

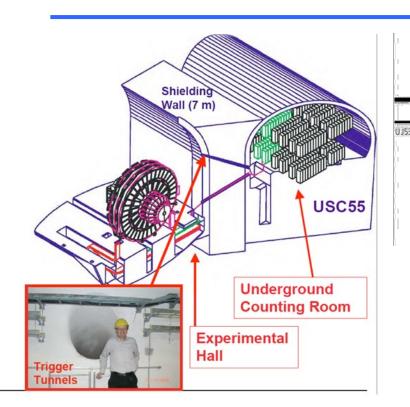
Preliminary consideration of the electronics room requirement with current detector design

Wei Wei

On behalf of the Elec-TDAQ system of the CEPC Ref-TDR team

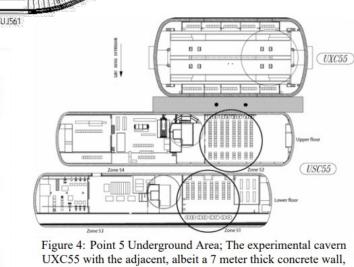
IHEP, CAS

2024-09-27 CEPC Day


Outline

- Motivation
- Considerations on data link / power / HV according to the current
- Key parameters to calculate the cabling and crates
- Detailed calculation for each sub-detector
- Summary of the cabling and crates
- Comparison with the CMS counting room
- Rough estimation of the electronics-TDAQ room

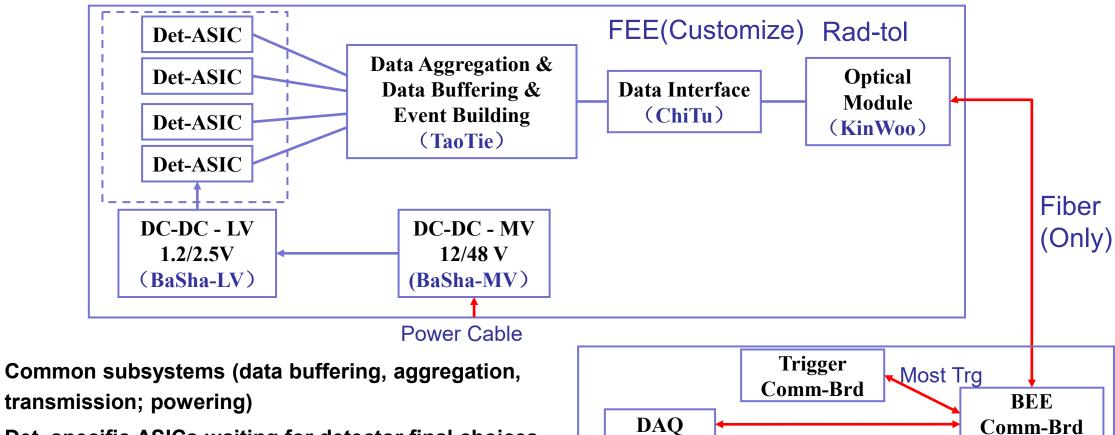
Motivation – an example from CMS



UXC55 USC55 SS1 tank TS tanks X2 Hole between USXC55 et USC55 PS tanks

NEAR SIDE

- For the floorplan of the detector hall, to estimate the space requirement, and location preference
- Also connected to the installation strategy

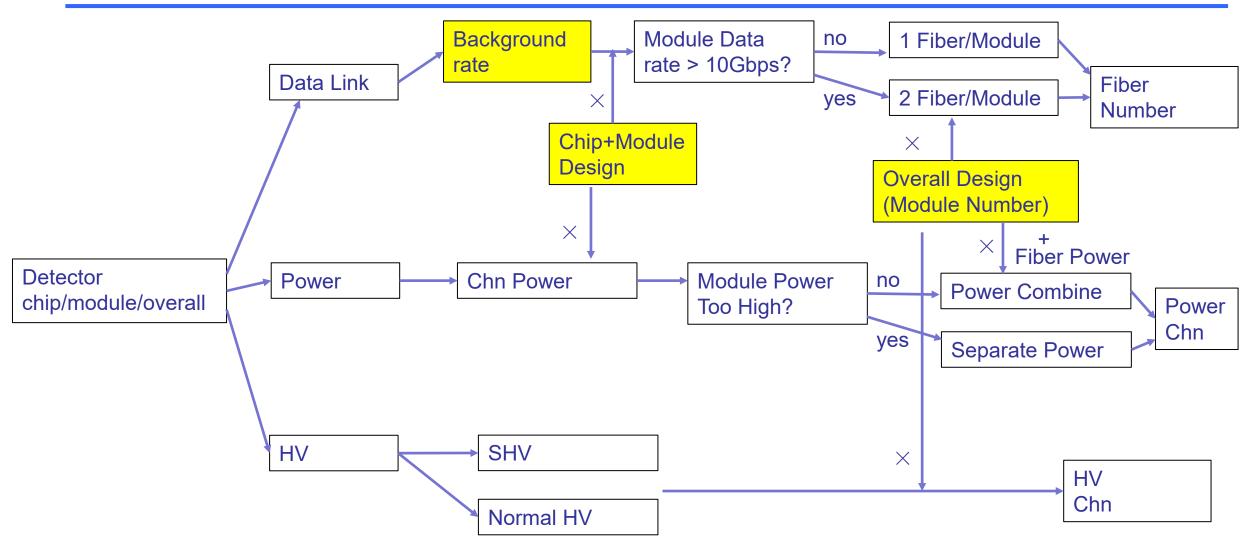

XRP1 (TOTEM)

underground counting room USC55, consisting of two floors.

https://cds.cern.ch/record/1027431/files/p165.pdf https://doi.org/10.1007/978-3-031-12851-6 49 http://hep.wisc.edu/wsmith/cms/doc07/smith trig MEG f eb07.pdf

Global framework of the Elec-TDAQ system

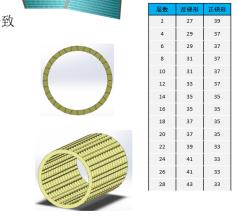
- Det. specific ASICs waiting for detector final choices.
- A common BEE hardware, configurable for individual subsystems.
- TDAQ interface is (probably) only on BEE

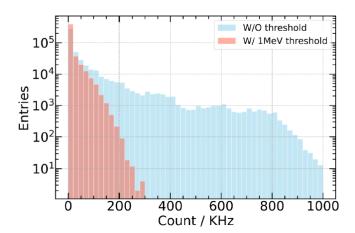

Non Rad-tol

Slow Ctrl

Common platform

Consideration according to the detector design


An example of sub-detector consideration (ECAL)



ECAL电缆估算

- ECAL桶部,正反梯形排布
 - 模块数量: Phi: 32, Z: 15, 共480个模块
- - 1层到28层, 奇数层每层36根, 偶数层晶体数目不一致
 - 正梯形晶体数量1000, 反梯形晶体数量992
- 电缆估算: 1根/模块
 - AWG15(线径1.45mm,电流:6.5A/7.4A) AWG18(线径1.08mm,电流:3.2A/3.7A)

 - 模块功耗估计: 1000*2*20mW = 40W
- 光纤估算: 1根/模块
 - 模块数据量估算: 待定
- - 高压,低压(正负?),光纤
 - 电缆双向走向,每端240根(平均方案)
 - 电缆双向走向, 一端224根, 一端256根
- 未确定电缆: 刻度方案

- The overall detector design: ~480 Module (Dual-trapezium scheme), ~1000 bar/module
- Current bkgrd estimation: avg. event rate 100kHz / crystal bar w/ threshold; Data width 48bit/event (current ASIC scheme)
- @Dual readout each crystal bar, total data rate:
 - 1000*100kHz*48bit*2ends=9.6Gbps, not possible for 1 fiber for each module, at least 2 fibers for each module
 - For max. bkgrd rate@300kHz@Higgs, also needs enough room
 - For Z pole, bkgrd will be much higher, also needs extra room

An example of sub-detector consideration (ECAL)

Data Link:

- Fibers: 480*2=960, -> 60 BEE Brds, 6 crates

• Power:

- ASIC: 15mW/ch, each module 1000*2*15mW=30W
 - **➤** Within the capability of DC-DC power module
- Data Link + Optical Power: 1W each
- Total Power: 31W/0.85*480=17.5kW
 - > Efficiency of the DC-DC: 85%
- Power chn 100W/chn, each module per power cable: 480 power chn -> power crates 10

• HV:

- Sch 1: one HV chn for each module, (limitedly) compensated for each SiPM in ASICs
- − HV channels = module number = 480, -> 2 HV crates
- Alt sch2: HV chn for each SiPM? Too many channels & too large control data volume (X)
- Alt sch3: HV chn for sub-region of a module, to compensate the temperature gradient
 - ➤ Maybe much optimized than sch1, but rely on the detector simulation

Note for the calculation

- Avg. & Max background rate both are important
 - Max bkgrd rate to calculate the room for the data rate
 - Avg bkgrd rate to calculate the total data rate for the electronics –TDAQ interface
- Detailed detector design, including the module vs. chip, is necessary for the electronics cabling, powering and HV scheme
 - Chip on module to evaluate electronics readout scheme (data link, power, aggregation)
 - Overall detector design to evaluate the cabling, HV and crate channels
- According to the current electronics design, most detector module following the "1 fiber + 1 Power" manner
 - Most module data rate at the level of Gbps, a fiber channels @10Gbps level is proper
 - Although the room for a power channel at the module level is large, current scheme not consider power channel merge
 - > Otherwise needs extra power aggregation board on detector, means extra room and increasing difficulty for Mechanics
 - > Several detector with enough space (esp. endcaps) with very low power, power channel merge can still be considered

