

粲强子衰变末态轻味强子态的理论研究

钟显辉

湖南师范大学

"第三届BESIII-Belle II-LHCb粲强子物理联合研讨会"湖南长沙 2025年6月27-30日

CONTENTS

- Background
- Strange mesons
- Strange baryons
- Summary

Background

Quark model

Symmetry: $SU(6) \otimes O(3)$

Meson

$$\mathbf{r}=\mathbf{r}_1-\mathbf{r}_2,$$

$$\mathbf{R}_{\text{c.m.}} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m_1 + m_2}.$$

Baryon

$$\boldsymbol{\rho} = \frac{1}{\sqrt{2}}(\boldsymbol{r}_1 - \boldsymbol{r}_2),$$

$$\lambda = \sqrt{\frac{2}{3}} \left(\frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m_1 + m_2} - \mathbf{r}_3 \right),$$

$$\mathbf{R} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2 + m_3 \mathbf{r}_3}{m_1 + m_2 + m_3}.$$

Light meson spectrum observed from exp.

82					9
$n^{2s+1}\ell_J$	J^{PC}	I = 1	$I = \frac{1}{2}$	I = 0	I = 0
		$u\bar{d}, \bar{u}d,$	$u\bar{s}, d\bar{s};$	f'	f
		$\frac{1}{\sqrt{2}}(d\bar{d}-u\bar{u})$	$\bar{d}s,\bar{u}s$		
$1^{1}S_{0}$	0-+	π	K	η	$\eta'(958)$
$1^{3}S_{1}$	1	ho(770)	$K^*(892)$	$\phi(1020)$	$\omega(782)$
$1^{3}P_{0}$	0++	$a_0(1450)$	$K_0^st(1430)$	$f_0(1370,1$	500, 1710)
$1^{1}P_{1}$	1^{+-}	$b_1(1235)$	$oldsymbol{K_{1B}}^{ ext{a}}$	$h_1(1415)$	$h_1(1170)$
$1^{3}P_{1}$	1++	$a_1(1260)$	$oldsymbol{K_{1A}}^{\mathrm{a}}$	$f_1(1420)$	$f_1(1285)$
$1^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_2^st(1430)$	$f_2^\prime(1525)$	$f_2(1270)$
$1^{3}D_{1}$	1	ho(1700)	$K^*(1680)^{ m b}$	$\phi(2170)^{ m c}$	$\omega(1650)$
$1^{1}D_{2}$	2^{-+}	$\pi_2(1670)$	$K_2(1770)^{\mathrm{a}}$	$\eta_2(1870)$	$\eta_2(1645)$
$1^{3}D_{3}$	3	$ ho_3(1690)$	$K_3^st(1780)$	$\phi_3(1850)$	$\omega_3(1670)$
$1^{3}F_{4}$	4^{++}	$a_4(1970)$	$K_4^st(2045)$	$f_4(2300)$	$f_4(2050)$
$1^{3}G_{5}$	5	$ \rho_5(2350) $	$K_5^*(2380)$		
$2^{1}S_{0}$	0 - +	$\pi(1300)$	K(1460)	$oldsymbol{\eta(1475)^{ ext{d}}}$	$\eta(1295)$
$2^{3}S_{1}$	1	ho(1450)	$K^*(1410)^{ m b}$	$\phi(1680)$	$\omega(1420)$
$2^{3}P_{1}$	1++	$a_1(1640)$	$K_1(1650)$, ,	
$2^{3}P_{2}$	2^{++}	$a_2(1700)$	$K_2^st(1980)$	$f_2(1950)^{ m e}$	$f_2(1640)$
$2^{1}D_{2}$	2^{-+}	$\pi_2(1880)$			See
$3^{1}S_{0}$	0-+	$\pi(1800)$	K(1830)		$\eta(1760)$

Poorly understanding for the excited isoscalar states

- ✓ Tetraquark state?
- ✓ Gluon ball?
- ✓ How to understand the experimental findings
- ✓ Why were the 0++, 1++, 1-- states not well established or still missing?

Light baryon spectrum observed from exp.

