

LHCb Overview

On behalf of the LHCb Collaboration

第五届LHCb前沿物理研讨会,武汉

第5届LHCb前沿物理研讨会

General purpose detector specialized in beauty and charm hadrons

Int.J.Mod.Phys.A 30 (2015) 07

□ Single-arm forward designed to study the b and c hadrons in forward region 2<η<5</p>

Excellent tracking, momentum resolution and particle identification.

 $\delta P/P \leq 1\%$ for P < 100 GeV/c97% efficiency for e/μ with 3% pion mis-ID

Indirectly search for New Physics

Luminosity and publication

- **D** Running Condition
 - •Run 1: 2011+2012, 7, 8 TeV
 - •Run 2: 2015-2018, 13 TeV
 - •Run 3: 2022-2026, 13.6 TeV
 - Run3 data taking ongoing!
- Run 1(2011+2012): 3 fb⁻¹ + Run 2 (2015-2018): 6 fb⁻¹
 2024: 9.6 fb⁻¹
- □ Publication in 2025,
 - 13 paper submitted to arxiv- 22 papers published on journal

This talk cannot cover all the recent results; you can refer to the publication page for a full list of <u>LHCb publications</u>

See LHCb <u>ALCM statistics page</u>

CPV measurements at LHCb

- CP violation arises from the presence of a complex phase in the CKM quark-mixing matrix
- Measuring the properties of the UT allows for precision tests of the SM assumptions
- Additional sources needed, within or beyond the SM, to explain the observed matter-antimatter asymmetry
- LHCb plays an important role in CPV&CKM measurements:

 $\begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$

第5届LHCb前沿物理研讨会

CPV in $B^+ \rightarrow J/\psi \pi^+$ **Decays**

 \blacktriangleright $b \rightarrow c\bar{c}d$ decay penguin diagrams contribution not negligible wrt to tree-level, expect O(1%) direct CP violation. [JHEP 03 (2015) 145 JPG 48, 065002 (2021)]

Can improve understanding of penguin contribution to transitions (β from $B^0 \rightarrow J/\psi K^0$)

Intribution to transitions (β from $B^0 \rightarrow J/\psi K^0$) Measured relative to control sample of $B^+ \rightarrow J/\psi K^+$ decays: cancellation of many systematics → Measured relative to control sample of B^+ →

 $\Delta A_{CP} = (1.42 \pm 0.43 \pm 0.08) \%$

First evidence of direct violation in beauty to charmonia decays (3.2σ)

TD-CPV in $B \rightarrow DD$ decays

- For tree-level dominated decays, $S_f = \sin(2\beta + \Delta\phi_d + \Delta\phi_d NP) \approx \sin 2\beta$
- $B \rightarrow DD$ decays can probe the loop contribution to the measured values of $\beta_{(s)}$
- Results for $B^0 \to D^+D^-$:

 $S_{D^+D^-} = -0.55 \pm 0.10 (stat) \pm 0.01 (syst),$ $C_{D^+D^-} = 0.13 \pm 0.10 (stat) \pm 0.01 (syst),$ *CP* conservation excluded by > 6 σ

• Results for $B_s^0 \to D_s^+ D_s^-$:

$$\phi_s = -0.086 \pm 0.106 (stat) \pm 0.028 (syst)rad,$$

 $\lambda_{D_s^+ D_s^-}| = 1.145 \pm 0.126 (stat) \pm 0.031 (syst),$

compatible with *CP* conservation

TD-CPV in $B_s \rightarrow D_s K$ decays

► CPV in $B_s \rightarrow D_s K$ is highly sensitivity to $\gamma - 2\beta_s$ thanks to large ratio of interfering amplitudes

$$r_{D_sK} = |A(\bar{B}^0_s \to D^-_s K^+)/A(B^0_s \to D^-_s K^+) \approx 0.4$$

The *CP*-violating parameters are measured with a tagged decay-time

fit

$C_f = 0.791 \pm 0.061 \pm 0.022$,
$A_f^{\Delta\Gamma}=~-0.051~\pm~0.134~\pm~0.058$,
$A_{ar{f}}^{\Delta\Gamma} = -0.303 \pm 0.125 \pm 0.055$,
$S_f = -0.571 \pm 0.084 \pm 0.023$,
$S_{ar{f}} = -0.503 \pm 0.084 \pm 0.025$,

$$\gamma = (74 \pm 12)^{\circ},$$

 $\delta = (346.9^{+6.8}_{-6.6})^{\circ},$
 $r_{D_{S}K} = 0.33 \pm 0.04,$

New combination of γ

LHCb has previously measured CKM angle γ using $B^{\pm,0} \rightarrow Dh^{\pm,0}$ decays

