 \pi^+$	1.73 ± 0.29	BESIII(2025)[134]
$\Lambda_c^+ \to \Lambda K^{*+}$	$5.21 \pm 0.75 (\theta_0 = 109^\circ)$	BESIII(2025)[134]	$\Lambda_c^+ \to \Lambda K^+ \pi^+ \pi^-$	0.41 ± 0.15	BESIII(2024)[135]
	$1.29 \pm 0.44 (\theta_0 = 221^\circ)$	$\mathrm{BESIII}(2025)[134]$			
Σ -involved					
$\Lambda_c^+ \to \Sigma^0 K^+$	0.47 ± 0.10	BESIII(2022)[133]	$\Lambda_c^+ \to \Sigma^+ K^+ \pi^-$	2.00 ± 0.28	BESIII(2023)[150]
$\Lambda_c^+ \to \Sigma^0 K^+$	0.36 ± 0.03	Belle(2023)[132]	$\Lambda_c^+ \to \Sigma^+ K^+ \pi^- \pi^0$	< 0.01	BESIII(2023)[150]
$\Lambda_c^+ \to \Sigma^+ K_S^0$	0.48 ± 0.14	BESIII(2022)[133]	A+ . 5072+ 0	< 1.8	BESIII(2024)[107]
			$\Lambda_c^+ \to \Sigma^0 K^+ \pi^0$	< 0.50	BESIII(2024)[151]
			$\Lambda_c^+ \to \Sigma^0 K^+ \pi^+ \pi^-$	< 0.65	BESIII(2024)[151]
			$\Lambda_c^+ \to \Sigma^- K^+ \pi^+$	0.38 ± 0.12	BESIII(2024)[136]

Table 4. The determined polarization parameters α of various Λ_c^+ decay modes.

Mode	polarization α	Experiment	Mode	polarization α	Experiment
Nucleon-involved			$\Lambda_c^+ \to \Lambda(1600)\pi^+$	0.2 ± 0.5	LHCb(2023)[86]
Λ ⁺ \ π V 0	0.18 ± 0.45	BESIII(2019)[153]	$\Lambda_c^+ \to \Lambda(1670)\pi^+$	0.82 ± 0.08	LHCb(2023)[86]
$\Lambda_c^+ \to p K_S^0$	-0.75 ± 0.10	LHCb(2024)[154]	$\Lambda_c \to \Lambda(1070)\pi^+$	0.21 ± 0.43	$\mathrm{BESIII}(2025)[148]$
$\Lambda_c^+ \to p\bar{K}_0^* (700)^0$	-0.1 ± 0.7	LHCb(2023)[86]	$\Lambda_c^+ \to \Lambda(1690)\pi^+$	0.958 ± 0.034	LHCb(2023)[86]
$\Lambda_c^+ \to p\bar{K}_0^* (1430)^0$	0.34 ± 0.14	LHCb(2023)[86]	$\Lambda_c^+ \to \Lambda(2000)\pi^+$	-0.57 ± 0.19	LHCb(2023)[86]
$\Lambda_c^+ \to \Delta(1232)^{++} K^-$	0.55 ± 0.04	LHCb(2023)[86]	Σ -involved		
$\Lambda_c^+ \to \Delta(1600)^{++} K^-$	-0.50 ± 0.18	LHCb(2023)[86]	$\Lambda_c^+ \to \Sigma^+ \pi^0$	-0.57 ± 0.12	BESIII(2019)[153]
$\Lambda_c^+ \to \Delta(1700)^{++} K^-$	0.22 ± 0.08	LHCb(2023)[86]	$\Lambda_c \rightarrow Z^{+\eta}$	-0.48 ± 0.03	Belle(2023)[98]
Λ -involved			$\Lambda_c^+ \to \Sigma^+ \eta$	-0.99 ± 0.06	Belle(2023)[98]
	-0.80 ± 0.11	BESIII(2019)[153]	$\Lambda_c^+ \to \Sigma^+ \eta'$	-0.46 ± 0.07	Belle(2023)[98]
$\Lambda_c^+ \to \Lambda \pi^+$	-0.755 ± 0.006	$\mathrm{Belle}(2023)[132]$	$\Lambda_c^+ \to \Sigma^0 \pi^+$	-0.73 ± 0.18	BESIII(2019)[153]
	-0.785 ± 0.007	LHCb(2024)[154]	$R_{c} \rightarrow Z R$	-0.46 ± 0.02	Belle(2023)[132]
$\Lambda_c^+ \to \Lambda K^+$	-0.59 ± 0.05	$\mathrm{Belle}(2023)[132]\mathrm{i}$	$\Lambda_c^+ \to \Sigma(1385)^+ \pi^0$	-0.917 ± 0.089	$\mathrm{BESIII}(2022)[93]$
$n_c \rightarrow m$	-0.52 ± 0.05	LHCb(2024)[154]	$\Lambda_c^+ \to \Sigma(1385)^+ \eta$	-0.61 ± 0.16	BESIII(2025)[148]
$\Lambda_c^+ \to \Lambda \rho(770)^+$	-0.763 ± 0.070	$\mathrm{BESIII}(2022)[93]$	$\Lambda_c^+ \to \Sigma(1385)^0 \pi^+$	-0.789 ± 0.113	BESIII(2022)[93]
$\Lambda_c^+ \to \Lambda a(980)^+$	$-0.91^{+0,20}_{-0.12}$	BESIII(2025)[148]	$\Lambda_c^+ \to \Sigma^0 K^+$	-0.54 ± 0.20	Belle(2023)[132]
$\Lambda_c^+ \to \Lambda(1405)\pi^+$	0.58 ± 0.28	LHCb(2023)[86]	Ξ-involved		
$\Lambda_c^+ \to \Lambda(1520)\pi^+$	0.93 ± 0.09	LHCb(2023)[86]	$\Lambda_c^+ \to \Xi^0 K^+$	0.01 ± 0.16	BESIII(2024)[158]

Table 5. The measured BFs of the Ξ_c^+ and Ξ_c^0 (in units of %).