Main parameters for the room calculation – Data Crates

Optical Link

- By using MTX interface for fibers, multiple fiber channels can be integrated in small unit
 - > Can be 1Rx + 4Tx as a normal design
- Each Tx channel at 10Gbps rate, with 8b10b protocol, and the max valid data rate to be 8Gbps
 - ➤ Major constraint for the detector module
 - ➤ If module data rate too high (>8Gbps valid data), multiple Tx fiber channels should be used, while the size of the optical module unchanged

Crates for data

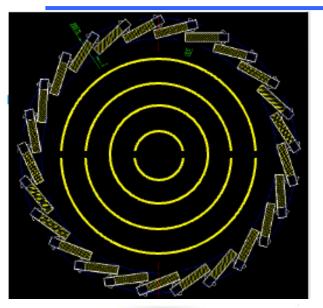
- The common BEE Board considered with 16 optical channels, each @10Gbps/Link
- BEE Board to be designed following the μTCA standard
 - > μTCA crate height 9U, total room for 14 cards
 - > 2 Ctrl cards for each crate, 1 TTC card (clocking), 1 reserved card
 - > 10 valid slots for BEE boards in each data crate

Racks for data

- Height of a rack 42U
- Height for the heat dissipation 2U each
- Reserve some room for the possible Switch to DAQ
- Max 3 crates in each Data Rack (= 30 BEE Boards = 480 optical channel)

VTRx+
4Tx + 1Rx
Array Optical
Module

Main parameters for the room calculation – Power Crates

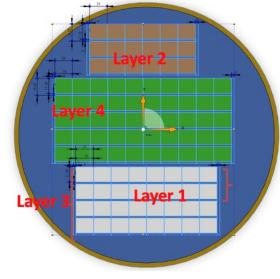

- MV(110V DC to 48V DC) Power Crate & Racks:
 - In the electronics room, near the Data Racks
 - A crate with a height 3U
 - > Type1: 48 channels, with the capability of 100W output for each channel
 - > Type2: 96 channels, with the capability of 40W output for each channel
 - Concerning the room for heat dissipation, a 42U Power Rack for 10 Power Crates is proper
- Pwr-HV (380V AC to 110 DC) Power Crate & Racks:
 - Power for the MV Power Racks, may be on the ground or far from radiation
 - A crate with a height 6U & total power of 60kW~70kW for a total 10 channels
 - A rack for 5 power crates (6U + 2U cooling)

Main parameters for the room calculation – Det-HV Crates

Detector HV crates & racks

- Usually the power of the detector HV source is low, channel density is the major constraint
- (Ref. from the Det-HV crates provided for ATLAS-HGTD) a crate with a height 8U with 14×16=224 channels, independent tuning for each channel
- 2U height for heat dissipation for each crate
- A 42U Det-HV Rack can hold 4 Det-HV Crates
 - ➤ If SHV is needed (as for TPC), SHV-connector is larger, height of the crate -> 10~12U, and a Det-SHV Rack will be for 3 Det-SHV crates

VTX-Data Link



	А	В	С	D	Е	F
1	Layer	Hit density (Hits/cm2/BX)	BXRate (Hz)	Hit density (kHits/cm2/s)	Safe factor	Cluster size
2	VTX-1 (Higgs)	0.65	1.34E+06	870	1.5	3
3	VTX-2 (Higgs)	0.43		580	1.5	
4	VTX-3 (Higgs)	0.09		116	1.5	
5	VTX-4 (Higgs)	0.08		110	1.5	
6	VTX-5 (Higgs)	0.05		70	1.5	
7	VTX-6(Higgs)	0.05		68	1.5	
	I		4			

- VTX scheme: Inner 4 layers stitching, with 1 typical double-sided ladder (layer 5&6)
- Bkgrd rate @50MW @Higgs with safety factor 1.5
- Assume RSU@stitching = ladder chip = 1024*512 matrix, then data rate for the innermost layer for a "chip" is 2Gbps, other layers according the bkgrd ratio
- Inner 2 layers needs 2 fiber chns for each row, due to the high data rate
 - possible to merge into less optical MTX interfaces
- In total 88 fibers = 6 BEE Brd = 1 Data Crate

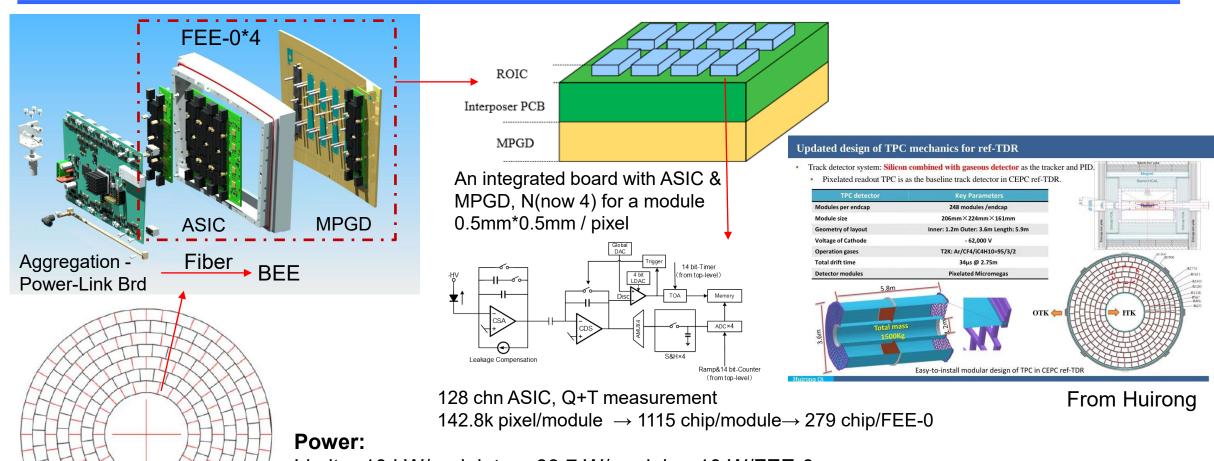
Layer	Comment	Data Rate/chip	Chips/Row	Data rate/row	Rows	Links@10Gbps
1	Stitching	2Gbps	8	16G	2*2=4	2*4=8 (2 fiber chns)
2	Stitching	1.3Gbps	12	15.6G	3*2=6	2*6=12 (2 fiber chns)
3	Stitching	0.27Gbps	16	4.3G	4*2=8	1*8=8
4	Stitching	0.25Gbps	20	5G	5*2=10	1*10=10
5	Ladder-side0	0.16Gbps	29	4.64G	25	1*25=25
6	Ladder-side1	0.16Gbps	29	4.64G	25	1*25=25

From Zhijun

VTX-Power

Layer	Comment	Power/chip	Chips/Row	Power /row	Rows	Chip Power of Layers	Total Power/Layer (Chip+Link) *1.18
1	Stitching	200mW	8	1.6W	2*2=4	6.4W	(6.4+4) *1.18=12.2
2	Stitching	200mW	12	2.4W	3*2=6	14.4W	(14.4+6) *1.18=24
3	Stitching	200mW	16	3.2W	4*2=8	25.6W	(25.6+8) *1.18=39.5
4	Stitching	200mW	20	4W	5*2=10	40W	(40+10) *1.18=58.8
5	Ladder-side0	200mW	29	5.8W	25	145W	(145+25) *1.18=200
6	Ladder-side1	200mW	29	5.8W	25	145W	(145+25) *1.18=200

- For simplicity, assume the power of Unit(RSU/Chip) is the same 200mW(40mW/cm2 * 2.6cm*1.6cm)
 - Main contribution of power: analog static power + data link, not varying with bkgrd rate
- Extra cost by using optical: fixed 1W each set
 - 0.75W for Data Interface & 0.25W for 1 Rx+4Tx VTRx
- Efficiency of BaSha DC-DC is 85% = extra efficiency cost of DC-DC 18% (1÷85%=118%)
- Total power: 449.8W
 - 16 power channels each layer for 1∼4, each chn for a semi-; 2 chn for each ladder in 5/6 layer, 50 chn in all
 - Power will be provided from both ends for long barrel
 - 66 power channels = 2 power crate
 - > Very likely to be merged due to the limited room for VTX


VTX-Det-HV

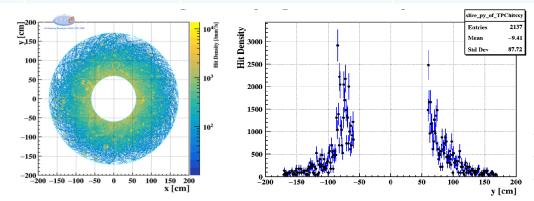
- There is no actual need for "High Voltage"
- However, may be the only detector to use negative voltage for sensors
 - Depend on R&D, ranges < -10V
- Not cost-effective to developed a dedicated power module for VTX
 - Can be treat as a "Det-HV"
- Det-HV Crates (similar to VTX Power Crates):
 - 16 HV channels each layer for 1~4, each chn for a semi-; 2 chn for each ladder in 5/6 layer,
 50 chn in all
 - HV will be provided from both ends for long barrel
 - 66 HV channels = 1 Det-HV crate

Preliminary readout scheme of Pixel TPC

Limit: <10 kW/endplate ~ 39.7 W/module ~10 W/FEE-0 35mW/ASIC ~ 280µW/chn

Data rate:

~248 Module/Endplate


80 particles/BX, 12,000 hit/particle, 32(48)b/hit, @ 40M BX Z pole 1 Module: ~100 Mbps(@ innermost)

TPC—Data Link

- Module number: 248 * 2 endcap=496 modules
- Data rate concerning bkgrd rate:
 - 30Mbps~100Mbps per module, avg. @ 70Mbps, much less than the max capability of optical
- Data Link:
 - Each module per fiber link, w/o inter-module data aggregation, to maximize the reliability
 - Not too much cost variation for the BEE
 - The alternative scheme by data aggregation is also listed below