Final combination on angle γ

$$\gamma = (64.6 \pm 2.8)^{\circ}$$

Combined precision on γ now below 3°

CPV in Baryon Decays

\succ *CP* asymmetries with Λ_b^0 → *ph*⁻decays

Baryon CPV could appear in decays mediated by similar quark transition as known CP-violating meson decays (e.g. $B^0 \rightarrow K^+\pi^-$)

Combined Run 1+2 results

$$A_{CP}(\Lambda_b^0 \to pK^-) = (-1.1 \pm 0.7 \pm 0.4) \%$$
$$A_{CP}(\Lambda_b^0 \to p\pi^-) = (0.2 \pm 0.8 \pm 0.4) \%$$
No CPV

- 3× improvement over current PDG average
- Statistic uncertainty dominated

Measurement of Λ_b^0 **decay parameters**

• Decay parameters have been proposed by Lee and Yang (1957) to study hyperon decays ($\Lambda \rightarrow p\pi$)

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_1} \propto 1 + \alpha_{A_b^0} \alpha_{A_c^+} \cos\theta_1, \qquad \alpha \equiv \frac{2\Re(s^*p)}{|s|^2 + |p|^2}, \quad \beta \equiv \frac{2\Im(s^*p)}{|s|^2 + |p|^2}, \quad \gamma \equiv \frac{|s|^2 - |p|^2}{|s|^2 + |p|^2}, \quad \text{CP observable:} \qquad A_{CP}^{\alpha} \equiv \frac{\alpha(\Lambda) + \alpha(\Lambda)}{\alpha(\Lambda) - \alpha(\Lambda)}$$

s and *p* denote the parity-violating S-wave and parity-conserving P-wave amplitude

• Results of angular fit

Decay	lpha	$ar{lpha}$	$\langle lpha angle$	A_lpha
$\Lambda^0_b o \Lambda^+_c \pi^-$	$-1.010 \pm 0.011 \pm 0.003$	$0.996 \pm 0.011 \pm 0.003$	$-1.003 \pm 0.008 \pm 0.005$	$0.007 \pm 0.008 \pm 0.005$
$\Lambda^0_b o \Lambda^+_c K^-$	$-0.933 \pm 0.042 \pm 0.014$	$0.995 \pm 0.036 \pm 0.013$	$-0.964 \pm 0.028 \pm 0.015$	$-0.032\pm0.029\pm0.006$

- First measurement of Λ_b^0 decay parameters
- All A_{α} consistent with zero

No CPV observed

Evidence for CPV in $\Lambda_b^0 \rightarrow \Lambda h^+ h^-$

≻ CP violation in $\Lambda_b^0 / \Xi_b^0 \to \Lambda h^+ h^- (h = \pi, K)$ decays

- similar dynamics $B \rightarrow hh'h''$
- possible CPV enhancement

PRL134(2024)101902

- → CP asymmetries measured as difference wrt to control mode $\Lambda_b^0 \rightarrow \Lambda_c^+ (\rightarrow \Lambda \pi^+) \pi^-$ (null CPV expected)
- ➢ Evidence of direct violation in $Λ_b^0 / Ξ_b^0 → ΛK^+K^-$ decays (3.1σ)
- ➢ Possible interpretation: enhancement from N^{*+} → ΛK⁺ (3.2σ) resonance

