

UP

Upstream Pixel detector

- Challenges for UT due to higher luminosity
 - Increased track density (hit rate ~160 MHz/cm²) \rightarrow higher granularity
 - Higher bandwidth (up to 9 Gb/s on innermost chip)
 - Increased radiation level:

NIEL up to $3 \times 10^{15} n_{eq}/cm^2$, TID up to 240 MRad

- A MAPS based pixel detector proposed
 - Sensor options: HVCMOS / small electrode CMOS

Ring	5	4	3	2	1	All
e-links / chip	1	1	1	1-3	2-7	
Gbps / e-link	0.32	0.64	1.28	1.28	1.28	
lpGBT / module	0.5	1	2	7	14/10	
Num of modules	1312	240	80	64	32	1728
Num of data lpGBTs	656	240	160	448	384	1888
Num of ctrl lpGBTs	656	240	80	192	144	1312
Dual-module						

Upstream Pixel detector

інср

- R&D collaboration formed mainly by Chinese and French institutes
- Leading development in all aspects
 - Simulation & performance
 - CMOS sensor R&D
 - Module and mechanics prototyping

UP simulation

- UP geometry implemented for all scenarios in scoping document
 - Used for material scan, hit density studies etc
 - Hit digitization implemented for silicon pixels
- Tracking algorithms development
 - UP standalone / long track / up or downstream
 - Novel algorithms (GNN/ CAT/ MLP) for speedup

eta

3.5 3

2.5

1.5

UP performance

- Upstream and downstream tracks UP is crucial
 - Ensure tracking efficiency
 - Reduce ghost rate
 - Momentum resolution
- Improvements for long tracks
 - Low ghost rate
 - Better momentum resolution

Downstream tracks -

holeSize 8cm

holeSize 12cm

holeSize 16cm

60

80

p (GeV)

HoleSize 8cm

HoleSize 12cm

80

p (GeV)

60

2025 / 04 / 26

LI Yiming: LHCb detector upgrade

UP sensor development

COFFEE CMOS SENSOR IN FIFTY-FIVE NM PROCESS

	Parameter	UP Specification
	Pixel size, square	$\leq 85 \times 85 \mu m^2$
	rectangular	$\leq 50 imes 200 \mu \mathrm{m}^2$
s	Substrate thickness	$< 200 \mu { m m}$
	Pixel orientation	х
	Max. Particle Rate (R_{Part})	$74(34) \text{ MHz/cm}^2$
	Max. Hit Rate	$150 \text{ Mhit s}^{-1} \text{cm}^{-2}$
	Max. length of data word	32
	Overall efficiency	>96%
	In-time efficiency	$>\!\!99\%$ within 25 ns
	Noise rate (End of life)	$\leq 400 \mathrm{kHz/cm^2}$
	Transmission rate	$N \times 1.28 \text{ Gbit/s}$
	NIEL	$3 imes 10^{15} n_{ m eq}/{ m cm}^2$
	TID	240 MRad
	Power Consumption	$\leq 200 \text{ mW}/\text{cm}^2$

 Development of High Voltage CMOS sensor with advanced process from domestic foundry

 Synergies with Mighty Tracker pixel part with other sensor candidates

COFFEE 2

First HVCMOS 55nm prototype chip

- Breakdown at -70V
- Responsive to laser, X-ray and beta-ray sources

2024

COFFEE1

- Prototype in LL process
- Validation of deep N-well structure
- Breakdown at -9V

2022

COFFEE3

2023

- Two pixel arrays with data-driven readout
- Designed for good timing resolution and moderate power consumption

2025

Large prototype planned around 2027

2025 / 04 / 26

LI Yiming: LHCb detector upgrade

COFFEE2

- COFFEE2 test verifies key functions of the process
 - IV shows breakdown at ~ 70 V
 - Leakage current increased from 0.01 nA to ~1 nA after 10¹⁴n_{eq}/cm² radiation
 - Signals observed with in-pixel amplifier: laser / X-ray / beta-ray

UP module and mechanics

- Module design updated to reduce dead area
- Prototyping starting with dummy components
 - Dummy silicon sensors produced with similar thermal mechanical properties
 - Tools designed for assembly procedure
 - Thermal simulation + market survey for realistic mechanical design