Sch.	Module	Data Rate/module	Module/Fiber	Total Fiber	Total BEE	Total crate
1	248*2=496	100Mbps	1	496	248/16*2=32	4
2	248*2=496	100Mbps	16	246/16*2=32	3	1

Background rate analysis

https://cds.cern.ch/record/1543486/files/LCD-Note-2013-005.pdf

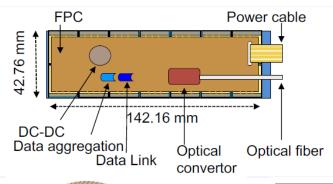
https://doi.org/10.1088/1748-0221/12/07/P07005

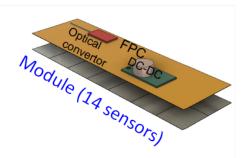
https://www.sciencedirect.com/science/article/pii/S0168900216305381

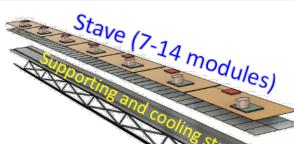
TPC—Power & HV

- The power spec for each endcap of TPC is 10kW
 - Avg. power for each module is 40.3W
 - Concerning the cost of data link 1W, total power per module ~42W
 - Suitable to provide power for each module with an independent power channel
 - Max. the flexibility for installation and reliability; min. the complexity in case that the power has to be distributed between modules

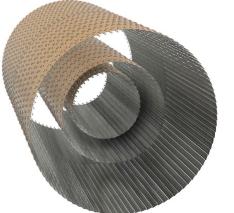
Power crates


- In total 496 module = 496 channels = Power Crates 6
 - > Assuming independent distribution for the two endcaps


Det-HV crates


- Requirement for independent tuning for each module, has to be 1 chn for each module
- In total 496 module = 496 channels = Power Crates 4
 - > Assuming independent distribution for the two endcaps

ITK—Detector, stave & module



Each module with a Data Link & Power Module assembled

Barrels	Modules/Stave	Staves	Modules	Sensors	Sensor area
ITKB1	7	40	280	3920	1.6 m ²
ITKB2	10	58	580	8120	3.2 m ²
ITKB3	14	96	1344	18816	7.5 m ²
Total		194	2204	30856	12.3 m ²

Endcap	1 (per Sector)	2	3	4	Total
Ladder Type	6	8	15	12	18
Ladder Number	7	10	18	15	1600
Chip Number	48	98	260	236	20544
Active Area (mm^2)	20181.03	42796.32	116080.28	106081.77	9.12e6
Module Area (mm^2)	23184	47334	125580	113988	9.92e6
Power Consumption (W)	46.368	94.668	251.16	227.98	1.98e4
Avg. Hit Rate (Hz/mm^2)	3.9e2	1.6e3	8.9e2	2.4e2	-
Data Rate (Hz)	2.89e8	2.42e9	3.58e9	8.75e8	2.29e11

ITK—Data Link (Barrel)

	HVCMOS Pixels (Barrel)	CMOS Strips (Endcap)
Pixel Size (Strip Pitch Size)	34 × 150 μm²	20 μm
Chip size	$2 \times 2 \text{ cm}^2$ (active area: 1.92x1.74 cm ²)	2.1×2.3 cm ² (active area: 2.05x2.05 cm ²)
Array size (Strip number)	512 rows × 128 columns	1,024
Spatial resolution	σ_{ϕ} ~8 μm (bending), σ_{z} ~40 μm	$σ_{\phi}$ ~4.2 μm (bending), $σ_{r}$ ~21 μm
Timing resolution	~3-5 ns	~3-5 ns
Data size per hit (1 readout)	42 bit (14b BXID, 7b+9b address, 6b TOT, 5b fine TDC, 1 polarity)	32 bits (10b BXID, 10b address, 6b TOT, other 6 bits)
Data rate per chip	Maximum ~0.1 Gbps* (pair production)	Maximum ~0.2 Gbps* (pair production)
LV / HV	1.2 V / 150 V	1.8 V / 150 V

Hit Rate Conclusion

	Z [mm]	R_in [mm]	R_out [mm]	Average hit rate [10^4 Hz/cm^2]	Max hit rate [10^4 Hz/cm^2]
ITKE1	500.5	75	240	3.9	23
ITKE2	715	101.9	350	16	38
ITKE3	1001	142.6	600	8.9	75
ITKE4	1500	213.7	600	2.4	6.3
OTKE	2903	406	1810	0.3	3.5

	t	el:2903%20406%201	810%200.3%203.5	
	R [mm]	Half_Z [mm]	Average hit rate [10^4 Hz/cm^2]	Max hit rate [10^4 Hz/cm^2]
ITKB1	240	500.5	1	4.6
ITKB2	350	715	2.1	41
ITKB3	600	1001	2.1	27
ОТКВ	1800	2000	0.7	0.9

ķ	Maximum	hit rate:	barre	$1 \sim 4.1 \times 10^5$	endca	n~7.5	×10 ⁵
	Maximum	mit rate.	Dai i C	1.1/\10,	CHuca	7.5	/ \ I U

IT KB	Modul es/lay er	Avg bkgrd rate (Hz/cm²)	Avg Chip Data rate (Mbps) (42bit & 4cm²)	Avg Module Data rate (Mbps) (14 chips)	Max bkgrd rate (Hz/cm²)	Max Module Data rate (Mbps) (14 chips)
1	280	10k	1.68	23.5	46k	108.2
2	580	21k	3.53	49.4	410k	964.3
3	1344	21k	3.53	49.4	270k	635.0

- Data width~42bit/event
- Barrel Module: 2*7=14 chips
- Max Data rate per module ~1Gbps
- Enough room left for a fiber channel, 1 fiber for 1 module

In total 2204 Modules = 2204 fibers, each layer is independent with other layers on BEE

BEE Boards: 18+37+84=139, -> 14 Data Crates

ITK——Power (Barrel)

Technology Survey and our Choice for ITK: Option 1

- CMOS sensor technology:
 - Cost-effective due to widespread use in the semiconductor industry
 - Combine the active detection layer and the readout electronics into a single device
- HVCMOS pixels:
 - Large depletion depth (full depletion), large signal
 - Radiation hard

Pixel size:

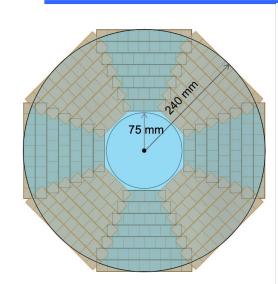
- Relatively large capacitance, leading to increased noise and power consumption
- New HVMOS (COFFEE) pixels R&D for CEPC:
 - Utilizes 55 nm process instead of the 180 nm used in ATLASPix3 More functionality and less power consumption

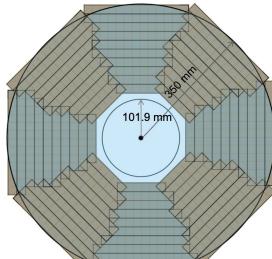
Wafer resistivity: 1k-2k Ω·cm $34 \times 150 \; \mu m^2$

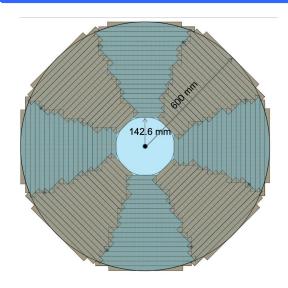
512 rows × 128 columns Array size:

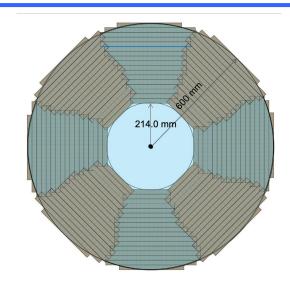
Power consumption: ~200 mW/cm²

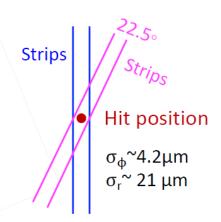
- TSI 180nm HVCMOS on 200 Ωcm substrate
- Pixel size 50 × 150 μm²
- 372 rows × 132 columns
- 20.2 × 21 mm² reticle size
- Each pixel has 7-bit TOT + 10-bit timestamp
- · Continuous / triggered readout with 8b10b / 64b66b coding
- Power consumption ~160 mW/cm².




ITKB	Modu les/la yer	Layer power (W)	Data Link Power (W)	Total Power(chip+da ta)/85%
1	280	3.14k	280	4.02kW
2	580	6.50k	580	8.32kW
3	1344	15.1k	1344	19.29kW


- Estimated chip power 200mW/cm², 14 chips per module, Module power 11.2W
- Extra power: Data Link 1W per module
- 1 Power channel for each module for reliability & installation simplicity
- Power channels: 280 + 580 +1344=2204, -> Power Crates 3+12+14=29, each layer independent
- HV range 50~200V (normal HV), independent tuning for each module
 - Det-HV channels also 2204, -> Det-HV Crates 10


ITK——Detector Design Endcap



- 8 sectors for each endcap layer; each endcap by two layers overlapped @22.5°
- Different size of module at different radius & different layers
- Assume 1 fiber + 1 power for each module, chip number matters for data rate & power
- 1^{st} Endcap: 9+9+8+7+6+5+4=48 chips, 7 ladders
- 2^{nd} Endcap: 13+13+12+11+10+10+9+7+7+6=98 chips, 10 ladders
- 3rd Endcap: 17+22+22+21+20+19+19+18+17+16+16+15+14+13+12+12+10+8+8=299 chips, 19 ladders
- 4th Endcap: 15+21+22+21+21+19+19+18+17+16+15+14+13+12+11+11+9=274 chips, 17 ladders

ITK——Data Link (Endcap)