2025/4/26

Observation of CPV in $\Lambda_b^0 \rightarrow pK^-\pi^+\pi^-$ decays

CPV arises from interference between tree $W^$ and loop amplitudes Λ^0_h Resonant structure may enhance CPV across Λ_{h}^{0} the phase space $A_{CP} \equiv \frac{N(\Lambda_b^0 \to K^- \pi^+ \pi^-) - N(\Lambda_b^0 \to \overline{p}K^+ \pi^- \pi^+)}{N(\Lambda_b^0 \to K^- \pi^+ \pi^-) + N(\overline{\Lambda}_b^0 \to \overline{p}K^+ \pi^- \pi^+)}$ $A_{CP} = (2.45 \pm 0.46 \pm 0.10) \%$ Mass region (GeV/c^2) Decay topology \mathcal{A}_{CP} • First observation of direct violation in baryon decays $m_{pK^{-}} < 2.2$ $\Lambda_b^0 \to R(pK^-)R(\pi^+\pi^-)$ $(5.3 \pm 1.3 \pm 0.2)\%$ 4σ $(5.2 \sigma \text{ from } 0)$ $m_{\pi^+\pi^-} < 1.1$ $m_{p\pi^{-}} < 1.7$ Amplitude analysis needed! $\Lambda_h^0 \to R(p\pi^-)R(K^-\pi^+)$ $(2.7 \pm 0.8 \pm 0.1)\%$ $0.8 < m_{\pi^+ K^-} < 1.0$ or $1.1 < m_{\pi^+ K^-} < 1.6$ <u>The details of baryon CPV will be presented by Shanzhen 6</u> $\Lambda_h^0 \to R(p\pi^+\pi^-)K^ (5.4 \pm 0.9 \pm 0.1)\%$ $m_{p\pi^+\pi^-} < 2.7$ $\Lambda_h^0 \to R(K^-\pi^+\pi^-)p$ $m_{K^-\pi^+\pi^-} < 2.0$ $(2.0 \pm 1.2 \pm 0.3)\%$ this afternoon

arxiv:2503.16954

Study of b \rightarrow sll transitions at LHCb

Processes mediated by b \rightarrow sll transitions are sensitive to New Physics (NP) (Br ~ 10⁻⁷ - 10⁻⁶)

- Suppressed in the SM:
- High energy mediators can modify the amplitudes & CPV observables

LHCb has performed many interesting measurements in b \rightarrow sll decays including BF, Angular observables and LFV ratio.

Angular analysis of $\Lambda_b^0 \to p K \mu^+ \mu^-$

Study BF and angular observables coefficients measured in q^2 and m_{pK} bins

► BF measured with respect to $\Lambda_b^0 \rightarrow J/\psi pK$

• Decay rate described by 46 angular moments K_i

$$\frac{\mathrm{d}^{5}\Gamma}{\mathrm{d}\Phi} = \frac{3}{8\pi} \sum_{i=1}^{46} K_{i} \left(q^{2}, m_{pK}^{2}\right) f_{i}(\mathbf{\Omega})$$
$$\Phi = \left(q^{2}, m_{pK}^{2}, \cos\theta_{\mu}, \cos\theta_{p}, \phi\right)$$
$$\mathbf{\Omega} = \left(\cos\theta_{\mu}, \cos\theta_{p}, \phi\right)$$

- Enhancement at very low dimuon invariant mass which disagrees with quark-model predictions
- Low signal significance at high di-hadron mass (no angular observables determined)
- Angular moments statistically limited

IHEP 12 (2024) 147

Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$

Decay rates fully described in terms of angular coefficients, related to wilson coefficients
Angular observables extracted from 4D fit:
General good agreement with SM predictions
Most precise measurements up to date

– No strong sign of LFU violation

arxiv:2502.10291

Angular analysis of $B_s^0 \rightarrow \phi e^+ e^- \text{ decay}$

- Angular analysis of similar decay mode in the low, central and high q² regions, to extract angular coefficients
- ▶ Results compatible with SM predictions and previous measurements on $B_s^0 \rightarrow \phi \mu^+ \mu^-$ [JHEP 11 (2021) 43]

