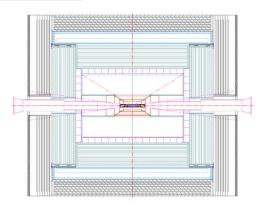


CEPC Beam Backgrounds Status & MDI Updates

Haoyu SHI (On behalf of the CEPC MDI Working Group)

中國科學院為能物加加完備 Institute of High Energy Physics Chinese Academy of Sciences

Jan. 24th, 2025, CEPC Day


- Introduction
- Sources, tools, mitigation methods
- Impacts Estimation
- Shielding of the BIB
- Summary & Outlook

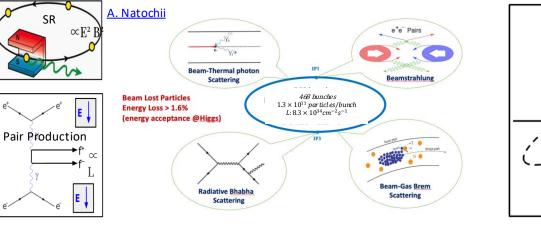
Introduction

Reasonable Estimation of Beam-induced background levels

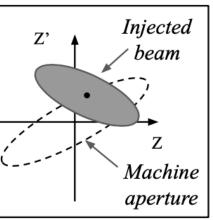
- Based on the 50-MW design of CEPC Accelerator TDR
- Keep updating with the Ref-TDR detector
- Higgs, Low-Lumi-Z, High-Lum-Z(2T)
- Estimation of the Noise on Detector due to Backgrounds, Normal Operation
 - Hit Rate/Occupancy
- Estimation of the Radiation Environment: contributions from Backgrounds in normal operation(the failure case, contributions from the signal will be considered later)
 - Radiation Damage to the Material (Detector, Accelerator, Electronics, etc...)
 - Radiation Damage to the personnel and the environment
 - Absorbed Dose, 1 MeV Si-eq fluence, Hadron fluence...
- Mitigation Methods

(Higgs (3T)	Low- Lumi Z (3T)	High-Lumi Z (2T)	W (3T)	<i>tī</i> (3T)
Number of IPs			2		
Circumference (km)			99.955		
Half crossing angle at IP (mrad)			16.5		
Bending radius (km)			10.7		
SR power per beam (MW)			50		
Energy (GeV)	120	45.5	45.5	80	180
Energy loss per turn (GeV)	1.8	0.037	0.037	0.357	9.1
Damping time $\tau_{x}/\tau_{y}/\tau_{z}$ (ms)	44.6/44.6/22. 3	816/816/40 8	816/816/408	150/150/75	13.2/13.2/6.6
Piwinski angle	4.88	24	29.52	5.98	1.23
Bunch number	446	3978	13104	2162	58
Bunch spacing (ns)	277.0	69.2	23.1	138.5	2585.0
[× 23.08 ns]	12	3	1	6	112
Train gap [%]	63	9	9	10	55
Bunch population (10 ¹¹)	1.3	1.7	2.14	1.35	2.0
Beam current (mA)	27.8	325.0	1340.9	140.2	5.5
Phase advance of arc FODO (°)	90	60	60	60	90
Momentum compaction (10-5)	0.71	1.43	1.43	1.43	0.71
Beta functions at IP β_x^* / β_y^* (m/mm)	0.3/1	0.13/1.0	0.13/0.9	0.21/1	1.04/2.7
Emittance &/ & (nm/pm)	0.64/1.3	0.27/5.1	0.27/1.4	0.87/1.7	1.4/4.7
Betatron tune v_x/v_y	445/445	317/317	317/317	317/317	445/445
Beam size at IP σ_{t}/σ_{t} (um/nm)	14/36	6/72	6/35	13/42	39/113
Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.8	2.7/10.6	2.5/4.9	2.2/2.9
Energy spread (natural/total) (%)	0.10/0.17	0.04/0.13	0.04/0.15	0.07/0.14	0.15/0.20
Energy acceptance (DA/RF) (%)	1.6/2.2	1.0/1.7	1.0/1.5	1.05/2.5	2.0/2.6
Beam-beam parameters ξ _x /ξ _y	0.015/0.11	0.0053/0.0 82	0.0045/0.13	0.012/0.113	0.071/0.1
RF voltage (GV)	2.2	0.12	0.1	0.7	10
RF frequency (MHz)	650				
Harmonic number	216720				
Longitudinal tune vs	0.049	0.035	0.032	0.062	0.078
Beam lifetime (Bhabha/beamstrahlung) (min)	40/40	150/180	90/930	60/195	81/23
Beam lifetime requirement (min)	20	68	81	25	18
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	8.3	26	192	26.7	0.8