1st dummy module assembled 27 Apr 2025

2025 / 04 / 26

LI Yiming: LHCb detector upgrade

PicoCAL

PicoCAL

- Maintaining ECAL performance
- Inner part using SpaCal and outer keeps Shashlik technology
- Timing of O(10) ps expected
- Chinese groups active in the R&D:
 - Software and simulation
 - Fast GAGG crystal fibre development
 - 3D printed tungsten absorbers
 - Light-guide system development
 - LS3 SpaCal-W-Polystyrene module assembly
 - (just started) PMT R&D

Y [cm] 300

250

200

150

CERN-LHCC-2023-005

ECAL doses

--4 x 10⁴ Gy

- 1 x 10⁴ Gy

X [cm]

12x12 cm²

2025 / 04 / 26

PMT

PicoCAL: progress

- Software and simulation
 - Performance studies for LHCb Upgrade II (U2) Scoping Document
 - Software development & optimization of reconstruction algorithm in full swing towards U2 TDR
- Fast GAGG crystal fibre development
 - Collaborating with SiPAT (电科芯片)+CERN starting from end of 2021
 - Gradually reducing effective decay time τ_{eff} : 50 ns (2022) \rightarrow 20 ns (2024) \rightarrow 8 ns (2025)
 - SpaCal-W-GAGG prototype with GAGG with $\tau_{eff}\approx 20~ns$, testbeam at SPS+DESY in 2024
- 3D printed tungsten absorbers
 - Finalising details for PRR (Production Readiness Review) in June
- Light-guide system development
 - Light-guide design for LS4 and market investigation for material candidates in China
- LS3 SpaCal-W-Polystyrene module assembly
 - Module assembly starting from 1 cell, to 4 cells, and finally full-size (36 cells)
 - $\,\circ\,$ Many inputs for optimising the design and the assembly process
 - $\,\circ\,$ Beam-test planned at SPS end of May, results for EDR review in June
- PMT R&D: just started, collaborating with NNVT(北方夜视)+IHEP

PicoCAL - simulation

Material R&D: study of spill-over effect to identify target decay time of garnet crystal

✓ spill-over effect on energy & time resolution being studied by subtracting contribution from previous events with exponential fit

Construction of simulation in LHCb official framework Interaction of ECAL setup **Electronics** output particles with ECAL ECAL geometry Energy deposition & Readout and description light transportation digitization DD4Hep Geant4 Boole Gauss Shashlik module in DD4Hep **Gaudi Framework**

PicoCAL - reconstruction

► a cluster

Build-up of a working package based on layered 3x3 (& optimized shapes) clustering

 Development of *machine learning approaches* for clustering – *GNN* method

2025 / 04 / 26

y/mm 620 84 41 52 90.573 600 580 560 107.468 540 520 32.9226 500 480 350 400 450 x/mm $(\underline{\mathbf{H}}^{0.4})_{0.35}$ $(\underline{\mathbf{V}}^{0.35})_{0.3}$ $(\underline{\mathbf{V}}^{0.25})_{0.25}$ Single photon w/ minbias, baseline 3x3 clustering Optimized shapes 0.3 Old GNN model New GNN model SWN 0.15 0.1 0.05 0 2 3 E_{T} incoming [GeV]

✓ Improved energy resolution wrt classic clustering2

PicoCAL - performance

 Performance compared between different scenarios $B^0 \to K^{*0} \gamma$ for benchmarking physics modes 450 Ę 160⊢ Middle $E_T > 1 \text{ GeV}$ w/o time cut -400 E $E_{\rm T}$ >2.5 GeV $E_T > 2.5 \text{ GeV}$ for 140 Baseline Middle Low 350 E $\Delta t / \sigma t$ (comb) < 3 $S/\sqrt{S+B}$ 120 $1.5 \times 10^{34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$ $1.0 \times 10^{34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$ $1.0 \times 10^{34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$ 300 100 250 **PicoCal** 200 80 40 SpaCal-W ----- Upgrade II - Middle 40 SpaCal-W 40 SpaCal-W 150 Upgrade II - Low 60 Upgrade II - Baseline 100 408 SpaCal-Pb 408 SpaCal-Pb 408 SpaCal-Pb Run 3 40 50 2864 Shashlik 2864 Shashlik 2864 Shashlik 20 0.5 4000 5000 6000 7000 single R/O except 176 inner double R/O double R/O Efficiency $M(K^+\pi^-\gamma)$ 30,976 channels 30,976 channels 20,224 channels $D^0
ightarrow \pi^+ \pi^- \pi^0$ /(2.1) Studies based on 3x3 clustering approach 4500 2.1 900E 4000 F 800 Timing information plays a critical role 700 F 3500 3000 F 600F in background reduction 2500 500F 2000 Without time cut 400 Results included in With time cut 1500 300 LHCb Upgrade II Scoping Document 1000 Middle , N(π^{0})/B=0.36 Low, N(π^0)/B=0.3 500