Mode	\mathcal{B}	Experiment	Mode	\mathcal{B}	Experiment
$\Xi_c^0 \to \Lambda K_S^0$	0.33 ± 0.08	Belle(2022)[172]	$\Xi_c^0 \! \to \! pK^-K^-\pi^+$	$0.58 \!\pm\! 0.24$	Belle(2019)[170]
$\Xi_c^0 {\to} \Lambda \bar K^{*0}$	0.33 ± 0.11	$\mathrm{Belle}(2021)[171]$	$\Xi_c^0 \rightarrow \Lambda K^- \pi^+$	$1.17\!\pm\!0.38$	$\mathrm{Belle}(2019)[170]$
$\Xi_c^0 {\to} \Sigma^+ K^-$	0.18 ± 0.04	$\mathrm{Belle}(2022)[172]$	$\Xi_c^0 \rightarrow \Lambda K^+ K^-$	0.05 ± 0.01	$\mathrm{Belle}(2013)[176]$
$\Xi_c^0 {\to} \Sigma^+ K^{*-}$	0.61 ± 0.21	$\mathrm{Belle}(2021)[171]$	$\Xi_c^0 \rightarrow \Lambda K^+ K^{\text{non-}\phi}$	0.04 ± 0.01	$\mathrm{Belle}(2013)[176]$
$\Xi_c^0 {\to} \Sigma^0 \bar K^{*0}$	1.24 ± 0.37	$\mathrm{Belle}(2021)[171]$	$\Xi_c^0 \! o \! \Xi^0 K^+ K^-$	0.06 ± 0.01	$\mathrm{Belle}(2021)[175]$
$\Xi_c^0 {\to} \Sigma^0 K_S^0$	0.05 ± 0.02	$\mathrm{Belle}(2022)[172]$	$\Xi_c^+ \to p K_S^0$	$0.07\!\pm\!0.03$	$\mathrm{Belle}(\mathrm{II})(2025)[185]$
$\Xi_c^0 \to \Xi^0 \pi^0$	0.69 ± 0.14	$\mathrm{Belle}(\mathrm{II})(2024)[182]$	$\Xi_c^+ \to p\phi$	0.012 ± 0.006	LHCb(2019)[181]
$\Xi_c^0 \rightarrow \Xi^0 \eta$	0.16 ± 0.04	$\mathrm{Belle}(\mathrm{II})(2024)[182]$	$\Xi_c^+ \to \Lambda \pi^+$	$0.05\!\pm\!0.02$	$\mathrm{Belle}(\mathrm{II})(2025)[185]$
$\Xi_c^0 \rightarrow \Xi^0 \eta^\prime$	0.12 ± 0.04	$\mathrm{Belle}(\mathrm{II})(2024)[182]$	$\Xi_c^+ \to \Sigma^0 \pi^+$	$0.12 \!\pm\! 0.06$	$\mathrm{Belle}(\mathrm{II})(2025)[185]$
$\Xi_c^0 \to \Xi^- \pi^+$	1.80 ± 0.52	$\mathrm{Belle}(2019)[170]$	$\Xi_c^+ \to \Sigma^+ K_S^0$	0.19 ± 0.09	$\mathrm{Belle}(\mathrm{II})(2025)[180]$
$\Xi_c^0\!\to\!\Xi^-K^+$	0.04 ± 0.01	Belle(2013)[176]	$\Xi_c^+ \to \Xi^0 \pi^+$	0.72 ± 0.32	$\mathrm{Belle}(\mathrm{II})(2025)[180]$
Ξ0 λ+σ-	0.55 ± 0.18	LHCb(2020)[177]	$\Xi_c^+ \rightarrow \Xi^0 K^+$	$0.05\!\pm\!0.02$	$\mathrm{Belle}(\mathrm{II})(2025)[180]$
$\Xi_c^0 \! o \! \Lambda_c^+ \pi^-$	0.54 ± 0.14	$\mathrm{Belle}(2023)[178]$	$\Xi_{\circ}^{+} \rightarrow pK^{-}\pi^{+}$	1.14 ± 0.39	LHCb(2020)[177]
			$\begin{bmatrix} \Xi_c \rightarrow p \mathbf{K} & \pi \end{bmatrix}$	$0.45\!\pm\!0.22$	Belle(2019)[179]
			$\Xi_c^+ \to \Xi^- \pi^+ \pi^+$	2.86 ± 1.27	Belle(2019)[179]

Table 6. The measured polarization of the Ξ_c^0 .

Mode	polarization α	Experiment
$\Xi_c^0 \rightarrow \Lambda \bar{K}^*(892)^0$	0.15 ± 0.22	$\mathrm{Belle}(2021)[171]$
$\Xi_c^0 {\to} \Sigma^+ K^*(892)^-$	-0.52 ± 0.30	$\mathrm{Belle}(2021)[171]$
$\Xi_c^0 \to \Xi^- \pi^+$	-0.63 ± 0.03	$\mathrm{Belle}(2021)[38]$
$\Xi_c^0 \to \Xi^0 \pi^0$	-0.90 ± 0.27	$\mathrm{Belle}(\mathrm{II})(2024)[182]$

Table 7. The measured BFs of the Ω_c^0 with the relative mode $\Omega_c^0 \to \Omega^- \pi^+$. Upper limits are at 90% confidence level.

Mode	\mathcal{B}	Experiment	Mode	\mathcal{B}	Experiment
$\Omega_c^0 \rightarrow \Xi^0 ar K^0$	1.64 ± 0.29	Belle(2018)[186]	$\Omega_c^0 \!\to\! \Sigma^- K^- K^- \pi^+$	< 0.32	Belle(2018)[186]
$\Omega_c^0 \rightarrow \Xi^- \pi^+$	0.25 ± 0.06	Belle(2023)[188]	$\Omega_c^0\! o\!\Xi^0 K^-\pi^+$	1.20 ± 0.18	$\mathrm{Belle}(2018)[186]$
$\Sigma L_c \rightarrow \Xi M$	0.16 ± 0.01	LHCb(2024)[189]	$\Omega_c^0 \rightarrow \Xi^- K^- \pi^+ \pi^+$	0.68 ± 0.08	$\mathrm{Belle}(2018)[186]$
$ \overline{ \Omega_c^0 \! \to \! \Xi^- K^+ } $	< 0.07	Belle(2023)[188]	$\Omega_c^0\! o\!\Xi^-ar K^0\pi^+$	2.12 ± 0.28	$\mathrm{Belle}(2018)[186]$
$\Omega_c^0 \to \Omega^- K^+$	< 0.29	Belle(2023)[188]	$\Omega_c^0 \to \Omega^- \pi^+ \pi^0$	2.00 ± 0.20	$\mathrm{Belle}(2018)[186]$
$2\iota_c \rightarrow 2\iota R$	0.06 ± 0.01	LHCb(2024)[189]	$\Omega_c^0 \! \to \! \Omega^- \pi^+ \pi^- \pi^+$	0.32 ± 0.05	$\mathrm{Belle}(2018)[186]$
$\Omega_c^0\!\to\!\Lambda\bar K^0\bar K^0$	1.72 ± 0.35	Belle(2018)[186]			

Charm Facilities

Charm factory

- Threshold production: No boost
- Small X-section : Lowest Statistics
- Quantum coherence
- Inclusive charm, neutrals and neutrinos
- Absolute BFs

$$e^+e^-
ightarrow \psi(3770)
ightharpoonup D\overline{D}$$
 $e^+e^-
ightharpoonup D^{(*)}_{(s)}\overline{D}^{(*)}_{(s)}$
 $e^+e^-
ightharpoonup \Lambda_c^+\overline{\Lambda}_c^-$