Sources and Simulation Tools


Single Beam

- Touschek Scattering
- Beam Gas Scattering(Elastic/inelastic)
- Beam Thermal Photon Scattering
- Synchrotron Radiation


Luminosity Related

- Beamstrahlung
- Radiative Bhabha Scattering
- Injection(Will be considered future)

Photon BG

Beam Loss BG

A. Natochii

Injection BG

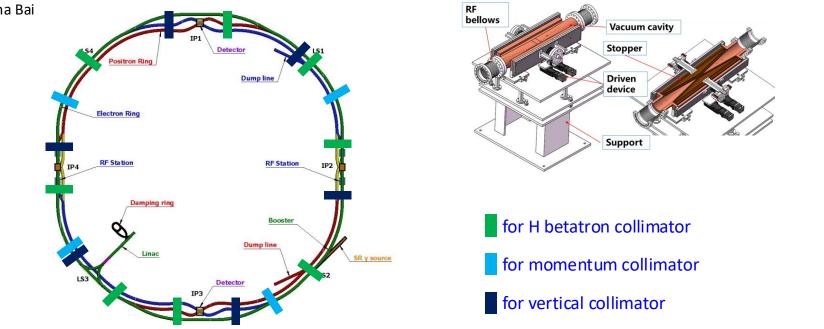
Background	Generation	Tracking	Detector Simu.
Synchrotron Radiation	BDSim/Geant4	BDSim/Geant4	
Beamstrahlung/Pair Production	Guinea-Pig++		
Beam-Thermal Photon	PyBTH[Ref]	SAD	<u>CEPCSW/FLUKA</u>
Beam-Gas Bremsstrahlung	PyBGB[Ref]		
Beam-Gas Coulomb	BGC in <u>SAD</u>	SAD	
Radiative Bhabha	BBBREM		
Touschek	TSC in <u>SAD</u>		

Mitigation of the BIBs

The sources of the BIBs has two groups:

- From IP, luminosity related(pair-production, radiative Bhabha)
- From anywhere around the ring, less in IP(single beam losses and SR)

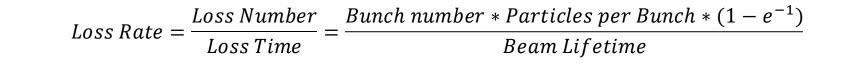
Previously, we have several methods of shielding(or mitigation)

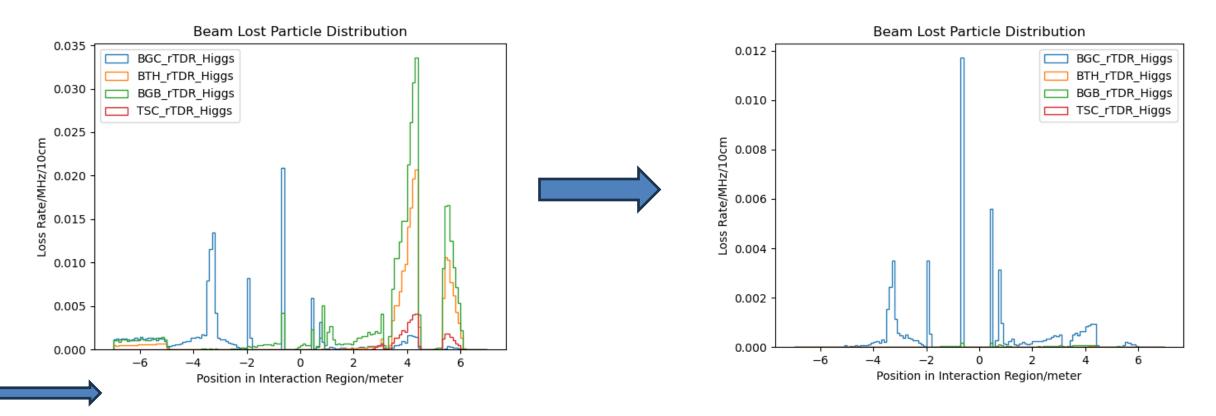

- Using collimators to block single beam loss outside of the IR
- Using mask to block SR outside of the Be beam pipe
- Using heavy metal(like W) somewhere in the IR(like outside the cryomodule)
- Using paraffine at both ends of the yoke(together with concrete wall maybe) to block the upstream single loss entering the IR