Hit Rate Conclusion

	Z [mm]	R_in [mm]	R_out [mm]	Average hit rate [10^4 Hz/cm^2]	Max hit rate [10^4 Hz/cm^2]
ITKE1	500.5	75	240	3.9	23
ITKE2	715	101.9	350	16	38
ITKE3	1001	142.6	600	8.9	75
ITKE4	1500	213.7	600	2.4	6.3
OTKE	2903	406	1810	0.3	3.5

	te	el:2903%20406%201	810%200.3%203.5	
	R [mm]	Half_Z [mm]	Average hit rate [10^4 Hz/cm^2]	Max hit rate [10^4 Hz/cm^2]
ITKB1	240	500.5	1	4.6
ITKB2	350	715	2.1	41
ITKB3	600	1001	2.1	27
ОТКВ	1800	2000	0.7	0.9

Endcap	1 (per Sector)	2	3	4	Total
Ladder Type	6	8	15	12	18
Ladder Number	7	10	18	15	1600
Chip Number	48	98	260	236	20544
Active Area (mm^2)	20181.03	42796.32	116080.28	106081.77	9.12e6
Module Area (mm^2)	23184	47334	125580	113988	9.92e6
Power Consumption (W)	46.368	94.668	251.16	227.98	1.98e4
Avg. Hit Rate (Hz/mm^2)	3.9e2	1.6e3	8.9e2	2.4e2	-
Data Rate (Hz)	2.89e8	2.42e9	3.58e9	8.75e8	2.29e11

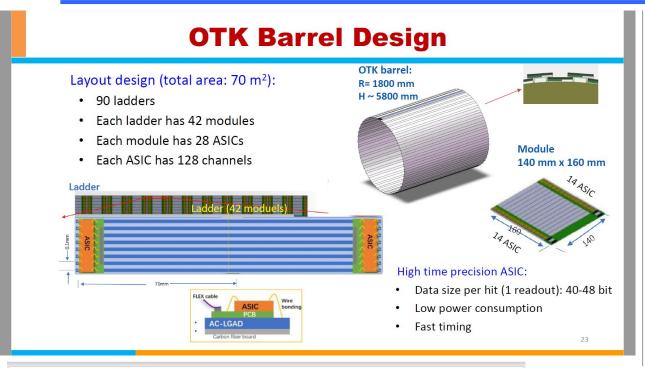
ITKE	Ladder Max chips	Avg bkgrd rate (Hz/cm²)	Max bkgrd rate (Hz/cm²)	Avg Module Data rate (Mbps)	Max Module Data rate (Mbps)	Modules/Ladders(Fibers)
1	9	39k	230k	47.2	278.4	7*8*2layer*2Endcap =224
2	13	160k	380k	279.7	664.3	10*32=320
3	22	89k	750k	263.3	2218.9	19*32=608
4	22	24k	63k	71.0	186.4	17*32=544

- Max module data rate 2.2Gbps, enough room left by using 1 fiber for each ladder
- Ladders in total: 224+320+608+544=1696, =106 BEE, =12 Data Crates (symmetry from two side)

ITK——Power (Endcap)

Technology Survey and our Choice for ITK: Option 2

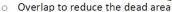
- CMOS sensor technology:
- Cost-effective due to widespread use in the semiconductor industry
- Combine the active detection layer and the readout electronics into a single device
- CMOS strips compared with CMOS pixels:
 - · Less expensive and relatively lower power consumption
 - · Simpler readout with fewer technical barriers
 - · Comparable or even better spatial resolution
 - Negligible track ambiguity using specific detector layout design:
 For example: the GEPC Trk endcap is designed with strip sensors with a 22.5° cross angle between 2 half-layers. Drawback: it requires twice number of sensors compared with pixels
- CMOS Strip Chip (CSC) R&D for CEPC:
 - Utilizes 150 nm process, based on CHESS for ATLAS ITK strip sensor
 - Wafer resistivity:
- 2k Ω·cm
- Strip pitch size:
- Strip number per chip: 1024
- Power consumption: ~80 mW/cm²

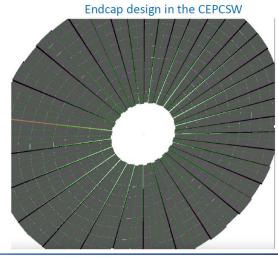


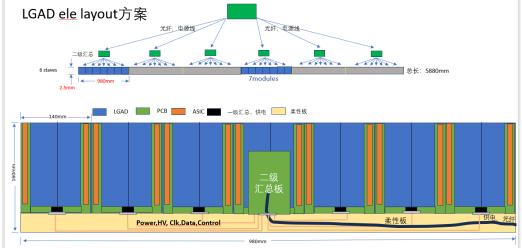
- Power density 80mW/cm², Chip Power 336mW
- Max Ladder Power 7.39W for DC-DC consideration
- Total Power 11.1kW,
- Ladder power is relatively low, consideration to merge for the power channel at the sector level
 - In total 192 power channels, 2 power crates
 - Inner 2 endcaps, 1 power chn for each sector
 - Outer 2 endcaps, 2 power chns for each sector
- Det-HV ind. tuning for 50~200V, 1 chn for each ladder, in total 1696 Det-HV channels, = 8 Det-HV crates

ITKE	Ladder Max chips	Ladder Max Power(W)	Chip per sector	Sector Chip Power(W)	Sector Data Link Power (W)	Sector Power(Chip+Link) ÷85% (W)	Layer Power $(\times 8 \times 2 ayer \times 2 $ endcap) (W)	Power Chn (1 Chn per sector)
1	9	3.02	48	16.1	7	27.2	870.6	1 × 32
2	13	4.36	98	32.9	10	50.5	1616.0	1× 32
3	22	7.39	299	100.5	18	139.4	4497.4	2× 32
4	22	7.39	274	92.1	15	126	4105.9	2× 32

OTK - detector design

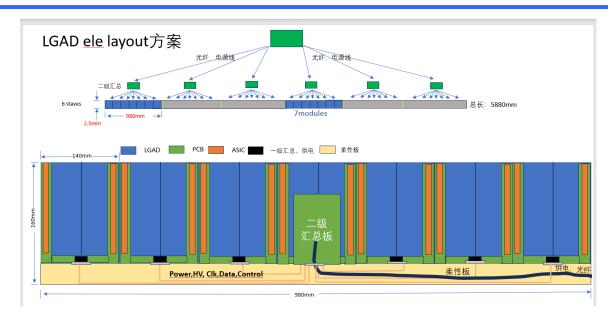



Endcap design


- Hit rate estimation: maximum ~35k Hz/cm²
- · Update the sector module design with new HS design
- 400mm 1800mm: 720 modules
 - √ 5 inner rows with 1 sector module
 - ✓ 5 out rows with 2 sector modules

- √ 24 petals/layer
- √ 10 rows/petal,
- √ 7.5° per petal,
- ✓ Overlap 0.5°/petal
- ○140 mm / row at R direction

- Propose to use a unique ASIC for both barrel and endcaps
- Data width 48bit/event


OTK-Data Link

Hit Rate Conclusion

	Z [mm]	R_in [mm]	R_out [mm]	Average hit rate [10^4 Hz/cm^2]	Max hit rate [10^4 Hz/cm^2]
ITKE1	500.5	75	240	3.9	23
ITKE2	715	101.9	350	16	38
ITKE3	1001	142.6	600	8.9	75
ITKE4	1500	213.7	600	2.4	6.3
OTKE	2903	406	1810	0.3	3.5

	R [mm]	Half_Z [mm]	Average hit rate [10^4 Hz/cm^2]	Max hit rate [10^4 Hz/cm^2]
ITKB1	240	500.5	1	4.6
ITKB2	350	715	2.1	41
ITKB3	600	1001	2.1	27
ОТКВ	1800	2000	0.7	0.9

Barrel:

- Data link proposed to locate at the 2nd level aggregation board, for 7 modules (1 ladder), each module 22 ASICs
- Avg module rate 7kHz*14cm*14cm*48bit=65.9Mbps, Max 9kHz→84.7Mbps
- For the optical data rate of 7 modules (1 ladder), avg/max to be 461.3Mbps/1355.2Mbps, with large room for the data link
- A full 6m Stave with 6 Ladders (6 fibers), barrel in total 90 ladders, =540 fibers = 34 BEE = 4 Data Crates

Endcap:

- 48 Pedals for 2 endcaps, 10 rings each Pedal with 15 sectors (Inner 5 rings 1 sector, Outer 5 rings 2 sectors)
- Total area 19.4m², =4041.7cm² for each Pedal, avg. Pedal data rate= 3kHz*4041.7*48bit=582Mbps, Max 35kHz→6.79Gbps
 - > Consideration 1 fiber for each sector, even concerning the higher data rate for inner sectors, enough room left for the fiber
- 48 Pedals with 720 sectors in total, =720 fibers = 45 BEE = 6 Data Crates (each endcap independent)

OTK-Power

- Chip power 20mW/ch @ 7pF Cd for 30ps
- 128 channels for each ASIC, 2.56W/chip
- Barrel:
 - 90 staves, 6 ladders per stave, 7 modules per ladder, 22 ASIC per module
 - Module power 56.32W (should be noticed for DC-DC design)
 - In total $90 \times 6 \times 7 \times 22 = 83,160$ ASICs, chip power 212.9kW
 - Data Link power 1W for each ladder, 540 fibers in total, 0.54kW
 - For DC-DC efficiency 85%, total power 251.1kW
 - To provide 1 chn for each <u>module (not enough for 1 chn per ladder)</u>

 \geq = 3780 power channel = 79 Power Crates

• Endcap:

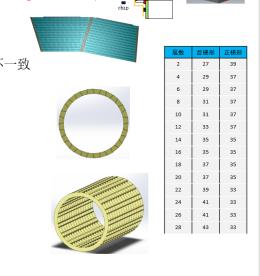
- According to the detail detector design, 240 ASICs for each Pedal
- Max 23 chips for a sector, sector power 58.9W, needs a independent power channel
- 48 Pedals for 2 endcaps = 11520 ASICs, with chip power 29.5kW
- Data Link power 1W for each sector, 0.72kW in total
- For DC-DC efficiency 85%, total power 35.6kW
- 1 power chn for each sector: 720 power chns = 16 power crates (independent endcaps)