BESIII, STCF in the future

B factory

- Low background
- Low statistics
- Low boost
- Good for neutrals and neutrinos
- Some Absolute BFs

$$e^+e^- \rightarrow c\overline{c}$$

+ some other
Stuff

Belle / Belle II

Hadron collider

- High background
- High statistics
- High boost
- Challenging for neutrals and neutrinos
- Complex and biasing triggers

 $p\overline{p} \rightarrow c\overline{c}$ + lots of other
Stuff

LHCb

Charmed baryon thresholds

Production measurement near threshold

PRL 131.191901(2023)

• $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ cross section are measured at twelve energy points from 4.612-4.951GeV.

$$\sigma_{\pm} = rac{N_{ ext{ST}}^{\pm}}{arepsilon_{ ext{ST}}^{\pm}f_{ ext{ISR}}f_{ ext{VP}}\mathcal{L}_{ ext{int}}N_{ ext{DT}}} \sum_{n=1}^{9} igg(rac{N_{ ext{ST}}^{\mp,n}arepsilon_{ ext{DT}}^{n}}{arepsilon_{ ext{ST}}^{\mp,n}} igg),$$

- Indicate no enhancement around Y(4630) resonance. =>Conflict with Belle.
- $|G_E/G_M|$ ratio are derived by fitting to angular distribution.
- The oscillations on $|G_E/G_M|$ ratio is significantly observed with higher frequency than that of the proton. \Rightarrow may imply a non-trivial structure of the lightest charmed baryon.

$\Lambda_c^+ \to n\pi^+$ and $\Lambda_c^+ \to p\pi^0$

PRL 128.142001 (2022)

PRD 109, L091101 (2024)

 $N(n\pi^+)=50\pm 9$

- First singly Cabibbo-suppressed Λ_c^+ decay involved neutron was observed (7.3 σ).
- Absolute BF is measured to be $\mathcal{B}(\Lambda_c^+ \to n\pi^+) = (6.6 \pm 1.2_{stat} \pm 0.4_{syst}) \times 10^{-4}$.
 - =>Consistent with SU(3) flavor asymmetry prediction[PLB790,225(2019),]
 - =>twice larger than the dynamical calculation based on pole model and CA[PRD97,074028(2018)]
- $R = \frac{\mathcal{B}(\Lambda_c^+ \to n\pi^+)}{\mathcal{B}(\Lambda_c^+ \to p\pi^0)} > 7.2@90\%C.L. (\mathcal{B}(\Lambda_c^+ \to p\pi^0) < 8.0 \times 10^{-5} @90\%C.L. \text{from Belle})$
 - =>Disagrees with SU(3) asymmetry and dynamical calculation (2-4.7) while in consistent with SU(3) plus topological-diagram approach(9.6).
- $\mathcal{B}(\Lambda_c^+ \to p\pi^0) = (1.56^{+0.72}_{-0.58} \pm 0.2_{syst}) \times 10^{-4}$; $R = 3.2^{+2.2}_{-1.2}$

First observation of $\Lambda_c^+ \to p\pi^0$

Before DNN

 $\Lambda_c^+ \rightarrow p\pi^0$

- First observation of $\Lambda_c^+ \to p\pi^0$ with significance of 5.4 σ .
- A sophisticated deep learning approach is employed.
- The absolute branching fraction is measured to be $\mathcal{B}(\Lambda_c^+ \to$ $p\pi^{0}$)= $(1.79 \pm 0.39_{stat} \pm 0.11_{syst} \pm 0.08_{p\eta})\%$.
- Offering essential calibration for theoretical predictions.

BF measurement of $\overline{\Lambda}_{\mathbf{c}}^- \to \overline{n}X$

PRD 108.L031101 (2023).

- The deposited energy in EMC is used to identify \overline{n} .
- Data-driven technique to model \overline{n} behavior in the detector.
- Absolute BFs are measured to be $\mathcal{B}(\overline{\Lambda}_c^- \to \overline{n}X) = \big(33.5 \pm 0.7_{stat} \pm 1.2_{syst}\big)\%, \text{ precision up to } 4\%.$
- All known exclusive process with neutron in final state is about 25%=>more space to be explored.
- Asymmetry between $\mathcal{B}(\Lambda_c^+ \to nX)$ and $\mathcal{B}(\Lambda_c^+ \to pX)$ is observed.

Experiment & Phenomenon

Predictions and measurements	$lpha_{\Lambda_c^+}^{pK_s^0}$	$lpha_{\Lambda_c^+}^{\Lambda\pi^+}$	$lpha_{\Lambda_c^+}^{\Sigma^0\pi^+}$	$lpha_{\Lambda_c^+}^{\Sigma^+\pi^0}$	$\alpha_{\Lambda_c^+}^{\Xi^0K^+}$
CLEO(1990) [1]	-	$-1.0^{+0.4}_{-0.1}$	-	-	-
ARGUS(1992) [2]	-	-0.96 ± 0.42	-	-	-
Körner(1992), CCQM [3]	-0.10	-0.70	0.70	0.71	0
Xu(1992), Pole [4]	0.51	-0.67	0.92	0.92	0
Cheng, Tseng(1992), Pole [5]	-0.49	-0.96	0.83	0.83	-
Cheng, Tseng(1993), Pole [6]	-0.49	-0.95	0.78	0.78	-
Źencaykowski(1994), Pole [7]	-0.90	-0.86	-0.76	-0.76	0
Źencaykowski(1994), Pole [8]	-0.66	-0.99	0.39	0.39	0
CLEO(1995) [9]	-	$-0.94^{+0.21+0.12}_{-0.06-0.06}$	-	$-0.45 \pm 0.31 \pm 0.06$	-
Alakabha Datta(1995), CA [10]	-0.91	-0.94	-0.47	-0.47	-
Ivanov(1998), CCQM [11]	-0.97	-0.95	0.43	0.43	0
Sharma(1999), CA [12]	-0.99	-0.99	-0.31	-0.31	0
FOCUS(2006) [13]	-	$-0.78 \pm 0.16 \pm 0.19$	-	-	-
BESIII(2018) [14]	$0.18 \pm 0.43 \pm 0.14$	$-0.80 \pm 0.11 \pm 0.02$	$-0.73 \pm 0.17 \pm 0.07$	$-0.57 \pm 0.10 \pm 0.07$	-

PHYSICAL REVIEW D **100**, 072004 (2019)

Measurements of weak decay asymmetries of $\Lambda_c^+ \to p K_s^0$, $\Lambda \pi^+$, $\Sigma^+ \pi^0$, and $\Sigma^0 \pi^+$

- \checkmark First $\Lambda_c^+ \to pK_s^0$.
- ✓ Most precise $\Lambda_c^+ \to \Lambda \pi^+$.
- $\checkmark \ \ \text{The sign of} \ \Lambda_c^+ \to \Sigma \pi.$

Renaissance on the charmed baryon decay asymmetry from 2018!