$\overline{J^P}$	(D, L_N^P)	S		Octet r	nembers		Singlets
$1/2^{+}$	$(56,0_0^+)$	1/2	N(939)	$\Lambda(1116)$	$\Sigma(1193)$	$\Xi(1318)$	
$1/2^{+}$	$(56,0_2^+)$	1/2	N(1440)	$\Lambda(1600)$	$\Sigma(1660)$		
$1/2^{-}$	$(70,1_1^-)$	1/2	N(1535)	$\Lambda(1670)$	$\Sigma(1620)$	$\Xi(1620)$	$\Lambda(1405)$
					$\Sigma(1560)^{\dagger}$		
$3/2^{-}$	$(70,1_1^-)$	1/2	N(1520)	$\Lambda(1690)$	$\Sigma(1670)$	$\Xi(1820)$	$\Lambda(1520)$
$1/2^{-}$	$(70,1_1^-)$	3/2	N(1650)	$\Lambda(1800)$	$\Sigma(1750)$	$\Xi(1690)$	
					$\Sigma(1620)^{\dagger}$		
$3/2^{-}$	$(70,1_1^-)$	3/2	N(1700)	$\Lambda(?)$	$\Sigma(1940)^{\dagger}$	$\Xi(?)$	
$5/2^{-}$	$(70,1_1^-)$	3/2	N(1675)	$\Lambda(1830)$	$\Sigma(1775)$	$\Xi(1950)^{\dagger}$	
$1/2^{+}$	$(70,0_2^+)$	1/2	N(1710)	$\Lambda(1810)$	$\Sigma(1880)$	$\Xi(?)$	$\Lambda(1810)^{\dagger}$
$3/2^{+}$	$(56,2^+_2)$	1/2	N(1720)	$\Lambda(1890)$	$\Sigma(?)$	$\Xi(?)$	
$5/2^{+}$	$(56,2^+_2)$	1/2	N(1680)	$\Lambda(1820)$	$\Sigma(1915)$		
$7/2^{-}$	$(70,3_3^-)$	1/2	N(2190)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	$\Lambda(2100)$
$9/2^{-}$	$(70,3_3^-)$	3/2	N(2250)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
$9/2^{+}$	$(56,4_4^+)$	1/2	N(2220)	$\Lambda(2350)$	$\Sigma(?)$	$\Xi(?)$	
	(= = [\	- 1-		_	members		
$3/2^{+}$	$(56,0_0^+)$			$\Sigma(1385)$		$\Omega(1672)$	
$3/2^{+}$	$(56,0_2^+)$,	$\Sigma(1690)^{\dagger}$	\ /	$\Omega(?)$	
$1/2^{-}$	$(70,1_1^-)$			$\Sigma(1750)^{\dagger}$		$\Omega(?)$	
$3/2^{-}$	$(70,1_1^-)$,	$\Delta(1700)$. ,	$\Xi(?)$	$\Omega(2012)$	
	4	,	$\Delta(1905)$		$\Xi(?)$	$\Omega(?)$	
,	$(56,2^+_2)$			$\Sigma(2030)$		$\Omega(?)$	
$-11/2^{+}$	$(56,4_4^+)$	3/2	$\Delta(2420)$	$\Sigma(?)$	$\Xi(?)$	$\Omega(?)$	

Poorly understanding for the excited hyperon states, especially for Ω and Ξ

- ✓ Missing resonance problem
- **✓** Low mass problem
- ✓ How to looking for the missing states
- ✓ Inner structure
- **✓** Meson-baryon components
- **✓** Dynamics

Model for spectrum—potential model

Hamiltonian

$$H_0 = \sum_{i=1}^{3} \sqrt{\boldsymbol{p}_i^2 + m_i^2} + \sum_{i < j}^{3} (V_{ij} + C_{ij}),$$

$$V_{ij} = V_{ij}^{Conf} + V_{ij}^{OGE}$$

$$V^{Conf} = \sum_{i < j}^{3} -\frac{3}{16} (\boldsymbol{\lambda}_i \cdot \boldsymbol{\lambda}_j) b_{ij} r_{ij}.$$

$$V^{OGE} = \sum_{i < j} \left(V_{ij}^{Coul} + V_{ij}^{sd} \right),$$

$$V_{ij}^{Coul} = \sum_{i < j} -\frac{2\alpha_{ij}}{3} \frac{1}{r_{ij}},$$

Spin-dependent potential of OGE:

$$V_{ij}^{ss} = -\frac{\alpha_{ij}}{4} \left(\boldsymbol{\lambda_i} \cdot \boldsymbol{\lambda_j} \right) \left\{ \frac{\pi}{2} \cdot \frac{\sigma_{ij}^3 e^{-\sigma_{ij}^2 r_{ij}^2}}{\pi^{\frac{3}{2}}} \cdot \frac{16}{3m_i m_j} (\boldsymbol{S_i} \cdot \boldsymbol{S_j}) \right\},$$

$$V_{ij}^{T} = -\frac{\alpha_{ij}}{4} (\boldsymbol{\lambda_i \cdot \lambda_j}) \frac{1}{m_i m_j r_{ij}^3} \left\{ \frac{3(\boldsymbol{S_i \cdot r_{ij}})(\boldsymbol{S_j \cdot r_{ij}})}{r_{ij}^2} - \boldsymbol{S_i \cdot S_j} \right\},$$