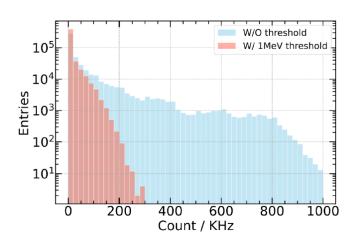
Data rate / petal

Row (140 mm/rwo)	Chip per row	Date rate (HZ)
R0 (400-540)	11	1533882.59
R1: 540-680	14	335365.01
R2: 680-820	17	412334.029
R3:	19	489303.047
R4	23	566272.066
R5	25	643241.085
R6	29	720210.104
R7	31	797179.122
R8	34	874148.141
R9: 1660-1800	37	951117.16

OTK- Det-HV

- Det-HV independently tuning for 150~200V
- 1 chn for each module/sector
- Barrel:
 - $-90\times6\times7=3780$ module, =3780 Det-HV chns =17 Det-HV crates
- Endcap:
 - 720 sectors, 360 Det-HV chns for each endcap by 2 Det-HV crates, in total 4 Det-HV crates


ECAL – Data Link(skip)



ECAL电缆估算

- ECAL桶部,正反梯形排布
 - 模块数量: Phi: 32, Z: 15, 共480个模块
- - 1层到28层, 奇数层每层36根, 偶数层晶体数目不一致
 - 正梯形晶体数量1000, 反梯形晶体数量992
- 电缆估算: 1根/模块
 - AWG15(线径1.45mm,电流:6.5A/7.4A) AWG18(线径1.08mm,电流:3.2A/3.7A)

 - 模块功耗估计: 1000*2*20mW = 40W
- 光纤估算: 1根/模块
 - 模块数据量估算: 待定
- - 高压,低压(正负?),光纤
 - 电缆双向走向,每端240根(平均方案)
 - 电缆双向走向, 一端224根, 一端256根
- 未确定电缆: 刻度方案

- The overall detector design: ~480 Module (Dual-trapezium scheme), ~1000 bar/module
- Current bkgrd estimation: avg. event rate 100kHz / crystal bar w/ threshold; Data width 48bit/event (current ASIC scheme)
- @Dual readout each crystal bar, total data rate:

1000*100kHz*48bit*2ends=9.6Gbps, not possible for 1 fiber for each module, at least 2 fibers for each module

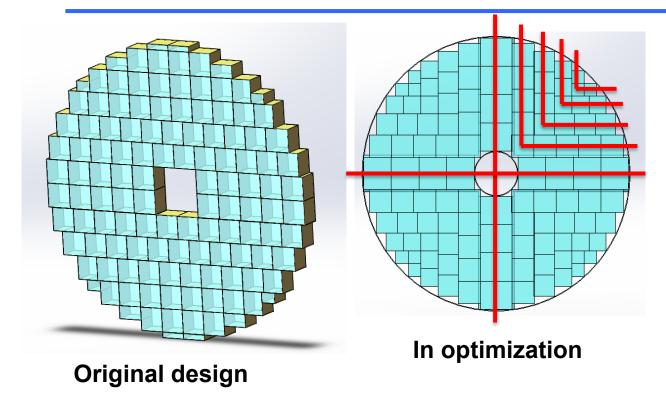
- For max. bkgrd rate@300kHz@Higgs, also needs enough room
- For Z pole, bkgrd will be much higher, also needs extra room

ECAL – crates (skip)

Data Link:

- Fibers: 480*2=960, -> 60 BEE Brds, 6 crates

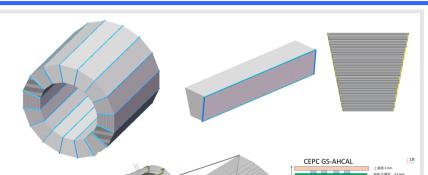
Power:


- ASIC: 15mW/ch, each module 1000*2*15mW=30W
 - **➤** Within the capability of DC-DC power module
- Data Link + Optical Power: 1W each
- Total Power: 31W/0.85*480=17.5kW
 - > Efficiency of the DC-DC: 85%
- Power chn 40W/chn, each module per power cable: 480 power chn -> power crates 5

Det-HV:

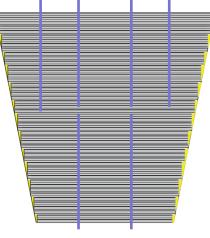
- Sch 1: one HV chn for each module, (limitedly) compensated for each SiPM in ASICs
- − HV channels = module number = 480, -> 2 HV crates
- Alt sch2: HV chn for each SiPM? Too many channels & too large control data volume (X)
- Alt sch3: HV chn for sub-region of a module, to compensate the temperature gradient
 - ➤ Maybe much optimized than sch1, but rely on the detector simulation

ECAL – endcap


- Waiting for the final design of ECAL endcap
- According to the current design, module number 122~96, calculated by 130 modules
- Expect higher bkgrd rate than barrel, keep the scheme of 2 fibers per module
- Fibers:
 - 130module*2endcap*2 fiber=520
 - 34 BEE = 4 Data Crates (from 2 sides)
- Power:
 - Total power: 31W/0.85*260=9.48kW
 - 260 Power channels = 4 power crates

HCAL-Data Link(barrel)

HCAL电缆估算

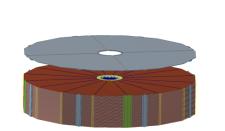

- HCAL桶部排布
 - 总通道数: 338万
 - 分区: 16
 - 层数: 48
 - Cell尺寸: 4*4cm
- 电子学板尺寸
 - Z向: 60cm(15cell)
 - Phi问: 24cm (6cell) , 28cm (7cell) , 32cm (8cell)
 - FEE单板最大功耗: 15*8*4*20mW=9.6W
 - 汇总板最大功耗: 9.6*5=48W
- 桶部电缆数量
 - 电缆类型: 高压, 低压(正负?), 光纤
 - 1/16 分区电缆数量: 19*3+29*4=173
 - 总电缆数量: 一端173*16=2768, 总5536
 - AWG12(线径2.05mm, 电流: 13.1A/14.9A)

10 divisions

- Currently, HCAL is not finalized, especially for the module design, e.g. cell size and channel number
- Data have to be aggregated at the end of barrel for each layer, also the DC-DC
- By rough estimation, the bkgrd will be low, the aggregated data rate for each layer board should not exceed 8Gbps (10Gbps for the fiber)
 - 5kHz/GS * 120* 48bit*5=144Mbps for each aggr board
- Fibers:
 - Aggr. board number every 1/16 sector: 19*3+29*4=173
 - 1 fiber per aggregation board: 173*16*2=5536 fibers
 - =346 BEE = 36 Data Crates

1~19layer 3PCBs width 20~48layer 4PCBs width Aggr Brd for 5 PCBs along z from both ends, with 1 fiber

HCAL-Power (barrel)


- Max PCB size corresponding to GS cells:
 - Z direction: 60cm (15cell)
 - Phi direction: 24cm (6cell), 28cm (7cell), 32cm (8cell)
- Concerning the light collection, every 4cm*4cm GS cell may use 1~4 SiPMs
- Max SiPM channels for the largest PCB: 15*8*=120
- ASIC Power 15mW/ch, Power for the max PCB: 120*15mW=1.8W
- Every Aggregation board provides power for 5 PCBs: 1.8*5=9W
- Power for Barrel:
 - ASIC power: total channel 3.38M * 15mW/chn*(1~4)=50.7kW~202kW
 ➤ Match with the calculation: 15*8 (PCB cells) *173 Brds * 10 div *16 sections = 3.32M cells
 - Data Link power 1W for 5536 fibers = 5536W
 - For DC-DC efficiency 85%, total power [(50.7)+5.5]/0.85=66.1kW
 - 1 power channel for each aggregation board for installation simplicity:
 - > 5536 power channels = 116 power crates

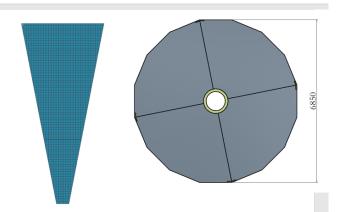
HCAL-Data Link (Endcap)

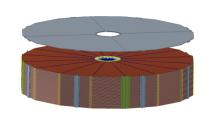
HCAL电缆估算

- HCAL端盖部排布
 - 总通道数: 单端112万, 总共224万
 - 分区: 16
 - 层数: 48
 - Cell尺寸: 4*4cm
- 端盖电缆数量
 - 电缆类型: 高压, 低压(正负?), 光纤
 - 每区功耗: 1459*20mW=30W
 - 1/16 分区电缆数量: 48
 - 总电缆数量: 一端48*16=768, 总1536
 - AWG12(线径2.05mm,电流: 13.1A/14.9A)
- 未确定电缆: 刻度方案

Fibers

- 1 fiber for each sector at each layer
- 48layer*16sector*2endcap*2End-board=3072
- =192BEE = 20 Data Crates


- Current design for HCAL:
 - 48 layers with 16 sectors
- Needs input of the bkgrd rate, assuming 1 fiber is enough (data rate < 8Gbps) for each sector at each layer
- Rough calculation:
 - each endcap 1.12M channels ->1458 GS cells for each sector
 - MDI: 50kHz/GS max
 - 1458GS * 50kHz *48bit=3.5Gbps
- Using 2 end-boards for each layer of sector, then each board 1.75Gbps, OK for 1 fiber

