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Discovery of baryonic CP violation

2

Λb → pK−π+π−

[LHCb, 2503.16954, submitted to Nature]

Congratulations to the LHCb colleagues!

5.2 σ



Outline

 Theoretical studies before the baryonic CP violation discovery  

➡ Theoretical prediction 


➡ Observable construction


 Theoretical studies after the baryonic CP violation discovery  

➡ Understand the underlying dynamics


➡ New platform of the CKM test
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Before the baryonic CP violation discovery



Theoretical prediction
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 Final-state  scattering for  

➡ Strong phases extracted from data

Nπ Λb → K−(pπ+π−)

[Wang,Yu, CPC, 2407.04110]

See Fu-Sheng’s talk

Prediction

[1.2, 1.9] GeVmNπ ∈

Measurement
[LHCb, 2503.16954, submitted to Nature]



Theoretical prediction
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 Generalized Factorization Approach  

 QCD Factorization (diquark)


 Perturbative QCD 

 Final-state interaction 

 Symmetry analysis 

[Ke,Wei,…]

[Hsiao,Liu,Geng,Yu, …]

[Li,Yu,Zhou …]

[Duan,Li,Lu,Wang,Yu, …]

[He,Wang,Wang,Xing, …]

See Fu-Sheng’s talk



❖ Partial-wave CP asymmetry: In multi-body ( ) decays , 
decay width can be expanded with the Legendre’s polynomials, and the partial wave 
CP asymmetry is hereby defined  


❖ It has at least the following advantages:


1. Combine information in each bins in Dalitz plots

2. Different resonances  may induce interferences with large relative strong phases

n ≥ 3 H → R . . . → h1h2 . . .

R

7

[Zhang, Guo, et al, 2103.11335, 2208.13411, 2209.13196]

 angle between  and  in the  rest frameθ*1 : h1 H h1h2

Observable construction

θR

h1

h2

H

https://arxiv.org/abs/2209.13196


❖Complementary T-odd and T-even CP asymmetries (generalization of ):

➡ Measured by weight-function expectation 

➡ Dependence on cosine and sine of strong phases

α, β, γ
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actly the real parts of the interferences corresponding to
Q2,3 in (12).
Owing to the di�culties in measurements of particle

spins at colliders, the above observables are unlikely to
be directly measured at experiments. Fortunately, if the
final-state particles are unstable and thus subsequently
decay into more particles, most of the T-odd correlations
can be extracted from the angular distributions of the
integral decay chains. Next, we will perform the angular
analysis on the ⇤b ! N⇤(1520)V decay as an applying
example to the baryon CPV.
CPV in baryon sector.– We analyze the ⇤0

b !
N⇤(1520)V decay channel, where N⇤(1520) further de-
cays into p⇡ and V being K⇤ or ⇢ further decays into
K⇡ or ⇡⇡. To connect the T-odd observable to the ex-
perimental measurement, we derive the angular distribu-
tion of the decay chain ⇤0

b ! N⇤(1520)V ! p⇡P1P2 in
the framework of helicity formalism [30]. The kinematic
variables are identical to the depiction of FIG. 1, corre-
spondingly. The angular distribution is given as
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with the weight functions W1 = sin' c1 c2 and W2 =
sin 2' s1 s2, respectively. The expectation of the comple-
mentary T-even correlations hP1+2P2i and hP3i are also
contained in the angular distribution (13) with respect
to cos' and cos 2', and can be analogously extracted.
In the rest frame of ⇤0

b , we define ~na = ~p1 ⇥ ~p2/|~p1 ⇥ ~p2|,

FIG. 1. The depicted figures of angular distributions of ⇤0
b !

N⇤(1520)K⇤ ! p⇡K⇡. The angle ✓1, ✓2 are defined in the
rest frames of K⇤ and N⇤(1520), respectively. These angles
also correspond to the definition of angular distribution (13).