Experiment & Phenomenon

				_	
Predictions and measurements	$lpha_{\Lambda_c^+}^{pK_s^0}$	$lpha_{\Lambda_c^+}^{\Lambda_\pi^+}$	$lpha_{\Lambda_c^+}^{\Sigma^0\pi^+}$	$lpha_{\Lambda_c^+}^{\Sigma^+\pi^0}$	$lpha_{\Lambda_c^+}^{\Xi^0K^+}$
CLEO(1990) [1]	-	$-1.0^{+0.4}_{-0.1}$	-	-	-
ARGUS(1992) [2]	-	-0.96 ± 0.42	-	-	-
Körner(1992), CCQM [3]	-0.10	-0.70	0.70	0.71	0
Xu(1992), Pole [4]	0.51	-0.67	0.92	0.92	0
Cheng, Tseng(1992), Pole [5]	-0.49	-0.96	0.83	0.83	-
Cheng, Tseng(1993), Pole [6]	-0.49	-0.95	0.78	0.78	-
Źencaykowski(1994), Pole [7]	-0.90	-0.86	-0.76	-0.76	0
Źencaykowski(1994), Pole [8]	-0.66	-0.99	0.39	0.39	0
CLEO(1995) [9]	-	$-0.94^{+0.21+0.12}_{-0.06-0.06}$	-	$-0.45 \pm 0.31 \pm 0.06$	-
Alakabha Datta(1995), CA [10]	-0.91	-0.94	-0.47	-0.47	-
Ivanov(1998), CCQM [11]	-0.97	-0.95	0.43	0.43	0
Sharma(1999), CA [12]	-0.99	-0.99	-0.31	-0.31	0
FOCUS(2006) [13]	-	$-0.78 \pm 0.16 \pm 0.19$	-	-	
BESIII(2018) [14]	$0.18 \pm 0.43 \pm 0.14$	$-0.80 \pm 0.11 \pm 0.02$	$-0.73 \pm 0.17 \pm 0.07$	$-0.57 \pm 0.10 \pm 0.07$	-
Geng(2019), SU(3) [15]	$-0.89^{+0.26}_{-0.11}$	-0.87 ± 0.10	-0.35 ± 0.27	-0.35 ± 0.27	$0.94^{+0.06}_{-0.11}$
Zou(2020), CA [16]	-0.75	-0.93	-0.76	-0.76	0.90
BELLE(2022) [17, 18]	-	$-0.755 \pm 0.005 \pm 0.003$	$-0.463 \pm 0.016 \pm 0.008$	$-0.48 \pm 0.02 \pm 0.02$	-
Zhong(2022), $SU(3)^a$ [19]	-0.57 ± 0.21	-0.75 ± 0.01	-0.47 ± 0.03	-0.47 ± 0.03	$0.91^{+0.03}_{-0.04}$
Zhong(2022), $SU(3)^b$ [19]	-0.29 ± 0.24	-0.75 ± 0.01	-0.47 ± 0.03	-0.47 ± 0.03	0.99 ± 0.01
Liu(2023), Pole [20]	-0.81 ± 0.05	-0.75 ± 0.01	-0.47 ± 0.01	-0.45 ± 0.04	0.95 ± 0.02
Liu(2023), LP [20]	-0.68 ± 0.01	-0.75 ± 0.01	-0.47 ± 0.01	-0.45 ± 0.04	0.02

- ✓ The decay asymmetry parameter of $\Lambda_c^+ \to \Xi^0 K^+$ significantly changed from 0 to almost 1.
- ✓ Quite urgent to validate experimentally.

Decay asymmetry for pure W-exchange process $\Lambda_c^+ \to \Xi^0 K^+$

Phys Re	v. Lett. 132	031801	(2024)
I Hys. Ne	V. Lett. 132	, 031001	(2024)

-					
Theory or experiment	$\mathcal{B}(\Lambda_c^+ o \Xi^0 K^+)$	$lpha_{\Xi^0K^+}$	A	B	$\delta_p - \delta_s$
	$(\times 10^{-3})$		$(\times 10^{-2}G_F \text{ GeV}^2)$	$(\times 10^{-2} G_F \text{ GeV}^2)$	(rad)
Körner (1992), CCQM [7]	2.6	0	-	-	-
Xu (1992), Pole [8]	1.0	0	0	7.94	-
Źencaykowski (1994), Pole [9]	3.6	0	-	-	-
Ivanov (1998), CCQM [10]	3.1	0	-	-	-
Sharma (1999), CA [11]	1.3	0	-	-	-
Geng (2019) , $SU(3)$ $[12]$	5.7 ± 0.9	$0.94^{+0.06}_{-0.11}$	2.7 ± 0.6	16.1 ± 2.6	-
Zou (2020), CA [5]	7.1	0.90	4.48	12.10	-
Zhong (2022), $SU(3)^a$ [13]	$3.8^{+0.4}_{-0.5}$	$0.91^{+0.03}_{-0.04}$	3.2 ± 0.2	$8.7^{+0.6}_{-0.8}$	-
Zhong (2022), $SU(3)^b$ [13]	$5.0^{+0.6}_{-0.9}$	0.99 ± 0.01	$3.3^{+0.5}_{-0.7}$	$12.3_{-1.8}^{+1.2}$	-
BESIII (2018) [14]	$5.90 \pm 0.86 \pm 0.39$	-	-	-	-
PDG Fit (2022) [3]	5.5 ± 0.7	-	-	-	

- $\Lambda_c^+ \to \Xi^0 K^+$ is pure W-exchange process which have significant contributions in charmed baryon decay.
- Nonfactorizable W-exchange diagram cannot be calculated using theoretical approaches.
- Long-standing puzzle on how large the S-wave amplitude.
- Experimental measurement of decay asymmetry is crucial and urgent.

