Charmed baryon semileptonic decays

On the puzzle of $\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell$

刘佳韦

June 28

2025

第三届践Ⅲ

探强子物理联合研讨会

Numbers of articles related to charmed baryons from <u>Inspirehep</u>

Measurements of $\Lambda_c^+ \to \Lambda$ form factors BESII Collaboration PRL 129, 231803 (2022)

First measurement of $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$ **BELLE** Collaboration PRL 113, 042002 (2014)

50

Improved precision on

$$\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$$

BESII Collaboration

PRL 116, 052001 (2016)

Observation of Ξ_{cc}^{++}

PRL 119, 112001 (2017)

Measurements of

$$\mathcal{B}(\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell)$$

BELLE Collaboration

PRL 127, 121803 (2021)

First observation of strong phase in NL BESII Collaboration PRL 132, 031801 (2024)

Numbers of articles related to charmed baryons from <u>Inspirehep</u>

 Before 2020, studies focus on charmed baryons themselves.

 Since 2020, they have been used as tools to examine the standard model!

In semileptonic decays:

Form factors, Time-reversal asymmetries.

In nonleptonic decays:

CP violation

Exclusive semileptonic decays

Lattice QCD:
$$\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell \dots$$

Inclusive decays (clue 1)

Heavy quark expansion: $\Lambda_c \to X\ell^+$, $\tau(\Lambda_c)$...

Interactions at hadron level

Small released energy, $\chi \text{PT: } \Xi_c^0 \to \Lambda_c^+ \pi^- \dots$

 $SU(3)_F$ analysis (clue 2)

2-body, 3-body, semileptonic... Most general but requires (too) many parameters

Data driven / fruitful

Semileptonic decays (exclusive)

$$\mathscr{B}\left(\Lambda_c^+ \to \Lambda e^+ v_e\right) (\%)$$

• Theoretical predictions range widely.

• Lattice predictions are consistent with data for Λ_c^+ decays.

Semileptonic decays (exclusive)

$$\mathscr{B}\left(\Lambda_c^+ \to ne^+ v_e\right) (\%)$$

Theoretical predictions range widely.

- Lattice predictions are consistent with data for Λ_c^+ decays.
- Handling of phase space and the running of form factors generate main differences in $SU(3)_F$ analysis.
- $c \rightarrow s$ and $c \rightarrow d$ can have sizable differences in PS and FFs.

Semileptonic decays (exclusive)

$$\frac{d^4\Gamma}{dq^2 d \cos \theta_\ell d \cos \theta_\rho d \chi} = \frac{G_F^2 |V_{cs}|^2}{2(2\pi)^4} \cdot \frac{Pq^2 (1 - m_\ell^2/q^2)^2}{24M_{\Lambda_c}^2} \left\{ \frac{3}{8} (1 - \cos \theta_\ell')^2 |H_{\frac{1}{2}1}|^2 (1 + \alpha_\Lambda \cos \theta_\rho) \right. \\ + \frac{3}{4} \sin^2 \theta_\ell' [|H_{\frac{1}{2}0}|^2 (1 + \alpha_\Lambda \cos \theta_\rho) + |H_{-\frac{1}{2}0}|^2 (1 - \alpha_\Lambda \cos \theta_\rho)] + \frac{3}{4} \sin^2 \theta_\ell' [|H_{\frac{1}{2}0}|^2 (1 + \alpha_\Lambda \cos \theta_\rho) + |H_{-\frac{1}{2}0}|^2 (1 - \alpha_\Lambda \cos \theta_\rho)] + \frac{3}{2\sqrt{2}} \alpha_\Lambda \cos \chi \sin \theta_\ell' \sin \theta_\rho \\ \times \left[(1 - \cos \theta_\ell') H_{-\frac{1}{2}0} H_{\frac{1}{2}1} + (1 + \cos \theta_\ell') H_{\frac{1}{2}0} H_{-\frac{1}{2}-1} \right] + \mathcal{H}_{m_\ell^2} \right\},$$

- Semileptonic decays (exclusive)
- Use * $\tau_{\Xi_c^0} = 0.15$ ps instead of 0.118 ps.
- So far, there is *no* literature that can explain satisfactorily the smallness of it.
- What's worse, the $SU(3)_F$ symmetry for $c \to s$ indicates:

• It is around 0.3 instead! Both are $c \to s$ transitions, and large $SU(3)_F$ breaking is unexpected.