Collimators

Collimators were implemented to reduce IR loss caused by single beam.

- 18 sets of collimators were implemented for MDI purpose with updated position
- ~20 sets of collimators were installed for passive machine protection and will also contribute to mitigating beam background.
- With the implementation of collimators, multi-turn beamstrahlung and radiative Bhabha loss particles have been
 effectively shielded outside the interaction region.





Haijing Wang

Loss Map at the IR @ Higgs

- Single Beam only
- Errors implemented
 - High order error for magnets
 - Beam-beam effect

Loss Map at the IR @ Higgs

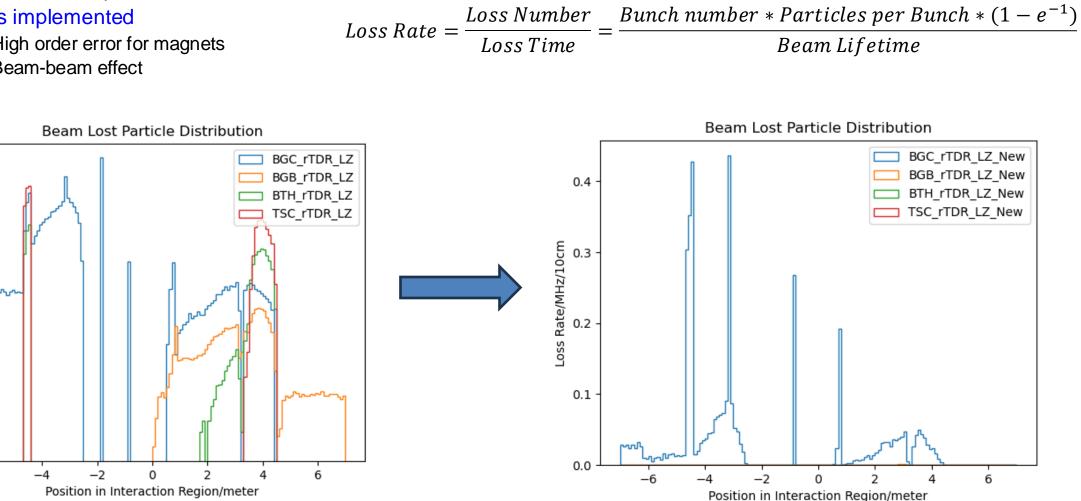
- Single Beam only
- Errors implemented
 - High order error for magnets
 - Beam-beam effect

Loss Pate - Lo	Loss Number	Bunch number $*$ Particles per Bunch $*(1 - e^{-1})$
LUSS Rule –	Loss Time =	Beam Lifetime

	50MW Higgs, 346ns/BX			50MW Higgs, 277ns/
Pair Production	~1.82GHz in IR		Pair Production	~1.82 GHz in IR
Beam Thermal Photon	~0.30MHz/beam in IR		Beam Thermal Photon	~0.3 kHz/beam in IF
Beam Gas Bremsstrahlung	~0.04MHz/beam in IR		Beam Gas Bremsstrahlung	~4.1 kHz/beam in IR
Beam Gas Coulomb	~0.23MHz/beam in IR		Beam Gas Coulomb	~87.8 kHz/beam in IF
Touschek Scattering	~0.06MHz/beam in IR		Touschek Scattering	~0.3 kHz/beam in IR
SR	~630 PHz/beam generated at last bending magnet		SR	~630 PHz/beam generate last bending magnet

SR only contains last bending magnet and the contributions from solenoid. Quads(especially from beam tail passing quads) will be implemented later. 8