FIG. 1. Feynman diagrams for $\Lambda_c^+ \to \Xi^0 K^+$

Decay asymmetry for pure W-exchange process $\Lambda_c^+ \to \Xi^0 K^+$

$$\alpha_{BP} = \frac{2\text{Re}(s^*p)}{|s|^2 + |p|^2}, \quad \beta_{BP} = \frac{2\text{Im}(s^*p)}{|s|^2 + |p|^2}, \quad \gamma_{BP} = \frac{|s|^2 - |p|^2}{|s|^2 + |p|^2},$$

Phys. Rev. Lett. 132, 031801(2024)

Level	Decay	Helicity angle	Helicity amplitude
0	$e^+e^- o \Lambda_c^+(\lambda_1)\bar{\Lambda}_c^-(\lambda_2)$	$(heta_0)$	A_{λ_1,λ_2}
1	$\Lambda_c^+ \to \Xi^0(\lambda_3) K^+$	$(heta_1,\!\phi_1)$	B_{λ_3}
2	$\Xi^0 o \Lambda(\lambda_4) \pi^0$	$(heta_2,\!\phi_2)$	C_{λ_4}
3	$\Lambda o p(\lambda_5) \pi^-$	$(heta_3,\!\phi_3)$	D_{λ_5}
	$d\Gamma$		

 $d\cos\theta_0 \ d\cos\theta_1 \ d\cos\theta_2 \ d\cos\theta_3 \ d\phi_1 \ d\phi_2 \ d\phi_3$ $\propto 1 + \alpha_0 \cos^2 \theta_0$ $+ (1 + \alpha_0 \cos^2 \theta_0) \alpha_{\Xi^0 K} + \alpha_{\Lambda \pi^0} \cos \theta_2$ $+(1+\alpha_0\cos^2\theta_0) \alpha_{\Xi^0K^+}\alpha_{p\pi^-}\cos\theta_2\cos\theta_3$ $+(1+\alpha_0\cos^2\theta_0) \alpha_{\Lambda\pi^0}\alpha_{p\pi^-}\cos\theta_3$ $-(1 + \alpha_0 \cos^2 \theta_0) \alpha_{\Xi^0 K^+} \sqrt{1 - \alpha_{\Lambda \pi^0}^2} \alpha_{p\pi^-} \sin \theta_2 \sin \theta_3 \cos(\Delta_{\Lambda \pi^0} + \phi_3)$ $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\alpha_{\Xi^0K^+}\sin\theta_1\sin\phi_1$ $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\alpha_{\Lambda\pi^0}\sin\theta_1\sin\phi_1\cos\theta_2$ $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\alpha_{\Xi^0K^+}\alpha_{\Lambda\pi^0}\alpha_{n\pi^-}\sin\theta_1\sin\phi_1\cos\theta_3$ $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\alpha_{n\pi}-\sin\theta_1\sin\phi_1\cos\theta_2\cos\theta_3$ $-\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Lambda\pi^0}^2}\alpha_{p\pi^-}\sin\theta_1\sin\phi_1\sin\theta_2\sin\theta_3\cos(\Delta_{\Lambda\pi^0}+\phi_3)$ $+\sqrt{1-\alpha_0^2}\,\sin\!\Delta_0\!\sin\!\theta_0\!\cos\!\theta_0\sqrt{1-\alpha_{\mp0\,K^+}^2}\,\,\alpha_{\Lambda\pi^0}\!\cos\!\phi_1\!\sin\!\theta_2\!\sin\!(\Delta_{\mp0\,K^+}+\phi_2)$ $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{=0}^2}_{K^+}\alpha_{\Lambda\pi^0}\cos\theta_1\sin\phi_1\sin\theta_2\cos(\Delta_{\Xi^0K^+}+\phi_2)$ $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\mp0\ \kappa^+}^2}\alpha_{n\pi^-}\cos\theta_1\sin\phi_1\sin\theta_2\cos(\Delta_{\mp0\ \kappa^+}+\phi_2)\cos\theta_3$ $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\mp0}^2}_{K^+}\alpha_{p\pi^-}\cos\phi_1\sin\theta_2\sin(\Delta_{\pm0}_{K^+}+\phi_2)\cos\theta_3$ $-\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\Xi^0K^+}^2}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\;\alpha_{p\pi^-}\cos\theta_1\sin\phi_1\sin(\Delta_{\Xi^0K^+}+\phi_2)\sin\theta_3\sin(\Delta_{\Lambda\pi^0}+\phi_3)$ $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\equiv0\,K^+}^2}\sqrt{1-\alpha_{\Lambda=0}^2}\ \alpha_{p\pi^-}\cos\theta_1\sin\phi_1\cos\theta_2\cos(\Delta_{\equiv0\,K^+}+\phi_2)\sin\theta_3\cos(\Delta_{\Lambda\pi^0}+\phi_3)$

 $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\equiv 0}^2}_{K^+}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\alpha_{p\pi^-}\cos\phi_1\cos(\Delta_{\equiv 0K^+}+\phi_2)\sin\theta_3\sin(\Delta_{\Lambda\pi^0}+\phi_3)$ $+\sqrt{1-\alpha_0^2}\sin\Delta_0\sin\theta_0\cos\theta_0\sqrt{1-\alpha_{\equiv 0K^+}^2}\sqrt{1-\alpha_{\Lambda\pi^0}^2}\alpha_{p\pi^-}\cos\phi_1\cos\theta_2\sin(\Delta_{\equiv 0K^+}+\phi_2)\sin\theta_3\cos(\Delta_{\Lambda\pi^0}+\phi_3)$

The joint angular distribution for $\Lambda_c^+ \to \Xi^0 K^+$ is derived based on helicity amplitude.

Decay asymmetry for pure W-exchange process $\Lambda_c^+ \to \Xi^0 K^+$

Phys. Rev. Lett. 132, 031801(2024)

- From the fit, we obtain $\alpha_{\Xi^0 K^+} = 0.01 \pm 0.16_{stat} \pm 0.03_{syst}$ and $\beta_{\Xi^0 K^+} = -0.64 \pm 0.69_{stat} \pm 0.13_{syst}$ and $\gamma_{\Xi^0 K^+} = -0.77 \pm 0.58_{stat} \pm 0.11_{syst}$
- α_{Ξ^0K} + is in good agreement with zero=>strong identification for theoretical predictions.

$$\begin{split} \Gamma &= \frac{\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)}{\tau_{\Lambda_c^+}} = \frac{|\vec{p_c}|}{8\pi} \Big[\frac{(m_{\Lambda_c^+} + m_{\Xi^0})^2 - m_{K^+}^2}{m_{\Lambda_c^+}^2} |A|^2 + \frac{(m_{\Lambda_c^+} - m_{\Xi^0})^2 - m_{K^+}^2}{m_{\Lambda_c^+}^2} |B|^2 \Big] \\ &\alpha_{\Xi^0 K^+} = \frac{2\kappa |A| |B| \text{cos}(\delta_p - \delta_s)}{|A|^2 + \kappa^2 |B|^2}, \\ &\Delta_{\Xi^0 K^+} = \arctan \frac{2\kappa |A| |B| \text{sin}(\delta_p - \delta_s)}{|A|^2 - \kappa^2 |B|^2}, \end{split}$$

- Especially, $\cos(\delta_p \delta_s)$ is measured to close to zero.=>not considered in previous literature.
- Fills the long-standing puzzle on how to model $\alpha_{\Xi^0K^+}$ and $\mathcal{B}(\Lambda_c^+ \to \Xi^0K^+)$ simultaneously.