$$V_{ij}^{so(\nu)} = \sum_{i < j} \frac{1}{r_{ij}} \frac{dV_{ij}^{Coul}}{dr_{ij}} \left(\frac{\boldsymbol{r}_{ij} \times \boldsymbol{p}_i \cdot \boldsymbol{S}_i}{2m_i^2} - \frac{\boldsymbol{r}_{ij} \times \boldsymbol{p}_j \cdot \boldsymbol{S}_j}{2m_j^2} - \frac{\boldsymbol{r}_{ij} \times \boldsymbol{p}_j \cdot \boldsymbol{S}_j}{m_i m_j} \right),$$

$$V_{ij}^{so(TP)} = \sum_{i < j} -\frac{1}{r_{ij}} \frac{\partial V_{ij}^{Conf}}{\partial r_{ij}} \left(\frac{\boldsymbol{r}_{ij} \times \boldsymbol{p}_i \cdot \boldsymbol{S}_i}{2m_i^2} - \frac{\boldsymbol{r}_{ij} \times \boldsymbol{p}_j \cdot \boldsymbol{S}_j}{2m_j^2} \right).$$

Strange mesons

Based on our works:

FX Liu, MS Liu, XH, Q Zhao, PRD 103, 016016 (2021); Q Li, LC Gui, MS Liu, QF Lv, XH, Chin. Phys. C 45, 023116 (2021); FX Liu et al, unpublished

Strangeonium spectrum

 \bullet How to understand $f_0(1500,1710)$?

 $f_0(1370)$: 1250-1440, 200-500 $1^3P_0(ss)$: 1373, 338

lacktriangle Could X(2500) be evidence of the 4^1S_0

state? [BESIII, PRD93,112011(2016)]

Exp: 2428-2586, 162-350, \$\phi\$

Th: 2580, 409, KK*10%, \$\phi\$1%

 \bullet Could $f_0(2410)$ be the 3^3P_0 state?

[BESIII, PRD98,172003(2019)**]**

Exp: 2411, 348, KK

Th: 2434, 346, K*K* 10%,KK3%,

lacktriangle Could X(2062) be evidence of the $2^{1}P_{1}$

state? [BESIII, PRD99,112008(2019)]

Exp: 2062, 177, $\phi \eta$

Th: 1991, 279, KK*18%, $\phi \eta$ ' 2%

Strangeonium spectrum

igoplus Could $\phi(2170)$ be the 3^3S_1 state?

Exp: 2164, 88+26-21, not seen in K*K*, seen in $\phi\eta$, $\phi\eta$, $\phi\pi\pi$

Th: 2198, 276, K*K*8%, $\phi \eta 3\%$, $\phi \eta' 0.1\%$

Predicted width is too broad, the K*K* decay mode is not seen!

 \bullet Could $\phi(2170)$ be the 2^3D_1 state?

Exp: 2164, 88+26-21, not seen in K*K*, seen in $\phi\eta$, $\phi\eta$, $\phi\pi\pi$

Th: 2272, 283, K*K*8%, $\phi\eta$ 0.9%, $\phi\eta$ ' 0.1%

Predicted mass and width are too large, the K*K* decay mode is not seen!

lacktriangle Could the newly observed state X(2300) be the $3^{1}P_{1}$ state?

[BESIII, PRL134,191901(2025)]

Exp: 2316, 89+-41, seen in $\phi \eta, \phi \eta'$

Th: 2435, 269, KK*5%, K*K*7%, $\phi \eta$ 2%, $\phi \eta$ ' 0.6%

Predicted mass and width are too large!

Could $\phi(2170)$ and X(2300)

be tetraquark states?

Towards establishing the 1D states

Th: 1840, 128, KK*70%, φη 20% Worth observing!

◆ 1¹D₂ state

Th: 1825, 80, KK*90%, K*K* 10% Worth observing!

 \bullet 1³D₁ state

Th: 1809, 707, KK1(1270)88%, KK4%, KK*6%, Too broad!

Towards establishing the 2P states

Th: 2027, 315, KK*13%, K*K*16% Worth observing!

Th: 2030, 147, KK3%, K*K*17% Worth observing!

 \bullet 2¹P₁ state

Th: 1991, 179, KK*18%, K*K*17%, φη 6%, φη' 2%
Worth observing!

 $riangle 2^3P_0$ state

Th:1971, 849, KK₁(1270)50%, KK(1460) 35%
Too broad!

Fully strange tetraquarks

Could $\phi(2170)$ and X(2300) be tetraquark states?

- ◆ The mass of the lowest tetraquark state is about 2.2 GeV.
- lacklosh The $\phi(2170)$ cannot be explained as a fully strange tetraquark state.
- ♦ From the point of view of mass, the X(2300) is a good candidate of a fully strange tetraquark state with $J^{PC}=1^{+-}$.