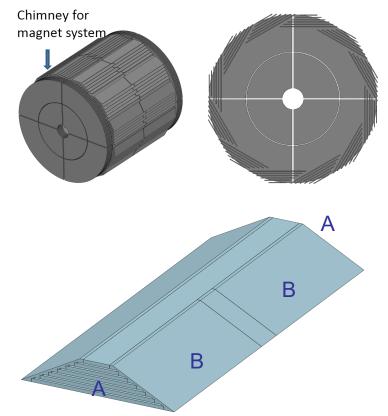

HCAL-Power (Endcap)

HCAL电缆估算

- HCAL端盖部排布
 - 总通道数: 单端112万, 总共224万
 - 分区: 16
 - 层数: 48
 - Cell尺寸: 4*4cm
- 端盖电缆数量
 - 电缆类型: 高压, 低压(正负?), 光纤
 - 每区功耗: 1459*20mW=30W
 - 1/16 分区电缆数量: 48
 - 总电缆数量: 一端48*16=768, 总1536
 - AWG12(线径2.05mm,电流: 13.1A/14.9A)
- •未确定电缆:刻度方案

- each endcap 1.12M channels -> 1458 GS cells for each sector
- If each GS cell with 1~4 SiPM channels, each sector 1458 ASIC channels
 - Common SiPM ASIC as ECAL, 15mW/chn max
- Each sector 21.9W (should be noticed for DC-DC design), each end-board of 11W
- Chip power 2.24M*15mW/ch = 33.6kW
- Data link power: 1536W for 1536 fibers
- Total power: (33.6k+1536)/0.85=41.3kW
- 1 power chn for each sector at each layer: 1536 power chns = 16 power crates

CAL—Det-HV



- SiPM HV 40~60V depends on device type
- Currently not clear for ECAL & HCAL detector HV scheme
 - Scheme 1: HV for each module, compensate SiPM in ASIC
 - > Limited compensation range by ASIC, may see large gradient by temperature
 - Alt sch2: HV chn for each SiPM? Too many channels & too large control data volume (×)
 - Alt sch3: HV chn for sub-region of a module, to compensate the temperature gradient
 - ➤ Maybe much optimized than sch1, but strongly rely on the detector simulation and careful design future work
- Currently only simply considering Det-HV for each module
 - ECAL barrel: 480 modules, 480 Det-HV chns, 2 Det-HV crates
 - ECAL endcap: 260 modules, 260 Det-HV chns, 2 Det-HV crates
 - HCAL barrel: 5536 aggregation boards, 5536 Det-HV chns, 26 Det-HV crates
 - HCAL endcap: 1536 sector layer, 1536 Det-HV chns, 32 Det-HV crates

Muon - barrel

- Number of channels: $(288 \text{ modules}) \frac{43k}{k}$
 - Barrel: 144 modules, 23,976 ch
 - Inner endcaps: 48 modules, 6,912 ch
 - Outer endcaps: 48 modules, 12,288 ch
- Sensitive length: 119 km
 - Length for PS bar and WLS fiber
- Sensitive area: $4.8 \times 10^3 m^2$

- Using side board and end board for data aggregation and power distribution
- Barrel 144 module, each with 2 boards
 - **288 fibers = 18 BEE = 2 data crate**
 - Total data rate: <1kHz*23976*48bit=1.15Gbps (each board 4Mbps)
 - Using fiber for universal architecture & clocking precision
 - Total FEE power: 23976*15mW/chn=360W
 - With data link 1W*288=288W, 85% efficiency
 - Total power: 760W
- Endcap 96 module
 - 96 fiber=6 BEE=1data crate
 - Total data rate: <1kHz*19200*48bit=921.6Mbps (each board 10Mbps)
 - Total FEE power: 19200*15mW/chn=288W
 - With data link 1W*96=96W, 85% efficiency
 - Total power: 452W

Summary table

Detector	Max data rate per fiber (Gbps)	Fibers per module	Fiber sum	BEE sum	Data crate sum	Module Max Power (W)	Total Power (kW)	Power channels	Power crate sum	HV requirem ents	HV channel s sum	HV crates sum	Comment
VTX	8	1~2	88	6	1	25	0.45	66	2	~-10V	66	1	
TPC	0.1	1	496	32	4	42	20	496	6	SHV	496	4	
ITK- Barrel	0.96	1	2204	139	14	11.2	31.59	2204	29	50~200V	2204	10	
ITK- EndCap	2.2	1	1696	106	12	7.4	11.1	192	2	50~200V	1696	8	
OTK- Barrel	1.4	1	540	34	4	56.3	<mark>251.1</mark>	3780	79	150~200V	3780	17	Det needs opt
OTK- EndCap	0.7	1	720	45	6	58.9	35.6	720	16	150~200V	720	4	Det needs opt
ECAL- Barrel	4.8	2	960	60	6	30	17.5	480	5	40~60V	480	2	
ECAL- EndCap	4.8	2	520	34	4	30	9.5	260	4	40~60V	260	2	
HCAL- Barrel	0.14	1	5536	346	36	9	66.1	<mark>5536</mark>	58	40~60V	5536	26	
HCAL- EndCap	1.75	1	3072	192	20	21.9	41.3	3072	32	40~60V	3072	14	
Muon- Barrel	0.004	1	288	18	2	2.64	0.76	288	3	40~60V	288	2	
Muon- EndCap	0.01	1	96	6	1	4.71	0.45	96	1	40~60V	96	1	
Sum			16216	1018	110		<mark>485.45</mark>	17190	237		18694	91	

Requirement from Sub-Detector for FEE Data – updated

	Vertex	Pix(ITKB)	Strip (ITKE)	ОТКВ	OTKE	TPC	ECAL-B	ECAL-E	HCAL-B	HCAL-E	Muon	
Channels per chip	512*1024 Pixelized	512*128	1024	1:	28	128	8~16 @common SiPM A			ASIC .		
Ref. Signal processing	XY addr + BX ID	XY addr + timing	Hit + TOT + timing	ADC+TDC	/TOT+TOA	ADC + BX ID	TOT + TOA/ ADC + TDC					
Data Width /hit	32bit	42bit	32bit	40~	48bit	48bit			48bit			
Max Data rate / chip	2Gbps/chi p@Trigge rless@Lo w LumiZ Innermost	Avg. 3.53Mbps/c hip Max. 68.9Mbps/c hip	Avg. 21.5Mbps/c hip Max. 100.8MHz/ chip	Avg: 2.9Mbps/chip Max: 3.85Mbps/chip	Avg: 38.8Mbps/chip Max: 452.7Mbps/chip	~70Mbps/ module Inmost	Avg. 0.96Gbps/ Max:9.6Gbps/m		Max. 144Mbps/modul e-layer	Max. 350Mbps/modul e-layer	Max: 10 Mbps/board	
Data aggregation	10~20:1, @2Gbps	14:1@O(10 0Mbps)	22:1 @O(100Mb ps)	i. 22:1 @O(5Mbps) ii. 7:1 @O(100Mbps)	i. 22:1 @O(50Mbps) ii. 10:1 @O(500Mbps)	1. 279:1 FEE-0 2. 4:1 Module	i. 4~5:1 side ii. 7*4 / 14*4 ba O(100Mbps)	ck brd @	< 10:1 (40cm*40cm PCB – 4cm*4cm tile – 16chn ASIC)	< 10:1 (40cm*40cm PCB – 4cm*4cm tile – 16chn ASIC)	<=24:1 @ O (400 Mbps)	
Detector Channel/m odule	1882 chips @Stch &Ladder	30,856 chips 2204 modules	23008 chips 1696 modules	83160 chips 3780 modules	11520 chips 720 modules	492 Module	0.96M chn ~60000 chips 480 modules	0.52M chn ~32500 chips 260 modules	3.38M chn 5536 aggregation board	2.24M chn 1536 Aggregation board	43.2k ch 72 Aggregation board	
Avg Data Vol before trigger	474.2Gb ps	101.7Gbp s	298.8Gbp s	249.1Gbps	27.9Gbps	34.4Gbps	460Gbps	250Gbps	811.2Gbps	537.6Gbps	~ 2.07 Gbps	

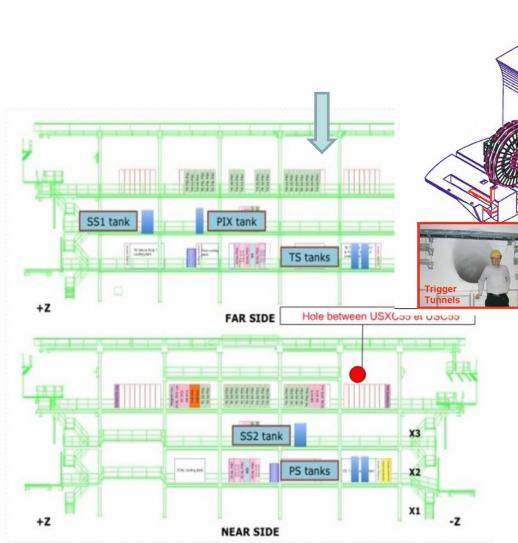
A summary of FEE power – updated

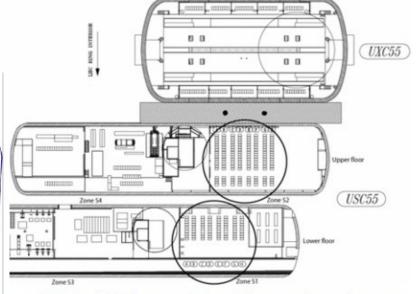
	Vertex	Pix(ITKB)	Strip (ITKE)	ОТКВ	OTKE	TPC	ECAL-B	ECAL-E	HCAL-B	HCAL-E	Muon	
Channels per chip	512*1024 Pixelized	512*128	1024		128	128	8~16 @common SiPM ASIC					
Technology	65nm CIS	55nm HVCMOS	55nm HVCMOS	55nm CMOS		65 CMOS		55nm CMOS (or 180 CMOS?)				
Power Supply Voltage (for DC-DC) (V)	1.2	1.2	1.2		1.2	1.2	1.2 (or 1.8?)					
Power@chip	40mW/cm² 200mW/chip	200mW/cm ² 800mW/chip	200mW/cm ² 336mW/chip	20mW/chn 2.56W/chip		280µW/chn 35mW/chip	15mW/chn 240mW/chip					
Max chips@modu le	29	14	22	22	3	1115	64	120	8	92	167	
Power@mod ule (W)	5.8	11.2	7.39	56.3	58.9	39.7	30	30	9	11	4.7	

Preliminary consideration for the TDAQ

- Very early stage for the trigger scheme, many aspects not clear
 - Physics goal for the trigger scheme
 - Needs further discussion on sub detectors that participate in the trigger decision, and information that can be attracted from detectors
 - Trigger algorithm vs related resources depend on complexity
- Needs to define the requirement for the trigger latency
 - From electronics: can rely on big RAM, then the restore capability can be enough
 - ➤ Ref parameters: 8GB ram on BEE, a 16-chn BEE with max data rate of 160Gbps, can hold a buffer length to be 8G×8/160=0.4s
 - From detector: response speed of many detectors not finalized, some slow detectors will affect the trigger latency
- Current rough estimation: Trigger system needs 160 Trg boards = 20 ATCA crates = 10 Racks
- Note:
 - Z pole bkgrd is too high at current stage (esp. ECAL), not clear for the future optimization.
 - However future upgrade is necessary, and reserved room should be pre-allocated.