~nb = ~p3 ⇥ ~p4/|~p3 ⇥ ~p4|, and then sin' and sin 2'
can be expressed in terms of the momentum variables,
sin' = (~na ⇥ ~nb) · p̂b = ~na · (~nb ⇥ p̂b) / (~p1 ⇥ ~p2) · ~p4 and
sin 2' = 2 sin' cos' / [(~p1⇥~p2) ·(~p3⇥~p4)][(~p1⇥~p2) ·~p4].
Here, we can see their T-odd property, but it must be
noticed that the true T-odd correlation is constructed
based on the polarizations and momenta of N⇤,K⇤, not
the p,K,⇡ momenta. Then, the induced CP asymme-
tries are given by the di↵erences between ATi and their
CP conjugate values

AT,i
CP =

AT,i � ĀT,i

AT,i + ĀT,i
. (15)

It should be emphasized that AT,i
CP are proportional to the

cosine of some strong phase di↵erence cos �s,i, as proved
before. More than that, CP asymmetries induced by
hP1+2P2i and hP3i are proportional to the sine of exactly
the same phase di↵erence sin �s,i, since these observables
are given by the real parts of the same helicity ampli-
tude interferences. Therefore, they are exactly comple-
mentary to each other. Whether �s,i is small or large, the
CP asymmetry has a chance to be observed. From the
experimental aspect, the data samples of N⇤(1520)K⇤

and N⇤(1520)⇢ are remarkable and prospective to search
for baryonic CPV [23]. Above discussion directly applies
to other decays with same quantum numbers like those
listed in [33] such as ⇤b ! ⇤(1520)⇢0,⇤(1520)�. It can
also be extended to other two-body baryon decays such
as ⇤0

b ! ⇤V [34–37], though it has a smaller data sam-
ple [38].
Summary.– In this work, we prove that a type of T-odd
correlations that satisfy two proposed conditions induce
CPV observables proportional to cosine of strong phase
di↵erences. This property makes them complementary
to traditional direct CP asymmetries and neutral me-
son mixing induced CPV observables, i.e., still sensitive
in case of small strong phase di↵erences. Hence, it is a
powerful tool that can be used to search for CPV in the
baryon sector. The proof in passing provides the recipe
of constructing such T-odd correlations. In baryon de-
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rest frames of K⇤ and N⇤(1520), respectively. These angles
also correspond to the definition of angular distribution (13).

~nb = ~p3 ⇥ ~p4/|~p3 ⇥ ~p4|, and then sin' and sin 2'
can be expressed in terms of the momentum variables,
sin' = (~na ⇥ ~nb) · p̂b = ~na · (~nb ⇥ p̂b) / (~p1 ⇥ ~p2) · ~p4 and
sin 2' = 2 sin' cos' / [(~p1⇥~p2) ·(~p3⇥~p4)][(~p1⇥~p2) ·~p4].
Here, we can see their T-odd property, but it must be
noticed that the true T-odd correlation is constructed
based on the polarizations and momenta of N⇤,K⇤, not
the p,K,⇡ momenta. Then, the induced CP asymme-
tries are given by the di↵erences between ATi and their
CP conjugate values

AT,i
CP =

AT,i � ĀT,i

AT,i + ĀT,i
. (15)

It should be emphasized that AT,i
CP are proportional to the

cosine of some strong phase di↵erence cos �s,i, as proved
before. More than that, CP asymmetries induced by
hP1+2P2i and hP3i are proportional to the sine of exactly
the same phase di↵erence sin �s,i, since these observables
are given by the real parts of the same helicity ampli-
tude interferences. Therefore, they are exactly comple-
mentary to each other. Whether �s,i is small or large, the
CP asymmetry has a chance to be observed. From the
experimental aspect, the data samples of N⇤(1520)K⇤

and N⇤(1520)⇢ are remarkable and prospective to search
for baryonic CPV [23]. Above discussion directly applies
to other decays with same quantum numbers like those
listed in [33] such as ⇤b ! ⇤(1520)⇢0,⇤(1520)�. It can
also be extended to other two-body baryon decays such
as ⇤0