Fall-apart decays

State	ηη	$\eta\eta'$	$\eta'\eta'$	$\phi\phi$	ηf_0	ηf_1	$\eta f_2'$	$\eta' f_0$	$\eta' f_1$	$\eta' f_2'$	ϕh_1	$\eta\eta$ (2S)	$\eta'\eta$ (2S)	$\phi\phi$ (2S)
$M_{f_1} + M_{f_2}$	1096	1506	1916	2034	1921	2040	2061	2331	2450	2471	2479	2167	2577	2716
$T_{0^{++}(2218)(1S)}$	3.22	11.00	8.72	13.86	/	/	/	//	//	//	//	0.16	//	//
$T_{0^{++}(2440)(1S)}$	0.13	0.48	0.45	35.48	/	/	Prelin	Ha	//	//	//	0	//	//
$T_{0^{++}(2798)(2S)}$	0.60	1.91	1.46	0.48	/	/	, ,	illio /	/	/	/	1.10	1.58	28.92
$T_{0^{++}(2876)(2S)}$	0	0.24	0.35	26.46	/	/	orelli	/	/	/	/	0.14	2.00	33.08
$T_{0^{++}(2954)(2S)}$	0.33	1.36	1.49	5.92	/	/	4 .	/	/	/	/	1.58	15.05	24.04
$T_{0^{++}(3155)(2S)}$	0	0.17	0.20	1.94	/	/	/	/	/	/	/	0.66	1.45	10.48
$T_{1^{++}(2943)(2S)}$	/	/	/	0.24	0.07	0.64	1.14	0.13	0.51	1.14	3.92	/	/	0.16
$T_{2^{++}(2378)(1S)}$	0.36	0.75	0.26	0	/	0.69	0.21	/	//	//	//	0	//	//
$T_{2^{++}(2854)(2S)}$	0.20	0.51	0.29	0.60	/	0.59	0.21	/	0.47	0.13	0	0.11	0	10.72
$T_{2^{++}(2981)(2S)}$	0.05	0.23	0.25	8.60	/	1.10	1.08	/	1.40	1.16	0	0.11	0.27	105.44
$T_{0^{-+}(2481)(1P)}$	/	/	/	7.34	4.82	/	0.73	3.14	/	//	//	/	//	//
$T_{0^{-+}(2635)(1P)}$	/	/	/	28.92	3.81	/	2.11	8.64	/	1.14	11.92	/	/	//
$T_{0^{-+}(2761)(1P)}$	/	/	/	4.88	13.12	/	8.89	29.54	/	9.17	1.24	/	/	0
$T_{1^{-+}(2564)(1P)}$	/	/	/	0.24	/	3.12	0.25	/	5.25	0	2.08	0	//	//
$T_{1^{-+}(2632)(1P)}$	/	/	/	5.14	/	0	0.07	/	0.11	0	38.80	0	0	//
$T_{1^{-+}(2778)(1P)}$	/	/	/	0	/	7.96	0	/	14.96	0	0	0	0	0
$T_{2^{-+}(2537)(1P)}$	/	/	/	0	0.80	1.51	1.88	0.22	0.31	0.80	0.24	/	//	//
$T_{2^{-+}(2669)(1P)}$	/	/	/	0.10	0.23	0.28	2.06	0.18	0.13	3.70	14.00	/	/	//
$T_{2^{-+}(2837)(1P)}$	/	/	/	0.16	0.09	0.12	1.06	0.11	0.09	2.36	15.00	/	/	0