Observable	$0.1 < q^2 < 1.1 {\rm GeV}^2\!/c^4$	$1.1 < q^2 < 6.0 {\rm GeV}^2\!/c^4$	$15.0 < q^2 < 19.0 \mathrm{GeV}^2/c^4$
$\langle F_{\rm L} \rangle$	$0.25^{+0.12}_{-0.12}\pm 0.06$	$0.67^{+0.12}_{-0.13}\pm0.06$	$0.43^{+0.11}_{-0.10} \pm 0.05$
$\langle A_6' \rangle$	$0.60{}^{+0.23}_{-0.28}\pm 0.05$	$0.24^{+0.40}_{-0.42}\pm0.09$	$-0.57^{+0.24}_{-0.25}\pm0.05$
$\langle S_3 \rangle$	$0.23^{+0.24}_{-0.24}\pm0.07$	$0.07^{+0.21}_{-0.21}\pm0.07$	$-0.01{}^{+0.29}_{-0.28}\pm0.08$
$\langle A_9 \rangle$	$0.28{}^{+0.23}_{-0.24}\pm 0.04$	$-0.14^{+0.23}_{-0.24}\pm0.04$	$0.06{}^{+0.25}_{-0.25}\pm 0.05$

Statistic limited, require more data for further improvement

arxiv:2504.06346

Photon polarisation constraints from $B_s^0 \rightarrow \phi e^+ e^-$

▶ Perform angular analysis at very low q^2 region , angular observables are sensitive to C_7 and C'_7

*First observation of $B_s^0 \rightarrow \phi e^+ e^-$ decay

Consistent with the SM predictions

LFU ratio with $B_s^0 \rightarrow \phi e^+ e^- \text{ decays } (R_\phi)$

- ✓ First LFU test with B_s^0 decay
- ✓ Measurement performed in three q^2 regions
 - low q²: 0.1 < q² < 1.1 Gev²/c⁴
 central q²: 1.1 < q² < 6.0 Gev²/c⁴
 - high $-q^2$: $15 < q^2 < 19 \text{ Gev}^2/c^4$
- ✓ Cross checks using J/ψ and $\psi(2S)$ region:

 $R_{J/\psi} = 0.997 \pm 0.013, R_{\psi(2S)} = 1.010 \pm 0.026$

✓ Results in agreement with SM predictions

	$q^2 \; [{ m GeV}^2 \!/ c^4]$	R_{ϕ}^{-1}
	$0.1 < q^2 < 1.1$	$1.57^{+0.28}_{-0.25}\pm0.05$
	$1.1 < q^2 < 6.0$	$0.91 {}^{+0.20}_{-0.19} \pm 0.05$
First	$15.0 < q^2 < 19.0$	$0.85^{+0.24}_{-0.23}\pm 0.10$
time		

LFU ratio with $B^+ \rightarrow K^+ \pi^+ \pi^- l^+ l^- (R(K\pi\pi))$

- ✓ Measurement performed in central- q^2 region and inclusive $K\pi\pi$ system
- ✓ First observation of $B^+ \to K^+ \pi^- e^+ e^-$ decay
- ✓ Cross checks using J/ψ and $\psi(2S)$ region:

 $R_{J/\psi} = 1.033 \pm 0.017$, $R_{\psi(2S)} = 1.033 \pm 0.017$

✓ Compatible with the SM

 $R_{K\pi\pi} = 1.31^{+0.18}_{-0.17}$ (stat) $^{+0.12}_{-0.09}$ (syst)

Potential to perform the measurement in more q^2 region using larger stat.

LFU ratio with $B^+ \rightarrow K^+ l^+ l^-$ in high $q^2(R_K)$

- > Measurement performed in high- q^2 region
- ➤ Most precise LFU test above the psi(2S) mass
- ► Cross checks using J/ψ and $\psi(2S)$ region:

 $R_{J/\psi} = 0.997 \pm 0.003 \pm 0.055,$ $R_{\psi(2S)} = 1.002 \pm 0.009 \pm 0.004$

 $\succ \text{ Result of } R_K$

 $R_K(q^2 > 14.3 \text{ GeV}^2/c^4) = 1.08^{+0.11}_{-0.09}{}^{+0.04}_{-0.09}$

Compatible with the SM

LHCb-PAPER-2024-056, in preparation

第5届LHCb前沿物理研讨会

Search for LFV decays

Any observation of a charged LFV decay would provide clear evidence for physics beyond the SM