Experiment & Phenomenon

Predictions and measurements	$\alpha_{\Lambda_c^+}^{pK_s^0}$	$\alpha_{\Lambda_c^+}^{\Lambda_{\pi}^+}$	$lpha_{\Lambda_c^+}^{\Sigma^0\pi^+}$	$\alpha_{\Lambda_c^+}^{\Sigma^+\pi^0}$	$\alpha_{\Lambda_c^+}^{\Xi^0K^+}$
CLEO(1990) [1]	-	$-1.0^{+0.4}_{-0.1}$	-	-	-
ARGUS(1992) [2]	-	-0.96 ± 0.42	-	-	-
Körner(1992), CCQM [3]	-0.10	-0.70	0.70	0.71	0
Xu(1992), Pole [4]	0.51	-0.67	0.92	0.92	0
Cheng, Tseng(1992), Pole [5]	-0.49	-0.96	0.83	0.83	-
Cheng, Tseng(1993), Pole [6]	-0.49	-0.95	0.78	0.78	-
Źencaykowski(1994), Pole [7]	-0.90	-0.86	-0.76	-0.76	0
Źencaykowski(1994), Pole [8]	-0.66	-0.99	0.39	0.39	0
CLEO(1995) [9]	-	$-0.94^{+0.21+0.12}_{-0.06-0.06}$	-	$-0.45 \pm 0.31 \pm 0.06$	-
Alakabha Datta(1995), CA [10]	-0.91	-0.94	-0.47	-0.47	-
Ivanov(1998), CCQM [11]	-0.97	-0.95	0.43	0.43	0
Sharma(1999), CA [12]	-0.99	-0.99	-0.31	-0.31	0
FOCUS(2006) [13]	-	$-0.78 \pm 0.16 \pm 0.19$	-	-	-
BESIII(2018) [14]	$0.18 \pm 0.43 \pm 0.14$	$-0.80 \pm 0.11 \pm 0.02$	$-0.73 \pm 0.17 \pm 0.07$	$-0.57 \pm 0.10 \pm 0.07$	-
Geng(2019), SU(3) [15]	$-0.89^{+0.26}_{-0.11}$	-0.87 ± 0.10	-0.35 ± 0.27	-0.35 ± 0.27	$0.94^{+0.06}_{-0.11}$
Zou(2020), CA [16]	-0.75	-0.93	-0.76	-0.76	0.90
BELLE(2022) [17, 18]	-	$-0.755 \pm 0.005 \pm 0.003$	$-0.463 \pm 0.016 \pm 0.008$	$-0.48 \pm 0.02 \pm 0.02$	-
Zhong(2022), $SU(3)^a$ [19]	-0.57 ± 0.21	-0.75 ± 0.01	-0.47 ± 0.03	-0.47 ± 0.03	$0.91^{+0.03}_{-0.04}$
Zhong(2022), $SU(3)^b$ [19]	-0.29 ± 0.24	-0.75 ± 0.01	-0.47 ± 0.03	-0.47 ± 0.03	0.99 ± 0.01
Liu(2023), Pole [20]	-0.81 ± 0.05	-0.75 ± 0.01	-0.47 ± 0.01	-0.45 ± 0.04	0.95 ± 0.02
L:u(2022) LD [20]	-0.68 ± 0.01	-0.75 ± 0.01	-0.47 ± 0.01	-0.45 ± 0.04	0.02
BESIII(2023) [21]	-	-	-	-	0.01 ± 0.16
Geng(2023), SU(3) [22]	-0.40 ± 0.49	-0.75 ± 0.01	-0.47 ± 0.02	-0.47 ± 0.02	-0.15 ± 0.14
Zhong(2024), TDA [23]	0.01 ± 0.24	-0.76 ± 0.01	-0.48 ± 0.02	-0.48 ± 0.02	-0.16 ± 0.13
Zhong(2024), IRA [23]	0.03 ± 0.24	-0.76 ± 0.01	-0.48 ± 0.02	-0.48 ± 0.02	-0.19 ± 0.12
PDG(for now) [24]	0.20 ± 0.50 (only BESIII)	-0.84 ± 0.09	-0.73 ± 0.18 (only BESIII)	-0.55 ± 0.11	-

New results?

	0				
Predictions and measurements	$lpha_{\Lambda_c^+}^{pK_s^0}$	$lpha_{\Lambda_c^+}^{\Lambda\pi^+}$	$lpha_{\Lambda_c^+}^{\Sigma^0\pi^+}$	$\alpha_{\Lambda_c^+}^{\Sigma^+\pi^0}$	$\alpha_{\Lambda_c^+}^{\Xi^0K^+}$
CLEO(1990) [1]	-	$-1.0^{+0.4}_{-0.1}$	-	-	-
ARGUS(1992) [2]	-	-0.96 ± 0.42	-	-	-
Körner(1992), CCQM [3]	-0.10	-0.70	0.70	0.71	0
Xu(1992), Pole [4]	0.51	-0.67	0.92	0.92	0
Cheng, Tseng(1992), Pole [5]	-0.49	-0.96	0.83	0.83	-
Cheng, Tseng(1993), Pole [6]	-0.49	-0.95	0.78	0.78	-
Źencaykowski(1994), Pole [7]	-0.90	-0.86	-0.76	-0.76	0
Źencaykowski(1994), Pole [8]	-0.66	-0.99	0.39	0.39	0
CLEO(1995) [9]	-	$-0.94^{+0.21+0.12}_{-0.06-0.06}$	-	$-0.45 \pm 0.31 \pm 0.06$	-
Alakabha Datta(1995), CA [10]	-0.91	-0.94	-0.47	-0.47	-
Ivanov(1998), CCQM [11]	-0.97	-0.95	0.43	0.43	0
Sharma(1999), CA [12]	-0.99	-0.99	-0.31	-0.31	0
FOCUS(2006) [13]	-	$-0.78 \pm 0.16 \pm 0.19$	-	-	-
~587 <i>pb</i> ⁻¹ BESIII(2018) [14]	$0.18 \pm 0.43 \pm 0.14$	$-0.80 \pm 0.11 \pm 0.02$	$-0.73 \pm 0.17 \pm 0.07$	$-0.57 \pm 0.10 \pm 0.07$	-
Geng(2019), SU(3) [15]	$-0.89^{+0.23}_{-0.11}$	-0.87 ± 0.10	-0.35 ± 0.27	-0.35 ± 0.27	$0.94^{+0.06}_{-0.11}$
Zou(2020), CA [16]	-0.75	-0.93	-0.76	-0.76	0.90
BELLE(2022) [17, 18]	-	$-0.755 \pm 0.005 \pm 0.003$	$-0.463 \pm 0.016 \pm 0.008$	$-0.48 \pm 0.02 \pm 0.02$	-
Zhong(2022), $SU(3)^a$ [19]	-0.57 ± 0.21	-0.75 ± 0.01	-0.47 ± 0.03	-0.47 ± 0.03	$0.91^{+0.03}_{-0.04}$
Zhong(2022), $SU(3)^b$ [19]	-0.29 ± 0.24	-0.75 ± 0.01	-0.47 ± 0.03	-0.47 ± 0.03	0.99 ± 0.01
Liu(2023), Pole [20]	-0.81 ± 0.05	-0.75 ± 0.01	-0.47 ± 0.01	-0.45 ± 0.04	0.95 ± 0.02
Liu(2023), LP [20]	-0.68 ± 0.01	-0.75 ± 0.01	-0.47 ± 0.01	-0.45 ± 0.04	-0.02
BESIII(2023) [21]	_	-	-	-	0.01 ± 0.16
Geng(2023), SU(3) [22]	-0.40 ± 0.49	-0.75 ± 0.01	-0.47 ± 0.02	-0.47 ± 0.02	-0.15 ± 0.14
Zhong(2024), TDA [23]	0.01 ± 0.24	-0.76 ± 0.01	-0.48 ± 0.02	-0.48 ± 0.02	-0.16 ± 0.13
Zhong(2024), IRA [23]	0.03 ± 0.24	-0.76 ± 0.01	-0.48 ± 0.02	-0.48 ± 0.02	-0.19 ± 0.12
PDG(for now) [24]	0.20 ± 0.50 (only BESIII)	-0.84 ± 0.09	-0.73 ± 0.18 (only BESIII)	-0.55 ± 0.11	-