Fall-apart decays

	State	$\eta\phi$	$\eta'\phi$	ηh_1	$\eta' h_1$	$f_0\phi$	$f_1\phi$	$f_2'\phi$	$\eta\phi(2S)$	$\phi\eta$ (2S)	$\eta'\phi(2S)$
<u>-22</u>	$M_{f_1} + M_{f_2}$	1565	1975	2010	2420	2390	2509	2530	2247	2636	2657
	$T_{0^{+-}(2891)(2S)}$	/	/	2.94	5.61	1.08	0.48	2.12	/	/	/
<u> </u>	$T_{0^{+-}(2967)(2S)}$	/	/	1.29	0.89	1.16	5.52	9.04	/	/	/
	$T_{1^{+-}(2323)(1S)}$	6.54	10.13	/	//	//	//	//	0	//	//
	$T_{1^{+-}(2835)(2S)}$	1.42	2.00	/	/	1.68	1.32	1.88	6.62	13.84	5.43
4	$T_{1^{+-}(2950)(2S)}$	2.06	5.03	/	/	3.00	5.16	8.08	0.05	38.44	7.66
22	$T_{2^{+-}(2965)(2S)}$	0	0.11	0.34	0.29	0.32	0.80	0.08	0.05	0	0.09
	$T_{0^{}(2507)(1P)}$	4.66	6.01	/	/	/	//	//	0.12	//	//
_	$T_{0^{}(2821)(1P)}$	1.37	3.47	/	/	/	69.96	3.20	0.60	0	0.16
	$T_{1^{}(2445)(1P)}$	0.07	0	0	0	24.80	//	//	0	//	//
	$T_{1^{}(2567)(1P)}$	4.65	6.77	1.17	0.53	0.80	32.72	13.20	0	//	//
	$T_{1^{}(2627)(1P)}$	0	0.07	2.68	3.65	1.64	3.20	5.64	0	//	//
	$T_{1^{}(2766)(1P)}$	0.41	0.31	3.05	3.96	51.40	0.48	2.12	0.20	0	0.09
<u>12</u>	$T_{1^{}(2984)(1P)}$	0.87	1.31	13.76	25.76	1.68	16.84	40.76	0	0.08	0
	$T_{2^{}(2446)(1P)}$	1.15	1.40	0.11	0.09	0.20	//	//	0	//	//
	$T_{2^{}(2657)(1P)}$	0.14	0.24	0.18	0	0	23.76	21.28	0	0	//
<u></u>	$T_{2^{}(2907)(1P)}$	0.07	0.09	0	0	1.20	22.08	30.48	0.11	0	0.09
=	$T_{3^{}(2719)(1P)}$	0.20	0.18	0.09	0.07	1.48	3.04	27.20	0	0	0

Some states may be found in experiments

- ◆ Two 1S 0++ states (2218,2440) and one 2S 0++ state (2876) have large decay rates into φφ.
- \bullet The 2S 0++ states have large decay rates into the $\phi\phi(1680)$ channel.

State	ηη	$\eta\eta'$	$\eta'\eta'$	$\phi\phi$	ηf_0	ηf_1	$\eta f_2'$	$\eta' f_0$	$\eta' f_1$	$\eta' f_2'$	ϕh_1	$\eta\eta$ (2S)	$\eta'\eta$ (2S)	$\phi\phi(2S)$
$M_{f_1} + M_{f_2}$	1096	1506	1916	2034	1921	2040	2061	2331	2450	2471	2479	2167	2577	2716
$T_{0^{++}(2218)(1S)}$	3.22	11.00	8.72	13.86	/	/	/	//	//	//	//	0.16	//	//
$T_{0^{++}(2440)(1S)}$	0.13	0.48	0.45	35.48	/	/	/	/	//	//	//	0	//	//
$T_{0^{++}(2798)(2S)}$	0.60	1.91	1.46	0.48	/	/	/	/	/	/	/	1.10	1.58	28.92
$T_{0^{++}(2876)(2S)}$	0	0.24	0.35	26.46	/	/	/	/	/	/	/	0.14	2.00	33.08
$T_{0^{++}(2954)(2S)}$	0.33	1.36	1.49	5.92	/	/	/	/	/	/	/	1.58	15.05	24.04
$T_{0^{++}(3155)(2S)}$	0	0.17	0.20	1.94	/	/	/	/	/	/	/	0.66	1.45	10.48
$T_{1^{++}(2943)(2S)}$	/	/	/	0.24	0.07	0.64	1.14	0.13	0.51	1.14	3.92	/	/	0.16
$T_{2^{++}(2378)(1S)}$	0.36	0.75	0.26	0	/	0.69	0.21	/	//	//	//	0	//	//
$T_{2^{++}(2854)(2S)}$	0.20	0.51	0.29	0.60	/	0.59	0.21	/	0.47	0.13	0	0.11	0	10.72
$T_{2^{++}(2981)(2S)}$	0.05	0.23	0.25	8.60	/	1.10	1.08	/	1.40	1.16	0	0.11	0.27	105.44

The newly observed X(2300) favors the 1+- T4s state

 $\psi(3686) \rightarrow \phi \eta \eta'$ @ BESIII [PRL 134,191901 (25)]

$$M_{exp} = 2316^{+39}_{-39} \text{ MeV}, \ \Gamma_{exp} = 89^{+41}_{-41} \text{ MeV}$$

Both the mass and decay properties predicted in theory are consistent with the observations.

2025年6月30日

Some hints of 1+- $T_{4s}(2323)$ may be seen in J/ ψ decays as well

 $J/\psi \rightarrow \phi \eta \eta$ @ BESIII [PRD 99,112008 (19)],

More precise observations in φη, φη' may is needed!

Can we observe the 1+- T4c (6500) state in $J/\psi\eta_c$ channel?