Comparing with FCC-ee @ Higgs


- At, higgs, pair production dominates@ CEPC.
- FCC-ee also has their higgs study results. The generator is same.
 - At same level

Manuela Boscolo, Andrea Ciarma

	CEPC	FCC-ee
Pair produced per bunch crossing	~2200(1300 with cut)	~2700
Max. Occupancy VXD	2.2e-4	4.1e-4
Max. Occupancy ITK-B		3.8e-5
Max. Occupancy ITK-E	2.5e-4(Single contributes)	2.3e-4

Loss Map at the IR @ Low-Lumi Z

- Single Beam only
- **Errors** implemented
 - High order error for magnets
 - Beam-beam effect

Beam Way

10²

10¹

100

 10^{-1}

10-2

 10^{-3}

 10^{-4}

10-5

 10^{-6}

-6

oss Rate/MHz/10cm

Loss Map at the IR @ Low-Lumi Z

- Single Beam only
- **Errors** implemented
 - High order error for magnets
 - Beam-beam effect
- Assume that the beam lifetime is same as High-Lumi Z

	10MW Z, 69ns/BX
Pair Production	~3.2GHz in IR
Beam Thermal Photon	~3.4MHz/beam in IR
Beam Gas Bremsstrahlung	~2.5MHz/beam in IR
Beam Gas Coulomb	~272MHz/beam in IR
Touschek Scattering	~62MHz/beam in IR

	10MW Z, 69ns/BX
Pair Production	~3.2GHz in IR
Beam Thermal Photon	~24.83 Hz/beam in IR
Beam Gas Bremsstrahlung	~17.9 kHz/beam in IR
Beam Gas Coulomb	~20.8 MHz/beam in IR
Touschek Scattering	~1.3 kHz/beam in IR

Beam Lifetime

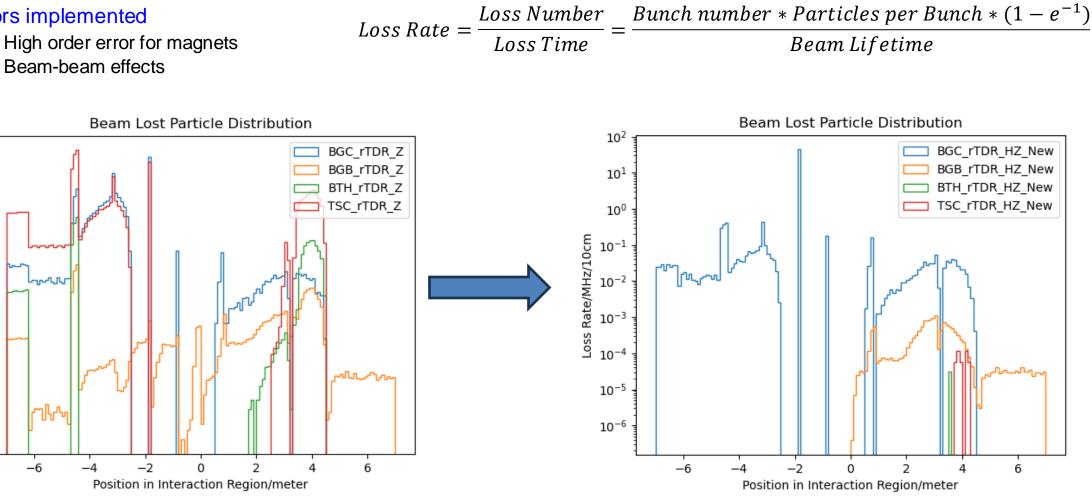
 $Loss Rate = \frac{Loss Number}{Loss Time} = \frac{Bunch number * Particles per Bunch * (1 - e^{-1})}{Beam Lifetime}$

Loss Map at the IR @ High-Lumi Z

Single Beam only

10³

10¹


 10^{-1}

 10^{-3}

10-5

Loss Rate/MHz/10cm

- **Errors** implemented
 - High order error for magnets

Beam Way

Loss Map at the IR @ High-Lumi Z

- Single Beam only
- Errors implemented
 - High order error for magnets
 - Beam-beam effect
- Assume that the beam lifetime is same as High-Lumi Z