\square Search for rare decay $B_s^0 \rightarrow \phi \mu \tau$

➤ The first limit on this LFV decay $\mathcal{B}(B_s^0 \to \phi \mu^+ \tau^-) < 1.0 \times 10^{-5} \text{at } 90\% \text{CL},$ $\mathcal{B}(B_s^0 \to \phi \mu^+ \tau^-) < 1.1 \times 10^{-5} \text{at } 95\% \text{CL}.$

- **\square** Search for rare decay $B^0 \to K^{*0} \tau^{\pm} e^{\mp}$
 - Mass re-fitted including missing neutrino momentum and kinematic constraints

Model	Upper limit $[10^{-6}]$		
	$B^0 \rightarrow K^{*0} \tau^- e^+$	$B^0 \rightarrow K^{*0} \tau^+ e^-$	
Phase-space	5.9(7.1)	4.9(5.9)	
Left-handed	6.3(7.7)	5.4(6.4)	
Scalar	6.6(8.0)	5.7(6.8)	

the most stringent upper limits placed on $b \rightarrow s\tau l$ transitions

Phys. Rev. D110 (2024) 7

https://koppenburg.ch/particles.html

Doubly-charmed-baryon decay

- ► Doubly charmed baryon Ξ_{CC}^{++} observed in the $\Lambda_c^+ K^- \pi^+ \pi^+$ mass spectrum by LHCb in 2017 [Phys.Rev.Lett.119,112001(2017)]
- > Only three decay modes observed so far, additional measurements essential to better understand the decay dynamics of doubly charmed baryons

 $\begin{array}{l} \succ \quad \Xi_{CC}^{++} \to \Xi_{C}^{0} \pi^{+} \pi^{+} \text{ mediated by the same } b \to sud \text{ weak transition of } \Xi_{cc}^{++} \to \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+} \text{ and} \\ \Xi_{CC}^{++} \to \Xi_{C}^{(\prime)+} \pi^{+} \end{array}$

Doubly-charmed baryon decay

- → The significance of the $\mathcal{Z}_{CC}^{++} \rightarrow \mathcal{Z}_{C}^{0} \pi^{+} \pi^{+}$ signal is estimated to be above 10 σ Most of the systematics cancel in the ratio of branching fractions
- ▶ Use $\Lambda_c^+ K^- \pi^+ \pi^+$ decay as the normalization channel

$$\mathcal{R} = \frac{B(\Xi_{cc}^{++} \to \Xi_c^0 \pi^+ \pi^+) \times B(\Xi_c^0 \top K^- K^- \pi^+)}{B(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+) \times B(\Lambda_c^+ \top K^- \pi^+)} = 0.105 \pm 0.014_{\text{stat}} \pm 0.007_{\text{syst}}$$

$$\frac{B(\Xi_{cc}^{++} \to \Xi_{c}^{0}\pi^{+}\pi^{+})}{B(\Xi_{cc}^{++} \to \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})} = 1.37 \pm 0.18_{\text{stat}} \pm 0.09_{\text{syst}} \pm 0.35_{\text{ext}}$$

Spectroscopy of hidden-beauty states

- ✓ Experimental knowledge of hidden beauty states is still limited
- ✓ Measuring γ mass using decay modes

$$\begin{split} & \Upsilon(3S) \rightarrow (\Upsilon(2S) \rightarrow \mu^+ \mu^-) \pi^+ \pi^- \\ & \Upsilon(2S) \rightarrow (\Upsilon(1S) \rightarrow \mu^+ \mu^-) \pi^+ \pi^- \end{split}$$

✓ Result: Consistent and comparable with world average

$$\begin{split} m_{\Upsilon(1S)} &= 9460.37 \pm 0.01_{\rm stat} \pm 2.85_{\rm syst} \; {\rm Me} \, {\rm V}/c^2 \\ m_{\Upsilon(2S)} &= 10023.28 \pm 0.03_{\rm stat} \pm 0.12_{\rm syst} \pm 0.09_{\rm ext} \; {\rm Me} \, {\rm V}/c^2 \\ m_{\Upsilon(3S)} &= 10355.28 \pm 0.03_{\rm stat} \pm 0.04_{\rm syst} \pm 0.48_{\rm ext} \; {\rm Me} \, {\rm V}/c^2 \end{split}$$