2025年6月30日

Experimental evidence for 0++ tetraquarks

$$J/\psi \rightarrow \gamma X \rightarrow \gamma \phi \phi$$
 @ BESIII [PRD 93,112011 (16)]

Two 0++ resonances with masses around 2.2 GeV and 2.4 GeV were extracted from the data.

$$B_{s}^{0} \rightarrow J/\psi \phi \phi$$
 @ LHCb [JHEP1603,040 (16)]

One 0++ resonance with mass around 2.2 GeV was extracted from the data.

A. A. Kozhevnikov, PRD99, 014019 (19); PRD 95, 014005 (17).

Strange baryons

Based on our works:

Hui-Hua Zhong et al, unpublished; MS Liu, KL Wang, QF Lv, XH, PRD101, 016002(2020); LY Xiao, XH, PRD98, 034004 (2018)

$\Omega(sss)$ spectrum

Old results labeled by Triangles (唯象):

$$V_{ij}^{LS} = \frac{\alpha_{\text{SO}}}{\rho^2 + \lambda^2} \cdot \frac{\mathbf{L} \cdot \mathbf{S}}{3(m_1 + m_2 + m_3)^2}.$$

New results labeled by short lines (based on QCD):

$$\begin{split} V_{ij}^{so(\nu)} &= \frac{1}{r_{ij}} \frac{dV^{Coul}(r_{ij})}{dr_{ij}} \left(\frac{\boldsymbol{r}_{ij} \times \boldsymbol{p}_i \cdot \boldsymbol{S}_i}{2\tilde{m}_i^2} - \frac{\boldsymbol{r}_{ij} \times \boldsymbol{p}_j \cdot \boldsymbol{S}_j}{2\tilde{m}_j^2} \right. \\ &\left. - \frac{\boldsymbol{r}_{ij} \times \boldsymbol{p}_j \cdot \boldsymbol{S}_i - \boldsymbol{r}_{ij} \times \boldsymbol{p}_i \cdot \boldsymbol{S}_j}{\tilde{m}_i \tilde{m}_j} \right), \end{split}$$

$$V_{ij}^{so(s)} = -\frac{1}{r_{ij}} \frac{dV^{Conf}(r_{ij})}{dr_{ij}} \left(\frac{\boldsymbol{r}_{ij} \times \boldsymbol{p}_i \cdot \boldsymbol{S}_i}{2\tilde{m}_i^2} - \frac{\boldsymbol{r}_{ij} \times \boldsymbol{p}_j \cdot \boldsymbol{S}_j}{2\tilde{m}_j^2} \right)$$

Obvious differences of two models can be seen!

Confirm the mass gap between the two 1P states: \sim 60 MeV! The mass of the 1P $\frac{1}{2}$ -state should be \sim 1950 MeV!

Three-body spin-orbit term $\rho \times p_{\lambda}$

Complete form from OGE:

$$V_{ij}^{so(
u)} = \sum_{i < j} rac{1}{r_{ij}} rac{dV_{ij}^{Coul}}{dr_{ij}} \left(rac{m{r}_{ij} imes m{p}_i \cdot m{S}_i}{2m_i^2} - rac{m{r}_{ij} imes m{p}_j \cdot m{S}_j}{2m_j^2} - rac{m{r}_{ij} imes m{p}_j \cdot m{S}_i - m{r}_{ij} imes m{p}_i \cdot m{S}_j}{m_i m_j}
ight)$$
 [Isgur]

A simple form with approximation

$$P_i = -P_j \implies \frac{\alpha_{s0}}{3r_{ij}^3} \left[\left(\frac{1}{m_i^2} + \frac{1}{m_j^2} + \frac{4}{m_i m_j} \right) L_{ij} \cdot \left(S_i + S_j \right) + \left(\frac{1}{m_i^2} - \frac{1}{m_j^2} \right) L_{ij} \cdot \left(S_i - S_j \right) \right]$$
 [Hiyama]

However, for a baryon system $P_i \neq P_j$

The complete form should be:

$$V_G^{LS}(r_{12}) = \frac{1}{2\sqrt{2}\tilde{m}_u^2} \left(\frac{\alpha_S}{\rho^3} - \frac{b}{2\rho}\right) \mathbf{L}_{\rho} \cdot (\mathbf{S}_1 + \mathbf{S}_2) \left[-\frac{1}{4\sqrt{6}\tilde{m}_u^2} \left(\frac{2\alpha_S}{\sqrt{3}\rho^3} + \frac{b}{\rho}\right) \rho \times \mathbf{p}_{\lambda} \cdot (\mathbf{S}_1 - \mathbf{S}_2) \right]$$

There is an additional three body spin-orbit (TBso) term!!!