 $_{\sim 6.4 fb^{-1}}$ BESIII(2024?)

Discussion on $\Lambda_c^+ \to \Xi^0 K^+$

Strong phase shift: $-1.55 \pm 0.25 \pm 0.05$ or $1.59 \pm 0.25 \pm 0.05$

 $\alpha \propto \cos \sim 0.02$

Strong phase shift can be induced by re-scattering processes and loop effects.

- ✓ After consider the strong phase shift:
 - A. Observed channel $\Xi_c^0 \to \Sigma^+ K^-$ should have phase shift similar to $\Lambda_c^+ \to \Xi^0 K^+$.
 - B. Topological diagrammatic approach leads to a large α of order -0.93 for the decay $\Xi_c^+ \to \Xi^0 \pi^+$ even after the phase shift effect is incorporated.

Further confirmation is needed!

arXiv:2310.05491 arXiv:2404.01350

Methods for measurement

> The definition of polarization parameters:

$$\alpha = \frac{2\text{Re}(s^*p)}{|s|^2 + |p|^2} \quad \beta = \frac{2\text{Im}(s^*p)}{|s|^2 + |p|^2} \quad \gamma = \frac{|s|^2 - |p|^2}{|s|^2 + |p|^2}$$

If *s* and *p* can be measured directly, all information will be derived.

Partial wave analysis is a good choice for multi-body decays.

- Developed and updated by Yi Jiang @ UCAS
- Home page: https://github.com/jiangyi15/tf-pwa

s and *p* of all intermediate resonance states

- ✓ Polarization parameters
- ✓ Branching fraction

Methods for measurement

Partial wave analysis of the charmed baryon hadronic decay $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$

JHEP12(2022)033

	Result	
$\frac{\mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)}{\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0)}$	$(57.2 \pm 4.2 \pm 4.9)\%$	
$\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0) \cdot \mathcal{B}(\Sigma(1385)^+ \to \Lambda \pi^+)}{\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0)}$	$(7.18 \pm 0.60 \pm 0.64)\%$	
$\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+) \cdot \mathcal{B}(\Sigma(1385)^0 \to \Lambda \pi^0)}{\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^0)}$	$(7.92 \pm 0.72 \pm 0.80)\%$	
$\mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$	$(4.06 \pm 0.30 \pm 0.35 \pm 0.23) \times 10^{-2}$	
$\mathcal{B}(\Lambda_c^+ o \Sigma(1385)^+ \pi^0)$	$(5.86 \pm 0.49 \pm 0.52 \pm 0.35) \times 10^{-3}$	
$\mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+)$	$(6.47 \pm 0.59 \pm 0.66 \pm 0.38) \times 10^{-3}$	
$lpha_{\Lambda ho(770)^+}$	$-0.763 \pm 0.053 \pm 0.045$	
$lpha_{\Sigma(1385)^+\pi^0}$	$-0.917 \pm 0.069 \pm 0.056$	
$lpha_{\Sigma(1385)^0\pi^+}$	$-0.789 \pm 0.098 \pm 0.056$	

More multi-body decays are underway!

$$\checkmark \Lambda_c^+ \to p K^- \pi^+ \qquad \checkmark \Lambda_c^+ \to \Lambda^0 \pi^+ \eta$$

$$\checkmark \Lambda_c^+ \to \Lambda^0 \pi^+ \eta$$

$$\checkmark \Lambda_c^+ \to p K^- \pi^+ \pi^0 \checkmark \Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-$$

$$\checkmark \Lambda_c^+ \to p K_s^0 \pi^0$$

$$\checkmark \Lambda_c^+ \to p K_s^0 \pi^0 \qquad \checkmark \Lambda_c^+ \to \Sigma^- \pi^+ \pi^+$$

$$\checkmark \Lambda_c^+ \to n K_s^0 \pi^+ \qquad \checkmark \dots$$

The α of all intermediate two-body processes will be measured!

Λ_c^+ polarization on BESIII

angular information from experiment

 Λ_c^+ polarization parameters

 Λ_c^+ initial transverse polarization parameters

$$P_y(\alpha_0, \Delta_0, \theta_0) = c_0 \sqrt{1 - \alpha_0^2 \sin \theta_0 \cos \theta_0 \sin \Delta_0}$$
 energy depended, relate to the form factor $e^+e^- \to \Lambda_c^+ \overline{\Lambda}_c^-$

New Λ_c^+ polarization on BESIII

- Transverse polarization with energy from 4.60-4.95 GeV combined with $\Lambda_c^+ \to p K^- \pi^+$ channel(fixed all decay info. with LHCb input).
- Update 4 two-body decays polarization parameters with higher precision
- Strong/Weak phase shift
- α -induced CPV observables

$\Lambda_c^+ \to p K^- \pi^+$ amplitude analysis

Phys. Rev. D 108, 012023 (2023)