CMS board type & number




Table 1.2: CMS Phase-2 detector projected data links, ATCA back-end configuration and event size summary. Data are obtained from the technical design reports wherever possible. Average throughput estimated from event size assuming 750 kHz Level-1-accept rate.

0 1						
Subdetector	Front-end	Sub-event	Back-end	Back-end	Average	Notes
	lpGBT links a	size (MB)	boards	crates	throughput (Tb/s)	
Outer Tracker	13 000	1.15	216	18	6.90	(b)
Track Trigger		0.01		18	0.06	
Inner Tracker	1 260	1.44	24	4	8.64	(°)
MIP Timing Det BTL	1 000	0.02	11	1	0.14	
MIP Timing Det ETL	438	0.04	5	1	0.22	
ECAL Barrel	10 000	1.58	108	12	9.49	
HCAL Barrel	other	0.24	18	2	1.45	
HCAL - HO	legacy	0.03	-	1	0.18	$\binom{d}{}$
HCAL - HF	other	0.06	-	1	0.36	(d)
Endcap CALO	8 000	2.00	108	9	12.00	
Endcap CALO TPG	9 000	0.20	144	12	1.50	
muon DT	3840	0.13	84	8	0.78	
muon CSC	other	0.20	-	2	1.20	(d)
muon GEM - GE1/1	other	0.002	-	1	0.01	(d)
muon GEM - GE2/1	144	0.001	8	1	0.01	
muon GEM - ME0	216	0.12	12	1	0.71	
muon RPC	other	-	-	-	-	(e)
Level1		0.15	120	14	0.90	(f)
Total		7.4	>858	>106	44	

- The total number of data crates of CMS matches with our calculation for CEPC
- Why choose CMS for a comparison? Similar detector scale, similar trigger framework (both are backend trigger)

CMS counting room

gure 4: Point 5 Underground Area; The experimental cavern αC55 with the adjacent, albeit a 7 meter thick concrete wall, derground counting room USC55, consisting of two floors.

- \triangleright USC55 size: 19m \times 17m \times 85m *
- Racks located centralizedly (see table below)

*: https://doi.org/10.1007/978-3-031-12851-6_49

USC55

Underground Counting Room

Experimental

Hall

CMS racks organization

A B C D E F G H									
10 10 10 10 10 10 10 10	+ Z					(Zone S2)			- Z
10 10 10 10 10 10 10 10	A	В	C					G	Н
O									
1									x
Fig.									x
FAMES									x
Access									X
MASSM									x
MASSM	***								x
10 ASSM									X
11									x
12 ASSM				FRL PC		_			
13 ASSM				X	TOTEM T	rig			
H			HPD HV			rig			DSS
DS	13 ASSM	Presh. LV	HPD HV	Presh. Misc	ZDC		EBE Lt Mn	ECAL Cool	DSS
Fire Det	14 ASSM	Rack Pwr	PMT HV	Presh. Misc	DAQ PI		EB Misc	EE Misc	DSS
16 Fire Det. TIC PCS DAQ PC DAQ Switch Netwk DCS PCS Spare PCS UPS PCS 17 Fire Det. TIK PCS DAQ PC DAQ Switch Netwk HCAL PCS Tif pPCS UPS PCS 18 Fire Det. TIK Pixel PCS DAQ PC DAQ Switch Netwk ECAL DCS ES PCS Moon PCS UPS PCS 19 Fire Det. TOTEM PCS DAQ PC DAQ Switch Netwk ECAL DCS ES PCS Moon PCS UPS PCS 19 Fire Det. TOTEM PCS DAQ PC DAQ Switch Netwk ECAL DCS ES PCS Moon PCS UPS PCS 19 Fire Det. TOTEM PCS DAQ PC DAQ Switch Netwk ECAL EED PCS Align PCS UPS PCS 19 Fire Det. TOTEM PCS DAQ PC DAQ Switch Netwk ECAL EED PCS Align PCS UPS PCS 19 Fire Det. TOTEM PCS TOTEM PCS TIK FCC T	15 ASSM	Rack Pwr	DSS	DSS	DSS		DSS	DSS	DSS
Fire Det. TK PCS					< Passageway>				
*18 Fire Det. TK Pixel PCs DAQ PC DAQ Switch Netw ECAL DCS/ES PCs Moon PCs UPS PCs 19 Fire Det. TOTEM PCs DAQ PC DAQ Switch Netw ECAL FED PCs Align PCs UPS PCs ***TOTEM PCs DAQ Switch Netw ECAL FED PCs Align PCs UPS PCs ***TOTEM PCs DAQ DAQ Switch Netw ECAL FED PCs Align PCs UPS PCs ***TOTEM PCs DAQ DET No. 1	16 Fire Det.	TTC PCs	DAQ PC	DAQ Switch	Netwk		DCS PCs	Spare PCs	UPS PCs
19 Fire Det. TOTEM PCS DAQ PC DAQ Switch Netwk ECAL FED PCS Align PCS UPS PCS	*17 Fire Det.	TK PCs	DAQ PC	DAQ Switch	Netwk		HCAL PCs	Trig PCs	UPS PCs
19 Fire Det. TOTEM PCS DAQ PC DAQ Switch Netw ECAL FED PCS Align PCS UPS PCS	*18 Fire Det.	TK/Pixel PCs	DAQ PC	DAQ Switch	Netwk		ECAL DCS/ES PCs	Muon PCs	UPS PCs
Lower	19 Fire Det.	TOTEM PCs		DAQ Switch	Netwk		ECAL FED PCs	Align PCs	UPS PCs
B									
Presh, ULR									
DAQ DI TREND DAQ DI TREND TIC RPC Trig Pixel FEC		В							Н
02 TK. Ctrl DAQ DAQ DI TrkFnd TTC RPC Trig Pixel Ctrl RPC B HV 03 TK. Ctrl TK. FED TIB+TID TK. FED TOB DI TrkFnd %TTC RPC Trig Pixel FED RPC B HV 04 TK. Ctrl TK. Ctrl TK. FED TIB+TID TK. FED TOB CSC TrkFnd Global RPC Trig Pixel FED RPC B HV 05 TK. Ctrl TK. FED TIB+TID TK. FED TOB CSC TrkFnd Global RPC Trig Pixel FED RPC B HV 05 TK. Ctrl TK. FED TIB+TID TK. FED TOB CSC TrkFnd Global RPC Trig Pixel FED RPC B HV 05 TK. Ctrl TK. FED TIB+TID TK. FED TOB CSC TrkFnd %Cal Global %RPC Trig DAQ RPC B HV 06 TK. Ctrl DAQ DAQ DT HV TTS TS DAQ RPC B HV 07 TK. Ctrl DAQ DT HV BPT BRM# CSC FED RPC B HV ****OF** TK. Ctrl TK. FED TEC-									
03 TK. Ctrl TK. FED TIB+TID TK. FED TOB DT TrkFnd %1TC RPC Trig Pixel FED RPC B HV 04 TK. Ctrl TK. Ctrl TK. FED TIB+TID TK. FED TOB CSC TrkFnd Global RPC Trig Pixel FED RPC B HV 05 TK. Ctrl TK. Ctrl DAQ RPC B HV SKRPC Trig DAQ RPC B HV 06 TK. Ctrl DAQ DAQ FRL PC TTS DAQ CSC FED RPC B HV 07 TK. Ctrl DAQ DAQ DT HV TTS X CSC FED RPC B HV *08 TK. Ctrl TK. FED TEC- TK. FED TEC-## DT HV BPTX BRM# CSC FED RPC E + HV *09 TK. Ctrl TK. FED TEC- TK. FED TEC-## DT HV LHC DAQ# DAQ PP RPC E + HV 10 TK. LV DAQ DAQ DT HV BPM DSS ME/I HV RPC E - HV 11 CSC HV DAQ DAQ DAQ DT		 P. 0							
04 TK. Ctrl TK. FED TIB+TID TK. FED TOB CSC TrkFnd Global RPC Trig Pixel FED RPC B HV 05 TK. Ctrl TK. FED TIB+TID TK. FED TOB CSC TrkFnd %Cal Global %RPC Trig DAQ RPC B HV 06 TK. Ctrl DAQ DAQ TTS DAQ CSC FED RPC B HV 07 TK. Ctrl DAQ DAQ DTHV TTS X CSC FED RPC B HV **08 TK. Ctrl TK. FED TEC- TK. FED TEC+# DT HV BPTX BRM# CSC FED RPC E+ HV *******09 TK. Ctrl TK. FED TEC- TK. FED TEC+# DT HV LHC DAQ# DAQ PP RPC E+ HV ************************************			TIP						
05 TK. Ctrl TK. FED TIB+TID TK. FED TOB CSC TrkFnd %Cal Global %RPC Trig DAQ RPC B HV 06 TK. Ctrl DAQ DAQ FRL PC TTS DAQ CSC FED RPC B HV 07 TK. Ctrl DAQ DAQ DTHV TTS X CSC FED RPC B HV *08 TK. Ctrl TK. FED TEC- TK. FED TEC+# DTHV BPTX BRM# CSC FED RPC E + HV *09 TK. Ctrl TK. FED TEC- TK. FED TEC+# DT HV LHC DAQ# DAQ PP RPC E + HV 10 TK LV Mon TK. FED TEC- TK. FED TEC+ DT HV BPM DSS ME/I HV RPC E - HV 11 CSC HV DAQ DAQ DT HV DSS DSS DSS ME/I HV 12 CSC HV TK. Ctrl Work Area DAQ PC Work Area Work Area Work Area									
06 TK. Ctrl DAQ DAQ FRL PC TTS DAQ CSC FED RPC B HV 07 TK. Ctrl DAQ DAQ DT HV TTS X CSC FED RPC B HV *08 TK. Ctrl TK. FED TEC- TK. FED TEC+# DT HV BPT BRM# CSC FED RPC B + HV *09 TK. Ctrl TK. FED TEC- TK. FED TEC+# DT HV LHC DAQ# DAQ PP RPC E + HV 10 TK LV Mon TK. FED TEC- TK. FED TEC+ DT HV BPM DSS ME/I HV RPC E - HV 11 CSC HV DAQ DAQ DT HV DSS DSS DS NS RPC E - HV 12 CSC HV TK. Ctrl Work Area DAQ PC Work Area Work Area Work Area Work Area									
07 TK. Ctrl DAQ DAQ DT HV TTS x CSC FED RPC B HV *08 TK. Ctrl TK. FED TEC- TK. FED TEC+# DT HV BPTX BRM# CSC FED RPC E + HV *09 TK. Ctrl TK. FED TEC- TK. FED TEC+# DT HV LHC DAQ# DAQ PP RPC E + HV 10 TK LV Mon TK. FED TEC- TK. FED TEC+ DT HV BPM DSS MEI/H W RPC E - HV 11 CSC HV DAQ DAQ DT HV DSS DSS DSS DSS RPC E - HV 12 CSC HV TK. Ctrl Work Area DAQ PC Work Area Work Area Work Area			110						
*08 TK. Ctrl TK. FED TEC- TK. FED TEC+# DT HV BPTX BRM# CSC FED RPC E+ HV *09 TK. Ctrl TK. FED TEC- TK. FED TEC+# DT HV LHC DAQ# DAQ PP RPC E+ HV 10 TK LV Mon TK. FED TEC- TK. FED TEC+ DT HV BPM DSS MEI/1 HV RPC E- HV 11 CSC HV DAQ DAQ DT HV DSS DSS DSS DSS RPC E- HV 12 CSC HV TK. Ctrl Work Area DAQ PC Work Area Work Area Work Area Work Area									
*09 TK. Ctrl TK. FED TEC- TK. FED TEC+# DT HV LHC DAQ# DAQ PP RPC E+ HV 10 TK LV Mon TK. FED TEC- TK. FED TEC+ DT HV BPM DSS MEI/1 HV RPC E- HV 11 CSC HV DAQ DAQ DT HV DSS DSS DSS DSS RPC E- HV 12 CSC HV TK. Ctrl Work Area DAQ PC Work Area Work Area Work Area Work Area									
10 TK LV Mon TK. FED TEC- TK. FED TEC+ DT HV BPM DSS MEI/I HV RPC E- HV 11 CSC HV DAQ DAQ DT HV DSS DSS DSS DSS RPC E- HV 12 CSC HV TK. Ctrl Work Area DAQ PC Work Area Work Area Work Area Work Area									
11 CSC HV DAQ DAQ DT HV DSS DSS DSS DSS RPC E- HV 12 CSC HV TK. Ctrl Work Area DAQ PC Work Area Work Area Work Area Work Area									
12 CSC HV TK. Ctrl Work Area			C-						
		DAQ							
15 CSC IIV 1 I. A. CUI WOIK AFEA									
14 BCAM TK. Ctrl Work Area									
15 Rack Pwr TK. Ctrl Work Area - W	13 Kack Pwr	TK. Ctrl		work Area		Work Area	work Area	Work Area	work Area
					r assageway				