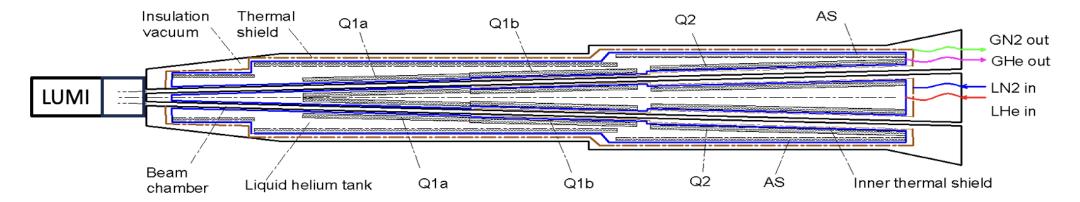
	50MW Higgs, 23ns/BX
Pair Production	~25.5GHz in IR
Beam Thermal Photon	~0.26GHz/beam in IR
Beam Gas Bremsstrahlung	~0.01GHz/beam in IR
Beam Gas Coulomb	~2.36GHz/beam in IR
Touschek Scattering	~6.24GHz/beam in IR


		50MW Higgs, 23ns/BX
	Pair Production	~25.5GHz in IR
	Beam Thermal Photon	~0.1 kHz/beam in IR
B	eam Gas Bremsstrahlung	~0.007 GHz/beam in IR
	Beam Gas Coulomb	~0.2 GHz/beam in IR
	Touschek Scattering	~1.6 kHz/beam in IR

 $Loss Rate = \frac{Loss Number}{Loss Time} = \frac{Bunch number * Particles per Bunch * (1 - e^{-1})}{Beam Lifetime}$

Shielding using Paraffine

We are adding 10cm paraffine at both ends of the yoke.


- Current results show that it do help.

Shielding using Heavy Metals outside of Cryo-Module

- 10mm Tungsten added between 800~1050mm
 - The position of the second part of Lumi LYSO has been changed to 800~950mm, followed by BPM at both pipes with a length of 100mm in total.
- Due to the shrinking of the material of the Cryo-module and magnets, we need to add more shielding to mitigate the BIB.
- Currently, we have 2 versions:
 - 5mm Ti(Cryo-Shell) + 10mm W
 - 15mm Stainless-Steel

Xiangzhen Zhang, Xiaochen Yang

Estimation of Impacts in the MDI @ Higgs

- We have obtained a preliminary estimate of the beam-induced background levels in Higgs mode
 Hancen Lu, Xin She, Zhan Li, Xiaojie Jiang, Weizheng Song,
 - Assume an operational time of 7000hr/yr, time window: 10BX(~3us)

Sub-Detectors	Ave. Hit Rate(MHz/cm ²)		Max. Hit Rat	te(MHz/cm²)
	15mm SS	5mm Ti + 10mm W	15mm SS	5mm Ti + 10mm W
Vertex	1.07	1.06	1.19	1.22
ІТК	0.00552	0.00545	0.01608	0.01810
ТРС	0.0037/pixel	0.0028/pixel	0.012/pixel	0.008/pixel
OTK – Endcap				
ECal –B/E(in cell)	0.011/0.045	0.007/0.023	0.424/2.8	0.172/1.7
HCal – B/E(in cell)	0.0002/0.0053	0.0002/0.0038	0.0058/0.0035	0.221/0.129
Muon – Endcap				
LumiCal – Crystal	1.07	1.07	3.44	3.39

Haopeng Li,

Renjie Ma

Estimation of Impacts in the MDI @ Low-Z

- We have obtained a preliminary estimate of the beam-induced background levels in Low Lumi Z mode
 Hancen Lu, Xin She, Zhan I
 - Hancen Lu, Xin She, Zhan Li, Xiaojie Jiang, Weizheng Song, Haopeng Li, Renjie Ma
 - Assume an operational time of 7000hr/yr, time window: 10BX(~3us)