b ! ⇤V [34–37], though it has a smaller data sam-
ple [38].
Summary.– In this work, we prove that a type of T-odd
correlations that satisfy two proposed conditions induce
CPV observables proportional to cosine of strong phase
di↵erences. This property makes them complementary
to traditional direct CP asymmetries and neutral me-
son mixing induced CPV observables, i.e., still sensitive
in case of small strong phase di↵erences. Hence, it is a
powerful tool that can be used to search for CPV in the
baryon sector. The proof in passing provides the recipe
of constructing such T-odd correlations. In baryon de-

sin φc1c2

sin 2φs1s2

cos 2φs1s2

cos φc1c2

Observable construction

 vs cos δs sin δs

[Wang, QQ, Yu, 2211.07332, 2411.18323]

See Prof. Li’s talk



Possible large CP violation in Λb → DN → (K+π−)(pπ−)

❖ Interferences by two groups of intermediate states

➡  interference: large weak phase  (comparable magnitude)

➡  interference: diverse strong phases in different kinematic regions


❖ Global or regional large CP violation

D0 & D̄0 γ
N(1440) & N(1520)

9

⇤0
b (K+⇡�)N

D̄0N

D0N

�rBei(�B��)

�rDe�i�D

0.02

0.06

Direct CP  
violation

[Shen,Wang,QQ,PRDL, 2309.09854]



After the baryonic CP violation discovery



Understand the underlying dynamics
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 Model-independent calculation   

➡ Difficult to perform


➡ Key issue requires more efforts


➡ Widely applicable


➡ Systematical to improve


➡ Necessary for precision test of the 
standard model

 Model-dependent calculation   

➡ Practical to apply


➡ Grasp the key issue easily


➡ Applicable to specific situation


➡ Randomly improve 


➡ At most loyal to standard model, 
never discovery new physics  

See Fu-Sheng’s talk

Confront data to optimize.
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 Final-state interaction for  

➡ Strong phases from FSI

Λb → pK−π+π−

[LHCb, 2503.16954, submitted to Nature]

Understand the underlying dynamics

Λ(1520)f0(980)

Λ(1520)ρ0

Λ(1520)f0(500)

BR ACP
6.99 6
3.476.01 10+ -
- ´

1.56 6
0.651.37 10+ -
- ´

11.50 7
5.429.28 10+ -
- ´

Preliminary!

Weighted ACP ≈ 6.6 %

Λ(1520) f0(980)

ρ0

f0(500)

(2.9+3.8
−1.6) %

(28.2+14.5
−9.1 ) %

(−1.0+1.1
−0.7) %

[Feng,QQ,Shang,Yu, to appear]

f0

Λ+
c

D(*)−
s

D(*)−
s

f0

Λ0



Understand the underlying dynamics
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 It seems that currently the model-dependent calculation (FSI) is acceptable 

 With more precise data, it can be improved  

 But it can never precisely test the CKM mechanism  

 We need other ways out
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❖ General conclusion: T-odd correlation  induces CPV with cosine dependence on 
strong phases


if it satisfies two conditions: (i) for the final-state basis { , n =1,2,…}, there is a 
unitary transformation , s.t. ; (2) 

Q−

|ψn⟩
U UT |ψn⟩ = e−iα |ψn⟩ UQ−U† = Q− .