✓ First observation of the muonic Dalitz decays of the $\chi_{b1}(1P)$, $\chi_{b2}(1P)$, $\chi_{b1}(2P)$, and $\chi_{b2}(2P)$ mesons decay to the $\Upsilon(1S)$ state and measurement of the masses

Significances above 5σ for all the states

31

Open-charm tetraquark in $B^- \rightarrow D^- D^0 K_S^0$ decay

- ▶ Perform Amplitude analysis of the $B^- \rightarrow D^- D^0 K_S^0$ decay
- > Spin-0 open-charm tetraquark $T_{cs0}^{*0}(2870)$ observed in the D^0K^0 final state for the first time
- ▶ No significant T_{cs0}^{*0} states with $J^P = 1^-$ or charmonium-like tetraquarks observed

$$m\left(T_{cs0}^{*0}(2870)\right) = 2883 \pm 11_{\text{stat}} \pm 8_{\text{syst}} \text{ MeV}/c^{2}$$
$$\Gamma\left(T_{cs0}^{*0}(2870)\right) = 87_{-47_{\text{stat}}}^{+22_{\text{stat}}} \pm 17_{\text{syst}} \text{ MeV}$$
$$\mathsf{FF}\left(T_{cs0}^{*0}(2870) \to D^{0}K_{S}^{0}\right) = \left(2.6 \pm 1.2_{\text{stat}} \pm 0.4_{\text{syst}}\right)\%$$

ElectroWeak & Heavy Ion

Measurement of weak mixing angle

> LHCb covers the forward region, with access to low and high Bjorken-x regions of the phase-space

- Complementary coverage with other experiments has big implications on modelling – especially with PDFs
- ► Extracted using Fwd-Bkd asymmetry of $Z \rightarrow \mu^+ \mu^-$ decays at LHCb

第5届LHCb前沿物理研讨会

Measurement of Z boson mass

Simple fit to the dimuon mass spectrum following all calibrations

Data correction with pseudo-mass method

LHCb-PAPER-2025-008, in preparation

Source	Size [MeV]
Momentum calibration	4.1
Signal QED corrections	0.8
Parton distribution functions	0.7
Detection Efficiency	0.1
Statistical uncertainty	8.5
Total	9.5

First dedicated measurement of m_Z at the LHC

- ✓ Encouraging prospects for *m_Z* at the LHC
 − Eagerly anticipate dedicated *m_Z* results from
 ATLAS and CMS
 - An LHC average may challenge LEP soon!

Υ production vs multiplicity in pp

- ✓ Measured Y(2S) and Y(3S) production as a function of multiplicity (primary vertex charged tracks)
- Probe for Cold Nuclear Matter effects in the simplest hadronic collision system
 - Baseline for final-state effects study in pN and NN collisions
- ✓ Dependencies compared with Comover model predictions [<u>PLB 731</u> (2014) 57]
- Overall trend reproduced, but for low multiplicity
- Values not fully compatible, especially for $\Upsilon(3S)$

第5届LHCb前沿物理研讨会

χ_{c1} (3872) and $\psi(2S)$ production in pPb

- ➢ First measurement of nuclear modification factor of an exotic hadron in $J/\psi\pi^+\pi^-$ state −Probe for exotic vs conventional hadron
- ► Increase of χ_{c1} (3872) / ψ (2S) cross-section ratio with interacting nucleons

—Suggest different χ_{c1} (3872) dynamics in nuclear medium compared to $\psi(2S)$

Enhanced exotic production is suggested

第5届LHCb前沿物理研讨会

Λ polarization in fixed-target p-Ne

- \succ Excellent Λ dataset purity Measured Λ and Λ polarisation
- Transverse to production plane for parity conservation
- Analysis of $\Lambda \rightarrow p\pi$ decay distribution \succ $P(\cos\theta) = \frac{1}{2}(1 + \alpha P \cos\theta)$
 - θ proton polar angle in Λ rest frame - α fixed from PDG
- Averaged result: \geq