- Semileptonic decays (exclusive)
- Use * $\tau_{\Xi_c^0} = 0.15$ ps instead of 0.118 ps.
- So far, there is *no* literature that can explain satisfactorily the smallness of it.
- What's worse, the $SU(3)_F$ symmetry for $c \to s$ indicates:

- Semileptonic decays (exclusive)
- Difficult to explain the data with NP with the meson sector unaffected.
- A possible explanation: [2110.04179]

$$\Xi_c = \cos\theta \ \Xi_c^{\overline{3}} + \sin\theta \ \Xi_c^{\overline{6}}$$

• The form factors of $\Xi_c^{\overline{3}}$ and Ξ_c^{6} destructively interfere. With $\theta \approx 25^\circ$, the data can be explained: [2210.07211]

$$\mathcal{B}(\Xi_c^0 \to \Xi'(1520)\ell^+\nu_\ell) \approx 5 \times 10^{-3}$$

$$\mathcal{B}(\Xi_c^+ \to \Xi'(1520)\ell^+\nu_\ell) \approx 1.3\%$$

$$\Xi_c \xrightarrow{s} q$$

$$\{s,q\} \Xi'$$

 Unfortunately, it was soon realized from lattice QCD, sum rules and LFQM that the mixing angle is tiny.

[2103.09436, 2303.17865, 2305.08050, 2309.05432, 2309.16386]

First principle / reliable

Inclusive decays (clue 1)

Heavy quark expansion: $\Lambda_c \to X\ell^+$, $\tau(\Lambda_c)$...

Data driven / fruitful

Inclusive decays - theory

Hai-Yang Cheng, March 19, 2018, see the first talk in this morning

	$\Gamma^{ m dec}$	Γ^{ann}	$\Gamma^{ m int}_{-}$	$\Gamma_+^{ ext{int}}$	$\Gamma_{ m SL}$	$\Gamma^{ m tot}$	$\tau(10^{-13}s)$	$\tau_{\mathrm{expt}}(10^{-13}s)$
$\overline{\Lambda_c^+}$	1.012	1.883	-0.209	0.021	0.308	3.015	2.18	2.00 ± 0.06
$_{\scriptscriptstyle{5}}\Xi_{oldsymbol{c}}^{oldsymbol{+}}$	1.012	0.115	-0.189	0.353	0.524	1.854	3.55	4.42 ± 0.26
Ξ_c^0	1.012	2.160		0.351	0.524	4.083	1.61	$1.12^{+0.13}_{-0.10}$
Ω_c^0	1.155	0.126		0.346	0.520	2.855	2.31	0.69 ± 0.12

By the end of the work, I was very disappointed because although the lifetime of Ξ_c^+ as well as its ratio to Λ_c^+ lifetime were largely improved by including dim-7 effects, the predicted Ω_c lifetime becomes the longest one, opposite to the experiment.

LHCb, June 8, 2018

	$ au(\Xi_c^+)$	$ au(\Lambda_c^+)$	$ au(\Xi_c^0)$	$ au(\Omega_c^0)$
PDG (2004-2018) [10]	442 ± 26	200 ± 6	112^{+13}_{-10}	69 ± 12
LHCb (2018) [12]				268 ± 26
LHCb (2019) [14]	457 ± 6	203.5 ± 2.2	154.5 ± 2.6	
PDG (2020) [11]	456 ± 5	202.4 ± 3.1	153 ± 6	268 ± 26
LHCb (2021) [15]			148.0 ± 3.2	276.5 ± 14.1
World average (2021)	456 ± 5	202.4 ± 3.1	152.0 ± 2.0	274.5 ± 12.4

(The Belle II Collaboration)

We report on a measurement of the Ω_c^0 lifetime using $\Omega_c^0 \to \Omega^- \pi^+$ decays reconstructed in $e^+e^- \to c\bar{c}$ data collected by the Belle II experiment and corresponding to $207\,\mathrm{fb}^{-1}$ of integrated luminosity. The result, $\tau(\Omega_c^0) = 243 \pm 48\,\mathrm{(stat)} \pm 11\,\mathrm{(syst)}\,\mathrm{fs}$, agrees with recent measurements indicating that the Ω_c^0 is not the shortest-lived weakly decaying charmed baryon.