Complementary T-odd and T-even CP asymmetry

TQ− = − Q−T, AQ−
CP ≡

⟨Q−⟩ − ⟨Q̄−⟩
⟨Q−⟩ + ⟨Q̄−⟩

∝ cos δs

2

have cosine dependence on strong phase di↵erences. The
proof also provides a systematic method to find this type
of T-odd correlations, and thus can lead to a blanket
search for baryonic CPV. Applying it to two-body decays,
T-odd correlations can be built by triple- and pentuple-
products of momentum and spin vectors. Such T-odd
correlations are reflected as the imaginary parts of helic-
ity amplitude interference. This general conclusion was
previously observed in specific cases like B ! V V and
D ! V V decays [5–11]. It also provides a natural expla-
nation why T-odd correlation was generally used to in-
vestigate CPV in the higgs couplings htt̄ and h⌧ ⌧̄ without
the consideration of CP conserved phases [27, 28]. More-
over, for each of such T-odd corrections, there exists a
corresponding T-even correlation, whose expectation is
exactly the real part of the same helicity amplitude in-
terference. Therefore, CP asymmetries induced by such
T-odd and -even correlations are exactly complementary
to each other, and at least one of them would be large
whether the strong phase di↵erence is small or large.

Experimentally, although it is di�cult to directly mea-
sure them at colliders since particle spins are involved,
the T-odd and the corresponding T-even correlations can
be extracted from the angular distribution of further de-
cays of the primary decay products. We eventually pro-
pose the decay chains ⇤0

b ! N⇤(1520)⇢ ! p⇡⇡⇡ and
⇤0
b ! N⇤(1520)K⇤ ! p⇡K⇡ as examples to illustrate

their measurements and accessibility at the LHCb in the
near future, and the great potential of searching for CPV
in the baryon sector.

Strong phase dependence– We firstly prove the proposi-
tion that CP asymmetries induced by a type of T-odd
correlations Q�, A

Q�
CP , are proportional to the cosine of

involved strong phase angle di↵erences, cos �s. The ex-
plicit meaning of T-odd is that Q� transforms under a
time reversal as

T Q� = �Q�T . (1)

It should be noted that not any Q� can induce a CP
asymmetry proportional to cos �s [29]. A qualified Q�
must satisfy the following conditions: (i) In the Hilbert
space of the final states of a physical process that we
are interested, with a properly chosen basis {| ni, n
=1,2,...}, there exists a unitary transformation U that
transforms T | ni back to | ni up to a universal phase
factor, i.e., UT | ni = ei↵| ni; (ii) Q� is conserved un-
der this unitary transformation, i.e. UQ�U† = Q�. The

proof of AQ�
CP being proportional to cos �s is as follows.

The Q� expectation value of the final state |fi ⌘ S|ii
of a process can be expressed in terms of the transition
amplitudes from the initial state to basis vectors An ⌘

h n|S|ii, as

hf |Q�|fi = hi|S†Q�S|ii
=

X

m,n

h i|S†| mih m|Q�| nih n|S| ii

=
X

m,n

A⇤
mAnh m|Q�| ni . (2)

The dynamics are now coded in An’s, and h m|Q�| ni’s
only consist of kinematics. Then it can be shown that
the matrix element h m|Q�| ni is purely imaginary by

h m|Q�| ni = h m|T †T Q�| ni⇤

= �h m|T †Q�T | ni⇤

= �h m|T † U†U Q� U†U T | ni⇤

= �h m|T †U† Q� UT | ni⇤

= �h m|Q�| ni⇤ , (3)

where in the first step the anti-unitarity of T is used.
Because the expectation hf |Q�|fi must be real, only the
imaginary part of the amplitude interference Im(A⇤

mAn)
contributes. Or mathematically, one can obtain an equiv-
alent result through interchanging the position of indices
m and n since they are dummy, and then apply the her-
miticity of Q� as an observable. Significantly, the gen-
eral time evolution operator S that we used in the proof
implies that the above conclusion is valid for both per-
turbative and non-perturbative problems, and for diverse
physical systems such as beauty, charm, strange, top and
even Higgs physics.