» T.Yoshida, E.Hiyama, PRD.92.114029 (2015); S. Capstick and N. Isgur, PRD 34, 2809 (1986)

Three-body spin-orbit term $\rho \times p_{\lambda}$ is crucial!

Mass splitting: (1620)1/2-(1700)3/2-

Hui-Hua Zhong, MS Liu, RH Ni, MY Chen, XH, PRD 110 (2024) 11, 116034

No Tbso term:

$$V_1^{LS} \propto L_{\rho} \cdot (S_1 + S_2) = 0$$
 Degenerate states

With Tbso term:

$$V_2^{LS} \propto \rho \times p_{\lambda} \cdot (S_1 - S_2) \neq \mathbf{0} \implies \Delta M \simeq 60 \text{ MeV}$$

Mass splitting: $\Omega(2012)(1P)1/2-\Omega(1950)(1P)3/2-$

No Tbso term:

Degenerate states

With Tbso term:

 $\Delta M \simeq 60 \text{ MeV}$

Strong decays-chiral quark model

π, Κ, η

$$\mathcal{L}_{ps} = \frac{\delta}{\sqrt{2} f_{\mathbb{M}}} \bar{\psi}_{j} \gamma_{\mu} \gamma_{5} \psi_{j} \vec{I} \cdot \partial^{\mu} \vec{\phi}_{\mathbb{M}},$$

strong decay:

mass spectrum:

$$H_I = \mathcal{H}^{NR} + \mathcal{H}^{RC},$$

$$\mathcal{H}^{NR} = g \sum_{j} \left(\mathcal{G} \boldsymbol{\sigma}_{j} \cdot \boldsymbol{q} + \frac{\omega_{\mathbb{M}}}{2\mu_{q}} \boldsymbol{\sigma}_{j} \cdot \boldsymbol{p}_{j} \right) F(\boldsymbol{q}^{2}) I_{j} \varphi_{\mathbb{M}},$$
 $\mathcal{H}^{RC} = -\frac{g}{32\mu_{q}^{2}} \sum_{j} [m_{\mathbb{M}}^{2}(\boldsymbol{\sigma}_{j} \cdot \boldsymbol{q})$

$$+2\boldsymbol{\sigma}_{i}\cdot(\boldsymbol{q}-2\boldsymbol{p}_{i})\times(\boldsymbol{q}\times\boldsymbol{p}_{i})]F(\boldsymbol{q}^{2})I_{i}\varphi_{\mathbb{M}}$$

$$V_{OBE}^{C}(r_{ij}) = V_{\pi}^{C}(r_{ij}) + V_{K}^{C}(r_{ij}) + V_{\eta}^{C}(r_{ij}) \cdot$$

$$V_{OBE}^{T}(r_{ij}) = V_{\pi}^{T}(r_{ij}) + V_{K}^{T}(r_{ij}) + V_{\eta}^{T}(r_{ij}),$$

Strong decay properties

-	ΞK	Ξ^*K	$\Omega\eta$	Sum	
$1^2 P_{\frac{1}{2}}$	24.70	-	-	24.70	NR
1952	34.71	-		34.71	NR+RC
$1^2 P_{\frac{3}{2}}$		Dreithing	nd.	2.8 - 10.8	Ω(2012)
2018	7.10	CHICH	-	7.10	NR
* * *	10.13	646-	-	10.13	NR+RC
$2^2S_{\frac{1}{2}}$	0.69	0.39	-	1.08	NR
2162	19.09	2.02	- 1	31.26	NR+RC
$2^4 S_{\frac{3}{2}^+}$				3.9 – 39.3	Ω(2109)
2110	1.69	2.65	_	4.34	NR
* * *	21.52	12.17	-	33.69	NR+RC

$1^4D_{\frac{3}{2}^+}$	17.59	12.73	0.25	30.57	NR
2236	6.18	3.26	0.03	9.47	NR+RC
	3.88	2.67	0.02	6.57	mix
$1^2 D_{\frac{3}{2}^+}$	1.88	4.74	0.31	6.93	NR
2298	0.83	6.28	0.12	7.23	NR+RC
	0.14	5.43	0.07	5.64	mix Ω(2250) NR
$1^4D_{\frac{7}{2}^+}$				37 – 73	$\Omega(2250)$
2268	18.98	1.99	0.00	20.97	NR 🤇
	36.16	4.07	0.01	40.24	NR+RC
$1^4D_{\frac{5}{2}}$	3.55	16.26	0.33	20.14	NR
2237	6.73	5.21	0.06	12.00	NR+RC
	5.10	2.22	0.01	7.33	mix
$1^2 D_{\frac{5}{2}}$	2.64	12.12	1.94	6.70	NR
2314	4.91	5.69	0.46	11.06	NR+RC
	6.92	4.43	0.09	11.44	mix

All of the excited states within N=2 shell have relatively narrow widths!