Inclusive decays - theory

 $\propto m_Q^{\circ}$

Pole mass, non-perturbative input [2502.05901]

singlet

octet

$$\frac{1}{m_a} \mathrm{Im} \big(A_{a \to a} \big) = \frac{i}{2m_a} \int \left\langle T \left(\mathscr{H}_{\mathit{eff}}(x) \mathscr{H}_{\mathit{eff}}(0) \right) \right\rangle d^4 x = \frac{1}{m_a} \sum_{n \in \mathscr{N}} \frac{m_Q^k}{m_Q^n} \left\langle C_n O_n \right\rangle$$
Separating energy scales $M_W \gg m_Q \gg \Lambda_{QCD}$

$$\frac{1}{m_a} \operatorname{Im} \left(\underbrace{\frac{Q}{q_2}}_{q_3} \underbrace{\frac{Q}{q_2}}_{q_3} + \underbrace{\frac{Q}{q_3}}_{q_1} \underbrace{\frac{Q}{q_2}}_{q_1} + \underbrace{\frac{Q}{q_2}}_{q_2} \underbrace{\frac{Q}{q_1}}_{q_1} \underbrace{\frac{Q}{q_2}}_{q_2} + \underbrace{\frac{Q}{q_3}}_{q_2} \underbrace{\frac{Q}{q_1}}_{q_2} + \underbrace{\frac{Q}{q_3}}_{q_3} \underbrace{\frac{Q}{q_1}}_{q_2} + \underbrace{\frac{Q}{q_3}}_{q_3} \underbrace{\frac{Q}{q_1}}_{q_3} \right) = \Gamma_{\text{total}}$$

 $\propto (4\pi)^2 m_Q^2$

Inclusive decays - theory

$$(m_b, m_c, \Lambda_{QCD}) = (4.8, 1.5, 0.3) \text{ GeV}$$

$$\left(\left(\frac{\Lambda_{QCD}}{m_b}\right)^3, \left(\frac{\Lambda_{QCD}}{m_c}\right)^3, 16\pi^2\right) \approx \left(\frac{1}{4000}, \frac{1}{125}, 160\right)$$

• The dim-6 operators are of order $\mathcal{O}(10^{-2})$ and $\mathcal{O}(1)$ relative to the dim-3 ones.

$$\frac{1}{m_a} \operatorname{Im} \left(\underbrace{\frac{Q}{q_2}}_{q_3} \underbrace{\frac{Q}{q_2}}_{q_3} + \underbrace{\frac{Q}{q_3}}_{q_1} \underbrace{\frac{Q}{q_1}}_{q_2} \underbrace{\frac{Q}{q_1}}_{q_1} + \underbrace{\frac{Q}{q_2}}_{q_2} \underbrace{\frac{Q}{q_1}}_{q_1} \underbrace{\frac{Q}{q_2}}_{q_2} \underbrace{\frac{Q}{q_1}}_{q_2} + \underbrace{\frac{Q}{q_3}}_{q_2} \underbrace{\frac{Q}{q_1}}_{q_3} \underbrace{\frac{Q}{q_2}}_{q_3} \right) = \Gamma_{\text{tota}}$$

$$\propto m_Q^5$$

$$\propto (4\pi)^2 m_Q^2$$

- Inclusive decays theory
- Symbolically, the transition operators read:

$$\frac{G_F^2 m_Q^5}{192\pi^3} \xi \left(c_{3,Q} \bar{Q}Q + \frac{c_{5,Q}}{m_Q^2} \bar{Q}\sigma \cdot GQ + \frac{c_{6,Q}}{m_Q^3} T_6 + \frac{c_{7,Q}}{m_Q^4} T_7 + \cdots \right)$$

- In Cabibbo-favored decays, Ξ_c receive dim-6 operators contributions but Λ_c^+ does not!
- Since dim-3 and dim-6 SL operators are in the same sign:

$$\Gamma_{\Xi_c}^{\text{SL}} = \Gamma_{\Xi_c}^{\text{SL}}(\text{dim-3}) + \Gamma_{\Xi_c}^{\text{SL}}(\text{dim-6}) = \Gamma_{\Lambda_c^+}^{\text{SL}} + \Gamma_{\Xi_c}^{\text{SL}}(\text{dim-6}) \ge \Gamma_{\Lambda_c^+}^{\text{SL}}$$