The CP asymmetry induced by a T-odd correlation
Q� is defined as

AQ�
CP ⌘ hf |Q�|fi � hf̄ |Q̄�|f̄i

hf |Q�|fi+ hf̄ |Q̄�|f̄i
, (4)

where the CP transformed |f̄i ⌘ S(CP )|ii and Q̄� ⌘
(CP )Q�(CP )�1. Inserting complete basis of | ni and
| ̄ni ⌘ CP | ni, the numerator is given by

AQ�
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i Im(A⇤
mAn � Ā⇤

mĀn)h m|Q�| ni , (5)

where the relation h m|Q�| ni = h ̄m|Q̄�| ̄ni indepen-
dent on dynamics has been used. The imaginary di↵er-
ence Im(A⇤

mAn�Ā⇤
mĀn) must be proportional to the sine

of the weak phase di↵erence sin �w and hence the cosine
of the relevant strong phase di↵erence cos �s. Quod erat

demonstrandum.

Analogously, if a T-even correlation Q+ satisfies con-
dition (i) and (ii), the right-hand side of (3) flips the
sign such that the Q+ expectation depends on the real
part of amplitude interferences. Therefore, its induced
CP asymmetry will be proportional to the sine of the
corresponding strong phase di↵erence, sin �s. Actually,
direct CP asymmetries are induced by a T-even corre-
lation, which can be defined by |fdihfd| with |fdi the

2
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=1,2,...}, there exists a unitary transformation U that
transforms T | ni back to | ni up to a universal phase
factor, i.e., UT | ni = ei↵| ni; (ii) Q� is conserved un-
der this unitary transformation, i.e. UQ�U† = Q�. The

proof of AQ�
CP being proportional to cos �s is as follows.

The Q� expectation value of the final state |fi ⌘ S|ii
of a process can be expressed in terms of the transition
amplitudes from the initial state to basis vectors An ⌘

h n|S|ii, as

hf |Q�|fi = hi|S†Q�S|ii
=

X

m,n

h i|S†| mih m|Q�| nih n|S| ii

=
X

m,n

A⇤
mAnh m|Q�| ni . (2)

The dynamics are now coded in An’s, and h m|Q�| ni’s
only consist of kinematics. Then it can be shown that
the matrix element h m|Q�| ni is purely imaginary by

h m|Q�| ni = h m|T †T Q�| ni⇤

= �h m|T †Q�T | ni⇤

= �h m|T † U†U Q� U†U T | ni⇤

= �h m|T †U† Q� UT | ni⇤

= �h m|Q�| ni⇤ , (3)

where in the first step the anti-unitarity of T is used.
Because the expectation hf |Q�|fi must be real, only the
imaginary part of the amplitude interference Im(A⇤

mAn)
contributes. Or mathematically, one can obtain an equiv-
alent result through interchanging the position of indices
m and n since they are dummy, and then apply the her-
miticity of Q� as an observable. Significantly, the gen-
eral time evolution operator S that we used in the proof
implies that the above conclusion is valid for both per-
turbative and non-perturbative problems, and for diverse
physical systems such as beauty, charm, strange, top and
even Higgs physics.

The CP asymmetry induced by a T-odd correlation
Q� is defined as

AQ�
CP ⌘ hf |Q�|fi � hf̄ |Q̄�|f̄i

hf |Q�|fi+ hf̄ |Q̄�|f̄i
, (4)

where the CP transformed |f̄i ⌘ S(CP )|ii and Q̄� ⌘
(CP )Q�(CP )�1. Inserting complete basis of | ni and
| ̄ni ⌘ CP | ni, the numerator is given by

AQ�
CP /

X

m,n

i Im(A⇤
mAn � Ā⇤

mĀn)h m|Q�| ni , (5)

where the relation h m|Q�| ni = h ̄m|Q̄�| ̄ni indepen-
dent on dynamics has been used. The imaginary di↵er-
ence Im(A⇤

mAn�Ā⇤
mĀn) must be proportional to the sine

of the weak phase di↵erence sin �w and hence the cosine
of the relevant strong phase di↵erence cos �s. Quod erat

demonstrandum.