New $\Omega(2109)$ favors the 2S state with JP=3/2+

Both the mass and decay properties predicted in theory are consistent with the observations.

also suggested by the Lanzhou group, [arXiv:2504.14648]

Towards establishing the low-lying 1P state with JP=1/2-

♦ Mass ~1950 MeV, width ~ 30 MeV Strong decay channel: K- Ξ^0 , \overline{K}^0 Ξ^- . production

			RPF			NRPF		MHPF		
Final state	M_f (MeV)	Γ_i	$\mathcal{B}^{-\frac{1}{2}}$	$\Gamma[\Omega_c^0 \to \Omega^{(*)}(X)^- \pi^+ \\ \Gamma[\Omega_c^0 \to \Omega^- \pi^+]$	Γ_i	$\mathcal{B}^{-\frac{1}{2}}$	$\Gamma[\Omega_c^0 \to \Omega^{(*)}(X)^- \pi^+ \\ \Gamma[\Omega_c^0 \to \Omega^- \pi^+]$	Γ_i	\mathcal{B}	$\frac{\Gamma[\Omega_c^0 \to \Omega^{(*)}(X)^- \pi^+]}{\Gamma[\Omega_c^0 \to \Omega^- \pi^+]}$
$\Omega(1^4S_{rac{3}{2}^+})\pi^+$	1672	26	10.5	1.0	3.8	1.6	1.0	21	8.2	1
$\Omega(1^2P_{\frac{1}{2}})\pi^+$	1957	9.5	3.8	0.38	2.0	0.80	0.50	8.7	3.6	0.44
$\Omega(1^2P_{\frac{3}{2}})\pi^+$	2012	5.4	2.2	0.22	1.2	0.49	0.31	5.2	2.1	0.26
$\Omega(2^2S_{rac{1}{2}^+})\pi^+$	2232	1.2	5.0×10^{-1}	0.05	3.9×10^{-1}	0.16	0.01	1.5	6.3×10^{-1}	0.08
$\Omega(2^4S_{rac{3}{2}^+})\pi^+$	2159	3.0	1.2	0.12	0.8	0.34	0.21	3.3	1.4	0.17
$\Omega(1^2D_{rac{3}{2}^+})\pi^+$	2245	$2.1 \times 10^{-}$	$^{1} 8.4 \times 10^{-2}$	0.008	6.7×10^{-2} 2	2.7×10^{-2}	0.002	2.6×10^{-1}	1.1×10^{-1}	0.01
$\Omega(1^2D_{rac{5}{2}^+})\pi^+$	2303	1.3×10^{-1}	$^2 5.0 \times 10^{-3}$	5.0×10^{-4}	5.4×10^{-3} 2	2.0×10^{-3}	1×10^{-3}	$1.9 \times 10^{-}$	2 7.7 × 10 ⁻³	9.4×10^{-4}
$\Omega(1^4D_{rac{1}{2}^+}^2)\pi^+$	2141	3.3	1.3	0.13	8.8×10^{-1}	0.36	0.23	3.6	1.5	0.18
$\Omega(1^4D_{rac{3}{2}^+})\pi^+$	2188	2.3	0.95	0.09	6.8×10^{-1}	0.28	0.18	2.7	1.1	0.13
$\Omega(1^4D_{rac{5}{2}^+}^2)\pi^+$	2252	3.3×10^{-1}	$^3 1.3 \times 10^{-3}$	1.3×10^{-4}	$1.2 \times 10^{-3} 4$	0.5×10^{-4}	2.8×10^{-4}	$4.2 \times 10^{-}$	$^3 1.7 \times 10^{-3}$	2.1×10^{-4}
$\Omega(1^4D_{rac{7}{2}^+}^2)\pi^+$	2321	$3.2 \times 10^{-}$	$^3 1.3 \times 10^{-3}$	1.3×10^{-4}	1.3×10^{-3} 5	5.1×10^{-4}	3.2×10^{-4}	$4.7 \times 10^{-}$	$^3 1.9 \times 10^{-3}$	2.3×10^{-4}

KL Wang, QF Lv, JJ Xie, XH, PRD107, 034015(2023)

Summary

- » The study of $\bar{s}s$ is crucial, the first orbital states are not well established .
- » A better understanding of the convectional si meson states is useful for glueball searching at BESIII.
- » Fully strange tetraquark states may have been observed at BESIII.
- » The new $\Omega(2109)$ observed at BESIII favors the 2S state with JP=3/2+.
- » It is worth to looking for the missing orbital state $\Omega(1950)1/2$ -.

Thanks

"第三届BESIII-Belle II-LHCb粲强子物理联合研讨会"湖南长沙 2025年6月27-30日