 P_A [%] = 2.9 ± 1.9(stat) ± 1.2(syst) $P_{\overline{A}}$ [%] = 0.3 ± 2.3(stat) ± 1.4(syst)

Tendency of increasing negative polarisation with x_F compatible with current measurements

1140

Prospects of LHCb physics

- Run 3 data-taking with Upgrade I LHCb detector ongoing
 - —higher peak luminosity in pp wrt Run 2
 - —Expect to accumulate 23 fb⁻¹ data in Run3
- Phase II Upgrade for Run 5 proposed

-Huge increase in sample size expected - stay tuned

What could be expected after upgrades?

▶ More data than the expectation luminosity of Run 1 & 2 in 2024!

The gain maybe $\sim 2 \times$ due to removal of hardware trigger

 10^{-13}

 10^{-1}

LHCb Simulation

 $m_{s} \stackrel{10}{(GeV/c^{2})}$

invisible using SCIFI-only tracking

第5届LHCb前沿物理研讨会

Conclusion

- First observation of CPV in baryon decays
- > World-leading precision measurements of the CKM matrix
- Rich observations in hadron spectroscopy
- Expanding strength in heavy-ion and
- electroweak measurements
- Comprehensive studies of rare decays and LFU tests
- Promising future with Run 3 and Phase-II Upgrade

CPV in $B^+ \to J/\psi \pi^+$ **Decays**

> $b \rightarrow c\bar{c}d$ decay penguin diagrams contribution not negligible wrt to tree-level, expect O(1%) direct CP violation. [JHEP 03 (2015) 145 JPG 48, 065002 (2021)]

> Can improve understanding of penguin contribution to transitions (β from $B^0 \rightarrow J/\psi K^0$)

Experimental measure yields asymmetry

→ Measured relative to control sample of B^+ → $J/\psi K^+$ decays: cancellation of many systematics

 $\Delta A_{CP} = (1.42 \pm 0.43 \pm 0.08)\,\%$

First evidence of direct violation in beauty to charmonia decays(3.2σ)

2025/4/26

Measurement of Λ_b^0 decay parameters

• Decay parameters have been proposed by Lee and Yang (1957) to study hyperon decays ($\Lambda \rightarrow p\pi$)

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_1} \propto 1 + \alpha_{A_b^0} \alpha_{A_c^+} \cos\theta_1, \qquad \alpha \equiv \frac{2\Re(s^*p)}{|s|^2 + |p|^2}, \quad \beta \equiv \frac{2\Im(s^*p)}{|s|^2 + |p|^2}, \quad \gamma \equiv \frac{|s|^2 - |p|^2}{|s|^2 + |p|^2},$$

s and *p* denote the parity-violating S-wave and parity-conserving P-wave amplitude

Contain S- or P-waves and thus one can study strong and weak phases difference between them and probe CPV inside

Measurement of Λ_b^0 **decay parameters**

CP violating observables:

$$A^{\alpha}_{CP} \equiv \frac{\alpha(\Lambda) + \alpha(\overline{\Lambda})}{\alpha(\Lambda) - \alpha(\overline{\Lambda})}$$

Decay	α	$\bar{\alpha}$	$\langle \alpha \rangle$	A_{lpha}
$\Lambda_b^0 \to \Lambda_c^+ \pi^-$	$-1.010 \pm 0.011 \pm 0.003$	$0.996 \pm 0.011 \pm 0.003$	$-1.003 \pm 0.008 \pm 0.005$	$0.007 \pm 0.008 \pm 0.005$
$\Lambda^0_b \to \Lambda^+_c K^-$	$-0.933 \pm 0.042 \pm 0.014$	$0.995 \pm 0.036 \pm 0.013$	$-0.964 \pm 0.028 \pm 0.015$	$-0.032\pm0.029\pm0.006$
$\Lambda_c^+ \to \Lambda \pi^+$	$-0.782 \pm 0.009 \pm 0.004$	$0.787 \pm 0.009 \pm 0.003$	$-0.785 \pm 0.006 \pm 0.003$	$-0.003 \pm 0.008 \pm 0.002$
$\Lambda_c^+ \to \Lambda K^+$	$-0.569 \pm 0.059 \pm 0.028$	$0.464 \pm 0.058 \pm 0.017$	$-0.516 \pm 0.041 \pm 0.021$	$0.102 \pm 0.080 \pm 0.023$
$\Lambda_c^+ \to p K_{\rm S}^0$	$-0.744 \pm 0.012 \pm 0.009$	$0.765 \pm 0.012 \pm 0.007$	$-0.754 \pm 0.008 \pm 0.006$	$-0.014 \pm 0.011 \pm 0.008$
$\Lambda \to p \pi^-$	$0.717 \pm 0.017 \pm 0.009$	$-0.748 \pm 0.016 \pm 0.007$	$0.733 \pm 0.012 \pm 0.006$	$-0.022\pm0.016\pm0.007$