Analogously, if a T-even correlation Q+ satisfies con-
dition (i) and (ii), the right-hand side of (3) flips the
sign such that the Q+ expectation depends on the real
part of amplitude interferences. Therefore, its induced
CP asymmetry will be proportional to the sine of the
corresponding strong phase di↵erence, sin �s. Actually,
direct CP asymmetries are induced by a T-even corre-
lation, which can be defined by |fdihfd| with |fdi the

Proof: 

⟨ f |Q− | f⟩ ∋ Im(A*mAn) AQ−
CP ∝ sin δwcos δs

[Wang, QQ, Yu, 2211.07332, 2411.18323] AQ+
CP ∝ sin δwsin δs
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❖ The complementarity helps reduce the strong phase dependence


❖ Note that, even knowing  , the weak phase is not necessarily determined


❖ Several channels having same/different tree/penguin amplitudes are required

Ai & Āi

Complementary T-odd and T-even CP asymmetry

[Wang, QQ, Yu, 2211.07332, 2411.18323]

3

tation, and the basis vectors | ni are selected as the he-
licity eigenstates. The final-state helicity eigenstates are
denoted by |J,M ;�1,�2i, where J is the final-state an-
gular momentum, M is its z-direction component, which
are determined by the initial state, and �1 and �2 are
the helicities of the two final-state particles. Following
the convention of [29], the time reversal T and the rota-
tion about the y-axis by ⇡, U = e

�i⇡Jy , both transform
|J,M ;�1,�2i to (�1)J�M |J,�M ;�1,�2i. Therefore, the
condition (i) is satisfied, with

UT |J,M ;�1,�2i = (�1)2J |J,M ;�1,�2i . (6)

Furthermore, the triple-products, being spatial-SO(3)
scalars, remain invariant under spatial rotations, thus
fulfilling condition (ii). Subsequently, we will delve into
further details regarding this type of decay processes, elu-
cidating the genuine complementarity of the CP violation
observables involved. 2

Criteria for complementary observable–As demonstrated
earlier, T -odd and -even correlations satisfying conditions
(i) and (ii) induce CPV observables with cosine and sine
dependences on strong phases, respectively. However, a
critical question remains as to how to determine whether
two observations are exactly complementary. Providing
a general answer to this question would be quite chal-
lenging. Instead, we will limit ourselves to two-body de-
cays and select the final-state bases to be the helicity
eigenstates [26]. In this context, we introduce a criterion
within the helicity framework.

• Criterion: If two observables exhibit dependencies
on the real and imaginary parts of the same inter-
ference term under the helicity amplitude scheme,
then they will induce exactly complementary CPV
observables.

Proof: In the helicity bases, the expression of hQ�i (2)
is composed by helicity amplitude interferences and hQ+i
is analogous. Consider the simplest case where two op-
erators O+ and O� have expectations given by

hO+i = Re(H�i,�jH⇤

�m,�n
+H��i,��jH⇤

��m,��n
) ,

hO�i = Im(H�i,�jH⇤

�m,�n
+H��i,��jH⇤

��m,��n
) ,

(7)

where �i,j ,�m,n are general helicity indices of the final-
state particles. This can be fulfilled when the operators
have only nonzero matrix elements h�m,�n|O±|�i,�ji

2 It is worth noting that the T -odd triple product (~p1 ⇥ ~p2) · ~p3
consists of three momentum in four-body decays can not satisfy
the conditions (i) and (ii) simultaneously. The T transformation
flips all the particle momenta, so the condition (i) requires that
U flips the momenta back. Then, we must have U (~p1 ⇥ ~p2) ·
~p3 U† = �(~p1⇥~p2)·~p3 and thus the condition (ii) is not satisfied.
Therefore, the corresponding CPV is not necessarily proportional
to cos �s [22].

and h��m,��n|O±| � �i,��ji. Note that both hO+i
and hO�i comprise two terms linked by the parity trans-
formation. This choice is reasonable because observ-
ables that we are interested in invariably manifest spe-
cific symmetries under spatial inversion, such as triple
products [16, 22] and asymmetry parameters [15]. Here,
one can check both of them are parity even. This proof
also remains applicable for the parity-odd cases. The CP

asymmetries induced by O± are defined by

a
O+

CP = hO+i � hŌ+i, a
O�
CP = hO�i � hŌ�i (8)

where hŌ±i are the corresponding charge conjugations.
They can be further normalized to make them dimen-
sionless.