• BCSIII reveals the 90% saturation of: [2212.03753]

$$\mathcal{B}(\Lambda_c^+ \to Xe^+) = (4.06 \pm 13) \% \approx 1.1 \mathcal{B}(\Lambda_c^+ \to \Lambda e^+\nu_e)$$
$$\mathcal{B}(\Xi_c^0 \to X\ell^+\nu_\ell) \ge 2.6 \%$$

• From $\mathcal{B}(\Xi_c^0 \to \Xi^- \ell^+ \nu_\ell) = (1.05 \pm 0.20) \%$ we have

$$\frac{\mathcal{B}(\Xi_c^0 \to Xe^+)}{\mathcal{B}(\Xi_c^0 \to \Xi^-e^+\nu_e)} \ge 2$$

Inclusive decays - numerical results

$$L_{\mathcal{B}_{Q}}^{q} \equiv \left\langle \left(Q_{\alpha}^{\dagger} L^{\mu} q_{\alpha} \right) \left(q_{\beta}^{\dagger} L_{\mu} Q_{\beta} \right) \right\rangle_{\mathcal{B}_{Q}}, \qquad \tilde{L}_{\mathcal{B}_{Q}}^{q} \equiv \left\langle \left(Q_{\alpha}^{\dagger} L^{\mu} q_{\beta} \right) \left(q_{\beta}^{\dagger} L_{\mu} Q_{\alpha} \right) \right\rangle_{\mathcal{B}_{Q}}$$

$$S_{\mathcal{B}_{Q}}^{q} \equiv \left\langle \left(\overline{Q}_{\alpha} q_{\alpha} \right) \left(\overline{q}_{\beta} Q_{\beta} \right) \right\rangle_{\mathcal{B}_{Q}}, \qquad \tilde{S}_{\mathcal{B}_{Q}}^{q} \equiv \left\langle \left(\overline{Q}_{\alpha} q_{\beta} \right) \left(\overline{q}_{\beta} Q_{\alpha} \right) \right\rangle_{\mathcal{B}_{Q}},$$

$$P_{\mathcal{B}_{Q}}^{q} \equiv \left\langle \left(\overline{Q}_{\alpha} \gamma_{5} q_{\alpha} \right) \left(\overline{q}_{\beta} \gamma_{5} Q_{\beta} \right) \right\rangle_{\mathcal{B}_{Q}}, \qquad \tilde{P}_{\mathcal{B}_{Q}}^{q} \equiv \left\langle \left(\overline{Q}_{\alpha} \gamma_{5} q_{\beta} \right) \left(\overline{q}_{\beta} \gamma_{5} Q_{\alpha} \right) \right\rangle_{\mathcal{B}_{Q}},$$

$$L_{\Lambda_b}^{q_I} = -3.2 \pm 1.6 \& -2.38 \pm 0.11 \pm 0.34 \pm 0.22$$
 From QCD and HQET sum rules [2305.00665] [PLB 387, 371(1996)]

Model	(\mathcal{B}_Q,q)	(Λ_b,q_I)	(Ξ_b, q_I)	(Ξ_b, s)	(Ω_b,s)	(Λ_c,q_I)	(Ξ_c,q_I)	(Ξ_c,s)	(Ω_c,s)
$\mathrm{BM}^{\;a}$	$L^q_{\mathcal{B}_Q}$	-5.44	-5.15	-5.88	-34.12	-4.83	-4.87	-5.34	-31.63
	$S^q_{\mathcal{B}_Q}$	2.44	2.32	2.74	-5.41	1.96	1.98	2.32	-4.65
	$P^q_{\mathcal{B}_Q}$	-0.27	-0.25	-0.20	-0.62	-0.44	-0.44	-0.34	-1.12
	$L^q_{\mathcal{B}_Q}$	-13(5)	-14(5)	-18(6)	-126(60)	-5.1(15)	-5.4(16)	-7.4(22)	-46(14)
NRQM	$S^q_{\mathcal{B}_Q}$	7(2)	7(2)	9(3)	-21(10)	2.5(8)	2.7(8)	3.7(11)	-7.7(23)
	$P^q_{\mathcal{B}_Q}$	0	0	0	0	0	0	0	0

Bag is localized and it cannot be 3-momentum eigenstate.
Underestimate the 4-quark operator by 2.