 Λ_c^+ signals are selected via $\Lambda_b^0 \to \Lambda_c^+ \mu^- \nu$ from dataset taken in 2016, where only a subset of 0.4 M signals are employed

5-dim fit

Resonance	Fit fraction (%)
$\Lambda(1405)$	7.7
Λ(1520)	1.86
$\Lambda(1600)$	5.2
Λ(1670)	1.18
$\Lambda(1690)$	1.19
$\Lambda(2000)$	9.58
$\Delta(1232)^{++}$	28.60
$\Delta(1600)^{++}$	4.5
$\Delta(1700)^{++}$	3.90
$K_0^*(700)$	3.02
$K^*(892)$	22.14
$K_0^*(1430)$	14.7

Resonance	α
Model $\sqrt{3}S$	0.662
$K^*(892) \sqrt{3}S$	0.873
$\Lambda(1405)$	-0.58
$\Lambda(1520)$	-0.925
$\Lambda(1600)$	-0.20
$\Lambda(1670)$	-0.817
$\Lambda(1690)$	-0.958
$\Lambda(2000)$	-0.57
$\Delta(1232)^{++}$	-0.548
$\Delta(1600)^{++}$	-0.50
$\Delta(1700)^{++}$	-0.216
$K_0^*(700)$	-0.06
$K_0^*(1430)$	-0.34

Λ_c^+ polarization and $\Lambda_c^+ \to p K^- \pi^+$ polarimetry

Phys. Rev. D 108, 012023 (2023)

Commonant	V-1 (01)
Component	Value (%)
P_x (lab)	$60.32 \pm 0.68 \pm 0.98 \pm 0.21$
P_{y} (lab)	$-0.41 \pm 0.61 \pm 0.16 \pm 0.07$
P_z (lab)	$-24.7 \pm 0.6 \pm 0.3 \pm 1.1$
$P_{x}(\tilde{B})$	$21.65 \pm 0.68 \pm 0.36 \pm 0.15$
$P_{y}(\tilde{B})$	$1.08 \pm 0.61 \pm 0.09 \pm 0.08$
$P_z(\tilde{B})$	$-66.5 \pm 0.6 \pm 1.1 \pm 0.1$

A large Λ_c^+ polarization is found in b semi-leptonic decays $\Lambda_b^0 \to \Lambda_c^+ \mu^- \nu$

- The obtained representation can facilitate polarization measurements of the Λ_c^+ baryon and eases inclusion of the $\Lambda_c^+ \to p K^- \pi^+$ decay mode in hadronic amplitude analyses.
- At BESIII, the transverse polarization of Λ_c^+ can be obtained via $\Lambda_c^+ \to pK^-\pi^+$ polarimetry

JHEP 07, 228 (2023)

The amplitude model is used to produce the distribution of the kinematic-dependent polarimeter vector in the space of Mandelstam variables to express the polarized decay rate in a model-independent way.

Proposal of the upgrade BEPCII

An upgrade of BEPCII (**BEPCII-U**) has been approved in July 2021 and planned to be completed by the end of 2024

- ✓ Improve luminosity by 3 times higher than current BEPCII at 4.7 GeV
- ✓ Extend the maximum energy to 5.6 GeV

Capable of finishing the proposed luminosity of Λ_c^+ data in shorter time

1490 **→** 600 days

Heavier charmed baryons

• Energy thresholds

$$\checkmark e^{+}e^{-} \rightarrow \Lambda_{c}^{+}\overline{\Sigma}_{c}^{-} \qquad 4.74 \text{ GeV}$$

$$\checkmark e^{+}e^{-} \rightarrow \Lambda_{c}^{+}\overline{\Sigma}_{c} \qquad 4.88 \text{ GeV}$$

$$\checkmark e^{+}e^{-} \rightarrow \Sigma_{c} \overline{\Sigma}_{c} \qquad 4.91 \text{ GeV}$$

$$\checkmark e^{+}e^{-} \rightarrow \Xi_{c} \overline{\Xi}_{c} \qquad 4.94 \text{ GeV}$$

$$\checkmark e^{+}e^{-} \rightarrow \Omega_{c}^{0}\overline{\Omega}_{c}^{0} \qquad 5.40 \text{ GeV}$$

- Cover all the ground-state charmed baryons: studies on their production & decays, CPV search, to help developing more reliable QCD-derived models in charm sector
- Studies on the production and decays of excited charmed baryons

Future opportunity at LHCb

- RUN1&2: 9 fb $^{-1}$
- RUN3&4: 50 fb^{-1}
- → x10 more statistics

- > Further improvement on mass and lifetime measurement
- > SCS and DCS hadronic decays
 - \circ e.g. $\mathcal{Z}_c^0 \to pK^-$, $\mathcal{Z}_c^+ \to pK_S$, $\Omega_c^0 \to \Lambda K_S$, pK^-
- > Semi-leptonic decays via b-baryon four-body decays
 - $\circ \quad \text{e.g. } \Lambda_c^+ \to p K^- \mu^+ \nu, p \pi^- \mu^+ \nu; \, \Xi_c^0 \to \Xi^- \mu^+ \nu; \, \Xi_c^+ \to \Lambda \mu^+ \nu; \, \Omega_c^0 \to \Omega^- \mu^+ \nu$
- > Decay asymmetries and CPV search via prompt production or b-baryon decays
 - $\circ \quad \text{e.g. } \Lambda_c^+ \to pK_S, \ \Lambda \pi^+, \ \Lambda K^+; \ \Xi_c^0 \to \Lambda K_S, \ \Xi^- \pi^+, \ \Xi^- K^+; \ \Omega_c^0 \to \Omega^- \pi^+, \Omega^- K^+, \ \Xi^- \pi^+$
- > Amplitude analysis of multi-body hadronic decays

Super Tau-Charm Facility (STCF)

- E_{cm} =2-7GeV, L=0.5×10³⁵cm⁻² s⁻¹
- Potential for upgrade to increase L and realize polarized beam
- Site area: 1 km²

Anhui provice and USTC have officially endorsed 364M RMB R&D project of STCF, and great progress is achieved; the site is preliminarily decided in Hefei, and geological exploration and engineering design is ongoing.

Will apply for the construction (~4.5B RMB) during the 15th five-year plan (2026-2030) from central government.

Summary

- In the past year, many important results of charm baryon decays were reported by BESIII, Belle, and LHCb.
- Non-perturbative QCD is the main challenge. The theoretical calculations are hard for the Hadronic charm baryon decays.
 - Tools are improving.
 - Collaborations between theorists and experimentalists are crucial for accelerating research.
- The future of charm is promising. Lots of high quality data coming our way: LHCb, Belle II, BESIII(+upgrade)
- A dedicated charm facility, STCF, has been proposed in China. The R&D project with 364M RMB budget has been officially supported by Anhui province and USTC.