140

120

240

m(γγ)/MeV

[CERN-LHCC-2024-010, LHCb-TDR-026]

2025 / 04 / 26

240

m(γγ)/MeV

rade

Fast GAGG R&D

- Continued progress on timing under close collaboration with SIPAT (电科 芯片) and CERN
 - Started with $\tau_{\rm d,eff}$ ~ 50 ns in end of 2021
 - Characterize at PKU and CERN
 - $\tau_{\rm d,eff}$ down to 20 ns in Mar. 2024
 - Fibres produced/tested for testbeam with SpaCal-W-GAGG prototype (2024.06 at SPS + 2024.11 at DESY)
 - Latest GAGG samples: $\tau_{d,eff} \sim 8 \text{ ns}$ with light yield ~7500 MeV⁻¹ in Jan 2025
- Meanwhile, improving ingot growth process to for homogeneity

3D printed tungsten absorber

Requirements

- High density: close to $\rho_W = 19.3 \text{ g/cm}^3$
- Geometry: 120×120×50 mm³
- 5180 square holes of $1.20{\times}1.20~{\rm mm^2}$
- Roughness $R_a < 5 \ \mu m$
- LaserAdd (雷佳) gradually improved the W absorbers
 - $\rho \approx 19.0 \text{ g/cm}^3$, $R_a \approx 4 \text{ }\mu\text{m}$
 - Young's module measured at THU, WHU, CERN

We are finalizing all tests and QA system for PRR in June

Absorber received 4 April 2025

2025 / 04 / 26

Young's module measurement at THU

	Plane	Angle (°)		
	Thane	5# at top	6# at top	
	1⊥2	89.9	90.1	
	2⊥3	90.0	90.0	
	3⊥4	90.0	90.1	
	4⊥1	90.1	89.9	
*	5⊥1 or 6⊥1	90.1	90.0	
	5⊥2 or 6⊥2	90.0	90.0	
	5⊥3 or 6⊥3	90.1	90.0	
•	5⊥4 or 6⊥4	90.1	90.0	

Perpendicularity measurement at WHU

35

SpaCal-W-GAGG testbeam @ SPS & DESY

- First SPACAL-W-GAGG prototype assembled in May 2024
 - Size: 120.24×120.24×150 mm³, split
 with two halves (50mm front + 100 mm back)
 - 4×4 cells with GAGG fibres from SIPAT (电 科芯片), absorbers from LaserAdd (雷佳)
 - PMT and Light guides provided by CERN:

 8 x Multi-anode PMT R7600U-00-M4
 Asymmetric LGs: square to square
 double-side readout
- Performance of prototype tested in testbeams
 - DESY(Dec 2024): 1 5 GeV electron
 - SPS (May 2024): 20 100 GeV electron
 - Energy resolution and time resolution measured

SpaCal-W-GAGG testbeam @ SPS & DESY

Energy resolution $\sigma_E/E = 10.6\% \oplus 2\%$ (Target: $\sigma_E/E = 10\% \oplus 1\%$)

Time resolution with different PMTs

<u>R11187 (Direct contact)</u> and <u>R9880U</u> have similar performance (<20 ps for E > 20 GeV)

MAPMT and <u>R11187 (square LG and only front part)</u> much worse in time resolution