Sub-Detectors	Ave. Hit Rate(MHz/cm ²)		Max. Hit Rate(MHz/cm ²)	
	15mm SS	5mm Ti + 10mm W	15mm SS	5mm Ti + 10mm W
Vertex	5.52	5.49	9.56	9.39
ІТК	0.0122	0.0120	0.0499	0.0546
ТРС	0.006/pixel	0.004/pixel	0.018/pixel	0.013/pixel
OTK – Endcap				
ECal –B/E(in cell)	0.015/0.065	0.011/0.035	0.335/6.7	0.212/2.4
HCal – B/E(in cell)	0.0007/0.0082	0.0007/0.006	0.012/0.249	0.012/0.157
Muon – Endcap				
LumiCal – Crystal	49.89	50.12	130.67	131.88

Estimation of Impacts in the MDI @ High-Z

- We have obtained a preliminary estimate of the beam-induced background levels in High Lumi Z mode
 Hancen Lu, Xin She, Zhan Lu, X
 - Hancen Lu, Xin She, Zhan Li, Xiaojie Jiang, Weizheng Song, Haopeng Li, Renjie Ma
 - Assume an operational time of 7000hr/yr, time window: 10BX(~3us)

Sub-Detectors	Ave. Hit Rate(MHz/cm ²)		Max. Hit Ra	te(MHz/cm²)
	15mm SS	5mm Ti + 10mm W	15mm SS	5mm Ti + 10mm W
Vertex	27.04	27.06	41.03	40.51
ІТК	0.106	0.103	0.4884	0.5353
ТРС				
OTK – Endcap				
ECal –B/E(in cell)	0.077/0.334	0.054/0.187	2.1/34.5	1.1/15.2
HCal – B/E(in cell)	0.0022/0.053	0.0021/0.040	0.044/2.1	0.035/1.4
Muon – Endcap				
LumiCal – Crystal				

Summary & Outlook

The beam induced backgrounds @ Higgs and Z-pole are updating, together with the mitigation methods

- The updated collimators look promising. All single beam backgrounds have been mitigated at least one order of magnitude. The optimization is still on going.
- The dose estimation using FLUKA is on going. We formed a dedicated working group working on this(1 staff from IMMU+ 1 student from NKU).
- We are towards the baseline of the shielding.
 - We compared with 15mm SS(~0.85X₀) and 5mm Ti+10mm W(~2.99X₀). The second one has longer radiation length, might be better in shielding.
 - The shielding effects of the TiW is ~30% better in Ecal/TPC, almost same at other sub-detectors.
 - Currently, we could take 15mm SS as baseline. Our accelerator colleagues also performed a study on deformation based on this design and will be presented this afternoon.

Summary & Outlook

The beam induced backgrounds @ Higgs and Z-pole are updating, together with the mitigation methods

- The updated collimators look promising. All single beam backgrounds have been mitigated at least one order of magnitude. The optimization is still on going.
- The dose estimation using FLUKA is on going. We formed a dedicated working group working on this(1 staff from IMMU+ 1 student from NKU).
- We are towards the baseline of the shielding.
 - We compared with 15mm SS(~0.85X₀) and 5mm Ti+10mm W(~2.99X₀). The second one has longer radiation length, might be better in shielding.
 - The shielding effects of the TiW is ~30% better in Ecal/TPC, almost same at other sub-detectors.
 - Currently, we could take 15mm SS as baseline. Our accelerator colleagues also performed a study on deformation based on this design and will be presented this afternoon.

Backup

Simulation Workflow

Generation/Tracking

Detector Simulation

(Pre-)Digitalization

Could get the step information at sub-detectors Implemented time window, 1BX/3BX for higgs

Merge the steps into cell

More Shielding

Adding 40mm Tungsten between 1110~1900mm

Weizheng Song

 More shielding is better, that indicates us we might find some methods to mitigate more.

时间窗为bunch spacing 346 / 9 / 23 ns 阈值为0.1mip			平均计数率 [KHz/cell]	最大计数率 [<u>KHz</u> /cell]	最大占空比 [%]
带有 4cm ₩ 以前结 果	ECAL Barrel	Higgs	4	87	
		LZ	43	1,130	
	ECAL Endcap	Higgs	9	469	
		LZ	66	1,368	

	ECAL Barrel	Higgs	7	172	0.44
		LZ	11	212	0.16
		HZ	54	1,065	0.2
	ECAL Endcap	Higgs	23	1,746	1.74
		LZ	35	2,408	0.39
15mm		HZ	187	15,209	0.57
Ti+W/			0.0	2.5	0.00050