A helicity amplitude can be decomposed into tree and
penguin contributions as

H�i,�j = H
t
i,je

i�te
i�ti,j +H

p
i,je

i�pe
i�pi,j , (9)

where H
t(p)
�i,�j

, �
t(p)
i,j ,�t(p) are the magnitude, strong and

weak phases of the tree (penguin) amplitude, respec-
tively. Its CP conjugation partner H̄�i,�j can be cor-
respondingly expressed as

H̄��i,��j = H
t
i,je

�i�te
i�ti,j +H

p
i,je

�i�pe
i�pi,j , (10)

by flipping the weak phase signs. It can be di↵erent by an
overall minus sign depending on the CP transformation
conventions of the initial and final states, which does not
change the physics. The similar relation holds between
their parity partners. This leads to a comprehensive com-
plementary observation.

a
O+

CP /[�H
t
i,jH

p
m,n sin(�

t
i,j � �

p
m,n)

+H
p
i,jH

t
m,n sin(�

p
i,j � �

t
m,n)] sin��

+ (i, j,m, n ! �i,�j,�m,�n) ,

a
O�
CP /[�H

t
i,jH

p
m,n cos(�

t
i,j � �

p
m,n)

+H
p
i,jH

t
m,n cos(�

p
i,j � �

t
m,n)] sin��

+ (i, j,m, n ! �i,�j,�m,�n) ,

(11)

where �� ⌘ �t � �p. It can be observed that aO+

CP , a
O�
CP

are dependent on the identical set of strong phase dif-
ferences, and thus exactly complementary to each other.
This establishes the complementarity under the helicity
scheme. Note that the complementarity exists between
a
O+

CP and a
O�
CP , rather than between a

O�
CP and the direct

CP asymmetry. The direct CP asymmetry characterizes
the di↵erence between the total widths � and �̄ consisting
of the modulo squared of distinct helicity configurations,
while the T -odd CP asymmetry, as in (5), consists of in-
terference terms, so they rely on di↵erent strong phases.
The discussions presented above are focused on two-

body decays. However, the situation becomes more com-
plex in the case of multibody systems due to the presence
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Complementary, but not enough.

Ai = tieiδt
ieiωt + pieiδp

i eiωp

Āi = tieiδt
ie−iωt + pieiδp

i e−iωp4 equations 6 unknown parameters
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❖  is a good example 


➡ The  amplitudes can be extracted from their 
decays to 

Λb → DN, DΛ

D0, D̄0

K−π+, K+π−, K+K−, π+π−

Complementary T-odd and T-even CP asymmetry

16 equations 10 unknown parameters

[Shen,Wang,QQ,PRDL, 2309.09854]

[Giri,Mohanta,Khanna,PRD, hep-ph/0112220]
[Zhang,Jiang,Chen,Qian, 2112.12954]

It can be used to extract the CKM angle .γ



Prospects
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 To find more such sets of channels  

 To find more relations between amplitudes  

➡ Angular distribution —— spatial rotation


➡ Time dependent —— time translation


➡ Hadron invariant mass ——Breit-Wigner?
 See Zhen-Hua’s talk



“Discovery” of a new type of CP violation
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 CP violation in decay   

 CP violation in interference between 
decay & mixing

 CP violation in mixing  

 CP violation in interference between 
mixing & mixing

[Shen,Song,QQ, PRDL, 2301.05848]
[Song,Shen,QQ, EPJC, 2403.01904]

[Song,Wang,QQ,Li, EPJC, 2501.05689]



Thank you!
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