Could be improved with more suitable PMT and light guides

SpaCal-W-Poly module assembly

- Preparation for assembly of SpaCal-W-Polystyrene in China started in the end of 2024
 - PKU + THU + WHU +SCNU
- From Dec. 2024 to Apr. 2025, a series of modules were made to test and optimize the assembly procedures
 - Gluing, bundling, milling, ...
- In Mar. 2025, a module response uniformity test system was established at PKU

Module response uniformity test system

1-cell module for bundling and milling test

4-cell module for bundling and milling test

Module for milling quality inspection

SPACAL-W-Poly module assembly

- Getting ready for the mass production in the second half of 2025
 - April 2025: a small module containing most of the designed elements was produced in Beijing.
 - May 2025: a full-size module will be produced and to be tested at CERN SPS testbeam.

To conclude ...

Physics Prospects

0.5

0.4

0.3

0.2

Ē

- Statistics is powerful
- Some gain can be expected

	LHCb	LHCb	LHCb	
Observable	current	(23 fb^{-1})	(300 fb^{-1})	
CKM tests				
γ (all modes)	4° [784, 931]	1.5°	0.35°	
$\gamma \ (B_s^0 \rightarrow D_s^+ K^-)$	$(^{+17}_{-22})^{\circ}$	4°	1°	
$\sin 2eta$	0.04 [932]	0.011	0.003	
$\phi_s \; (B^0_s \rightarrow J/\psi \phi)$	49 mrad [933]	$14 \mathrm{mrad}$	4 mrad	
$\phi_s \ (B^0_s {\rightarrow} D^+_s D^s)$	170 mrad [825]	$35 \mathrm{~mrad}$	9 mrad	
$\phi_s^{s\overline{s}s} \ (B_s^0 {\rightarrow} \phi \phi)$	154 mrad [936]	39 mrad	$11 \mathrm{mrad}$	
a_{sl}^s	33×10^{-4} [938]	$10 imes 10^{-4}$	$3 imes 10^{-4}$	
$\left V_{ub} ight /\left V_{cb} ight $	$6\% \ [847]$	3%	1%	
Charm				
$\Delta \mathcal{R}^{CP}$	2.9×10^{-4} [790]	$1.7 imes 10^{-4}$	3.0×10^{-5}	
A_{Γ}	1.3×10^{-4} [877]	4.2×10^{-5}	$1.0 imes 10^{-5}$	
$B^0_{(s)} \rightarrow \mu^+ \mu^-$				
$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}$	$71\% \ [661, \ 662]$	34%	10%	
$ au_{B^0_s ightarrow \mu^+ \mu^-}$	$14\% \ [661, \ 662]$	8%	2%	
EW penguins				
$R_K (B^+ \rightarrow K^+ \ell^+ \ell^-)$	0.044 [703]	0.025	0.007	
$R_{K^*} (B^0 \to K^{*0} \ell^+ \ell^-)$	0.10 [709]	0.031	0.008	
LFU tests				
$R_{D^*} (B^0 \rightarrow D^{*-} \ell^+ \nu)$	0.026 [941, 942]	0.007	0.002	
$R_{J/\psi} \left(B_c^+ \to J/\psi \ell^+ \nu \right)$	0.24 [943]	0.07	0.02	

Physics case for Upgrade II, CERN-LHCC-2018-027, arXiv:1808.08865 Chen et al, Frontiers of Physics 18 (2023) 44601

https://www.nikhef.nl/%7Epkoppenb/particles.html

2025 / 04 / 26

LI Yiming: LHCb detector upgrade

Summary

- LHCb upgrade I is completed and continues to take high-quality physics data
- R&D ongoing for Upgrade II, LHCb-China are key players in UP and PicoCAL
- A lot more data and potential for physics output, interplay with theory community more important than ever

Thank you for your time!

liyiming@ihep.ac.cn

Reference

- LHCb探测器及升级计划,科学通报 2024,69(31):4529
- The LHCb Upgrade I, JINST 19 (2024) P05065
- LHCb Upgrade II Scoping Document, CERN-LHCC-2024-010
- LHCb Framework TDR for the LHCb Upgrade II, CERN-LHCC-2021-012
- Physics case for an LHCb Upgrade II Opportunities in flavour physics, and beyond, in the HL-LHC era, arXiv:1808.08865

大型强子对撞机LHCb实验专题