[2305.00665]

- Inclusive decays numerical results
- The prediction of $\Lambda_c^+ \to Xe^+$ is well consistent with the data of $(4.06 \pm 0.13)\,\%$.
- For Λ_c^+, Ξ_c the HQE of $\Gamma_3 > \Gamma_6 > \Gamma_7$ holds but not true for Ω_c .
- The prediction of $\mathscr{B}(\Xi_c^0 \to Xe^+)$ is consistent with the lattice result of $\mathscr{B}(\Xi_c^0 \to \Xi^-e^+\nu_e) \approx (3.58 \pm 0.12)\,\%$ together with the ansatz of lowest bound-state saturation.
- We are working on both dim-7 NLO and doubly charmed baryons predictions.

	\mathbf{B}_c	$\Gamma_3^{ m SL}$	$\Gamma_6^{ m SL}$	$\Gamma_7^{ m SL}$	$\mathcal{B}_e^{\mathrm{SL}}(\%)$
Λ +	LO	$0.40(13)_m$	0.01	0	$8.25(78)_m(44)_{\mu}(37)_4(37)_s$
Λ_c^+	NLO	$0.35(11)_m$	0.01	_	$4.57(42)_m(24)_\mu(21)_4(13)_s$
Ξ_c^0	LO	$0.40(14)_m$	0.36	-0.15	$8.99(58)_m(29)_{\mu}(25)_4(43)_s$
Ξ_{c}°	NLO	$0.35(12)_m$	0.18	-	$4.40(45)_m(22)_{\mu}(19)_4(30)_s$
- +	LO	$0.40(14)_m$	0.35	-0.15	$18.59(26)_m(22)_{\mu}(19)_4(39)_s$
Ξ_c^+	NLO	$0.35(12)_m$	0.18	-	$8.57(20)_m(5)_{\mu}(5)_4(44)_s$
Ω_c^0	LO	$0.42(14)_m$	1.22	-0.83	$13.51(42)_m(10)_{\mu}(8)_4(23)_s$
		$0.37(12)_m$			$1.88(1.33)_m(47)_{\mu}(40)_4(85)_s$

[2305.00665]

First principle / reliable

Number of and assumptions parameters

• $SU(3)_F$ analysis (clue 2)

2-body, 3-body, semileptonic...

Most general but requires (too) many parameters

Data driven / fruitful

• SU(3) flavor perspective of charmed baryon decays

Murray Gell-Mann 1929-2019

By far, the only *reliable* (?) way is the $SU(3)_F$ symmetry.

PRD 54, 2132 (1996), PRD 93, 056008 (2016), NPB 956, 115048 (2020)

JHEP 09, 035 (2022), JHEP 03, 143 (2022), PRD 109, 114027 (2024) ...

SU(3) flavor perspective of charmed baryon decays

Predicted direct relations:

$$\Gamma(\Lambda_c^+ \to \Sigma^+ K_S^0) = \Gamma(\Lambda_c^+ \to \Sigma^0 K^+) = s_c^2 \Gamma(\Xi_c^0 \to \Xi^0 \pi^0)$$

$$\mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S^0, \Sigma^0 K^+)$$
 BESIII
$$(4.7 \pm 1.0) \times 10^{-4}$$

$$\approx (4.8 \pm 1.4) \times 10^{-4}$$
PRD 106, 052003 (2022)

$$\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0)$$
 BELLE
$$(7.1 \pm 0.4)_{th} \times 10^{-3}$$

$$(6.9 \pm 1.4)_{exp} \times 10^{-3}$$
JHEP **10**, 045 (2024)

Tests on predictions of global fits since last year:

PRD 10	9 , 0930	001; PRD	109,	L071302
---------------	-----------------	----------	------	---------

$$\alpha(\Lambda_c^+ \to pK_S^0)$$

$$0.18 \pm 0.45$$

PDG (2023)

$$-0.40 \pm 0.49$$

Theory (2023)