- Counts for electronics, trigger, HV racks, about 30 row*7 col=210 racks
- DAQ & slow control racks in 4 row*7 col=28 racks

CMS racks organization

Floorplan of the racks should consider the detector arrangement

Rack Layout in USC55 (version 5.6)

Sensitive racks related to trigger & timing needs careful arrangement

Both floors are shown. Racks are installed out to #11, 15 on S1,2. Row A is closest to the shaft. Racks 0 (S1) and 1 (S2) are closest to the interaction hall (UXC55). Rack rows are spaced 1.5 m front face to front face (B-C,D-E,F-G,H-J)) and 1.0 m rear face to rear face (A-B,C-D,E-F,G-H,J-K). *There is a 30 cm optional gap between racks 8 & 9 (and 17 & 18 on S1) to improve access over an underfloor structural beam. #There is a 30 cm gap between racks S1C08 and S1C09 and also between S1F08 and S1F09 for a vertical structural column. %There are holes between the floors located at E05 and F05. RED RACKS HAVE CRITICAL LENGTH FIBERS TO THE DETECTOR. GREEN RACKS HAVE NON-CRITICAL PATH FIBERS TO THE DETECTOR. DAQ RACKS ARE BLUE. GREY RACKS ARE RESERVATIONS. Definition of abbreviations. Information about racks. Rack Wizard (rack entry tool).

+ Z		Lower Floor (Zone S1)								
	\mathbf{A}	В	C	D	\mathbf{E}	F	\mathbf{G}	H		
00			Presh. ULR	Presh. ULR	TK. FEC	TK. FEC	DT/RO/SC			
01			DAQ	DT TrkFnd	Opt.Cpl.	RPC Trig	Pixel FEC			
02	TK. Ctrl	DAQ	DAQ	DT TrkFnd	TTC	RPC Trig	Pixel Ctrl	RPC B HV		
03	TK. Ctrl	TK. FED TIB+TID	TK. FED TOB	DT TrkFnd	%TTC	RPC Trig	Pixel FED	RPC B HV		
04	TK. Ctrl	TK. FED TIB+TID	TK. FED TOB	CSC TrkFnd	Global	RPC Trig	Pixel FED	RPC B HV		
05	TK. Ctrl	TK. FED TIB+TID	TK. FED TOB	CSC TrkFnd	%Cal Global	%RPC Trig	DAQ	RPC B HV		
06	TK. Ctrl	DAQ	DAQ	FRL PC	TTS	DAQ	CSC FED	RPC B HV		
07	TK. Ctrl	DAQ	DAQ	DT HV	TTS	X	CSC FED	RPC B HV		
*08	TK. Ctrl	TK. FED TEC-	TK. FED TEC+#	DT HV	BPTX	BRM#	CSC FED	RPC E+ HV		
*09	TK. Ctrl	TK. FED TEC-	TK. FED TEC+#	DT HV	LHC	DAQ#	DAQ PP	RPC E+ HV		
10	TK LV Mon	TK. FED TEC-	TK. FED TEC+	DT HV	BPM	DSS	ME1/1 HV	RPC E- HV		
11	CSC HV	DAQ	DAQ	DT HV	DSS	DSS	DSS	RPC E- HV		
12	CSC HV	TK. Ctrl	Work Area	DAQ PC	Work Area	Work Area	Work Area	Work Area		
13	CSC HV	TK. Ctrl	Work Area	Work Area	Work Area	Work Area	Work Area	Work Area		
14	BCAM	TK. Ctrl	Work Area	Work Area	Work Area	Work Area	Work Area	Work Area		
15	Rack Pwr	TK. Ctrl	Work Area	Work Area	Work Area	Work Area	Work Area	Work Area		
	< Passageway>									

Summary for the Racks

- No safety factor for all the former calculation
- In total
 - 110 Data Crates, 3 crates per rack, = 37 Data Racks
 - 237 (LV) Power Crates, 10 crates per rack, = 24 Power Racks
 - 91 Det-HV Crates, 3/4 crates per rack, = 23 Det-HV Racks
 - 20 Trigger crates = 10 Trigger Racks
- Every LV rack needs an AC-DC power-HV crate, about 134 power-HV crates
 - 5 crates per rack, = 2 Power-HV Racks
- In general, rack backup, room for future upgrade, uncertainty due to the unfinalized detector scheme, esp. the extra space requirements that the trigger algorithm usually asks the rack layout to be corresponded to the detector arrangement, will decrease the density of the rack and crate usage.

Requirement of the Elec-TDAQ room

- Minimum crates from current MDI
 - 110 data crates, 237 power crates, 91 Det-HV crates, 20 Trigger crates
- Minimum racks from current MDI
 - 37 data racks, 24 power racks, 23 Det-HV racks, 10 trigger racks (94 in total)
 - More 2 racks for AC-DC power for all the above racks
 - 96 racks in total
- Racks Size: $0.5m \times 0.5m$
- Side clearance 1.5m for heat, face clearance 2m for cabling & heat
- Total room: $500 \text{m}^2 \times 2 \text{floor} = 25 \text{m} \times 20 \text{m} \times 2 \text{floor}$
 - $-10 \times 10 \times 2=200$ racks capacity
 - Necessary redundancy for future upgrade

• backup