- First measurement of Λ_b^0 decay parameters
- All A_{α} consistent with zero

No CPV observed

Evidence for CPV in $\Lambda_b^0 \rightarrow \Lambda h^+ h^-$

≻ CP violation in $\Lambda_b^0 / \Xi_b^0 \to \Lambda h^+ h^- (h = \pi, K)$ decays

- similar dynamics $B \rightarrow hh'h''$
- possible CPV enhancement

→ CP asymmetries measured as difference wrt to control mode $\Lambda_b^0 \rightarrow \Lambda_c^+ (\rightarrow \Lambda \pi^+) \pi^-$ (null CPV expected)

- ➢ Evidence of direct violation in $Λ_b^0 / Ξ_b^0 → ΛK^+K^-$ decays (3.1σ)
- ➢ Possible interpretation: enhancement from N^{*+} → ΛK⁺ (3.2σ) resonance

Observation of CPV in $\Lambda_b^0 \rightarrow pK^-\pi^+\pi^-$ decays

- CPV arises from interference between tree
 and loop amplitudes
- Resonant structure may enhance CPV across the phase space
- > Similar measurement to extract A_{CP}

$$A_{CP} \equiv \frac{N\left(\Lambda_b^0 \to K^- \pi^+ \pi^-\right) - N\left(\Lambda_b^0 \to \overline{p}K^+ \pi^- \pi^+\right)}{N(\Lambda_b^0 \to K^- \pi^+ \pi^-) + N\left(\overline{\Lambda}_b^0 \to \overline{p}K^+ \pi^- \pi^+\right)}$$

- Clean measurement thanks to control sample of $\Lambda_b^0 \to \Lambda_c^+ (\to p K^- \pi^+) \pi^-$
- First observation of direct violation in baryon decays ($5.2\ \sigma$ from 0)

$$A_{CP} = (2.45 \pm 0.46 \pm 0.10) \%$$

Observation of CPV in $\Lambda_b^0 \rightarrow pK^-\pi^+\pi^-$ decays

•Search for local violation in selected regions of the phase space

- •Measured asymmetries up to (resonances)
- •Hadronic effects preventing precise predictionsamplitude structure investigation potentially clarifying scenario

Decay topology	Mass region (GeV/ c^2)	\mathcal{A}_{CP}	
$\Lambda_b^0 \to R(pK^-)R(\pi^+\pi^-)$	$m_{pK^-} < 2.2$ $m_{\pi^+\pi^-} < 1.1$	$(5.3 \pm 1.3 \pm 0.2)\%$	4 σ
$\Lambda_b^0 \to R(p\pi^-)R(K^-\pi^+)$	$m_{p\pi^-} < 1.7$ $0.8 < m_{\pi^+K^-} < 1.0$ or $1.1 < m_{\pi^+K^-} < 1.6$	$(2.7 \pm 0.8 \pm 0.1)\%$	
$\Lambda^0_b \to R(p\pi^+\pi^-)K^-$	$m_{p\pi^+\pi^-} < 2.7$	$(5.4 \pm 0.9 \pm 0.1)\%$	60
$\Lambda^0_b \to R(K^-\pi^+\pi^-)p$	$m_{K^-\pi^+\pi^-} < 2.0$	$(2.0 \pm 1.2 \pm 0.3)\%$	

<u>JHEP 12 (2024) 147</u>