 -0.744 ± 0.015

$$10^4 \mathcal{B}(\Lambda_c^+ \to p\pi^0)$$

$$1.6 \pm 0.2$$

$$1.79 \pm 0.41$$

$$10^3 \mathcal{B}(\Lambda_c^+ \to \Lambda K_S^0 \pi^+)$$

$$1.97 \pm 0.38$$

$$1.73 \pm 0.28$$

$$310^3 \mathcal{B}(\Xi_c^0 \to \Xi^0 \eta)$$

$$2.94 \pm 0.97$$

$$1.6 \pm 0.5$$

$$10^3 \mathcal{B}(\Xi_c^0 \to \Xi^0 \eta')$$

None

$$5.66 \pm 0.93$$

$$1.2 \pm 0.4$$

SU(3) flavor perspective of charmed baryon decays

The $SU(3)_F$ is an approximate symmetry with errors in 10^{-1} .

We propose a new scenario that incorporates the $SU(3)_F$ breaking of strange quark pair production from the vacuum.

(constituent quark masses)

• SU(3) flavor perspective of charmed baryon decays

The $SU(3)_F$ is an approximate symmetry with errors in 10^{-1} .

We propose a new scenario that incorporates the $SU(3)_F$ breaking of strange quark pair production from the vacuum.

SU(3) flavor perspective of charmed baryon decays

The large χ^2 is mainly contributed by two channels:

	PDG	$SU(3)_F$ conserved	$SU(3)_F$ broken
$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	1.43 ± 0.32	2.72 ± 0.09	2.9 ± 0.1
$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	2.9 ± 1.3	6.82 ± 0.36	6.0 ± 0.4

Both of them are the normalized channels in $\Xi_c^{0,+}$, indicating an possible underestimation of factor two in the experimental side.

Same underestimations occurs in $\Xi_c^0 \to \Xi^- \mathcal{E}^+ \nu_{\ell}$.

	PDG	$SU(3)_F$	Lattice	Lattice
$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e)$	$1.05 \pm 0.20*$	4.10 ± 0.46	2.38 ± 0.44	3.58 ± 0.12
$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu)$	$1.02 \pm 0.21*$	3.98 ± 0.57	2.29 ± 0.42	3.47 ± 0.12
*Using $\mathscr{B}(\Xi_c^0 \to \Xi^- \pi^+) =$	$= (1.42 \pm 0.32) \%$	[2110.04179]	[2103.07064]	[2504.07302]

SU(3) flavor perspective of charmed baryon decays

The large χ^2 is mainly contributed by two channels:

	PDG	$SU(3)_F$ conserved	$SU(3)_F$ broken
$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	1.43 ± 0.32	2.72 ± 0.09	2.9 ± 0.1
$10^2 \mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	2.9 ± 1.3	6.82 ± 0.36	6.0 ± 0.4

Both of them are the normalized channels in $\Xi_c^{0,+}$, indicating an possible underestimation of factor two in the experimental side.

Same underestimations occurs in $\Xi_c^0 \to \Xi^- \mathcal{E}^+ \nu_{\ell}$.

	PDG	$SU(3)_F$	Lattice	Lattice
$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e)$	$2.12 \pm 0.13*$	4.10 ± 0.46	2.38 ± 0.44	3.58 ± 0.12
$10^2 \mathcal{B}(\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu)$	$2.05 \pm 0.19*$	3.98 ± 0.57	2.29 ± 0.42	3.47 ± 0.12
*Using $\mathscr{B}(\Xi_c^0 \to \Xi^- \pi^+) =$	$= (2.9 \pm 0.1)\%$	[2110.04179]	[2103.07064]	[2504.07302]

Semileptonic decays (exclusive): Future aspect

Probing other charmed baryons

Triple product asymmetries

Vanish in the SM.

NP unlikely shares the same complex phase with the SM.

$$\mathcal{T}_p(\Lambda_c^+ \to \Lambda e^+ \nu_e) = -0.021 \pm 0.041_{\rm stat} \pm 0.001_{\rm syst}$$

 $\mathcal{T}_p(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu) = 0.068 \pm 0.055_{\rm stat} \pm 0.002_{\rm syst}$.
PRD 108, L031105 (2023)

$$\mathcal{B}\left(\Xi_c^0 \to \Xi^- e^+ v_e\right) (\%)$$

 $\Xi_c^0 \to \Xi^- e^+ \nu_e$ remains one of the most urgent problems to solve in charm decays.

The study of charmed baryon decays — as fascinating as it is flavorful!

