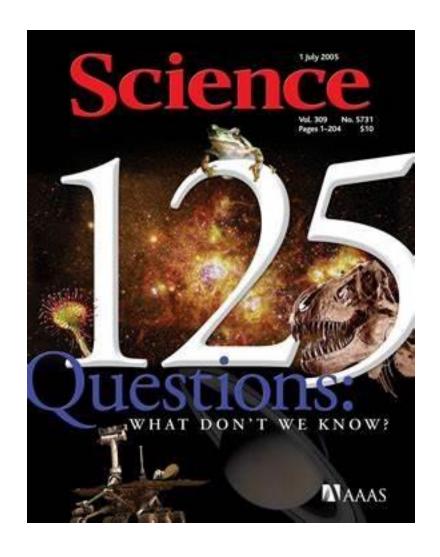

CP violation in baryon decays @ LHCb


Shanzhen Chen IHEP, CAS 26 April 2025

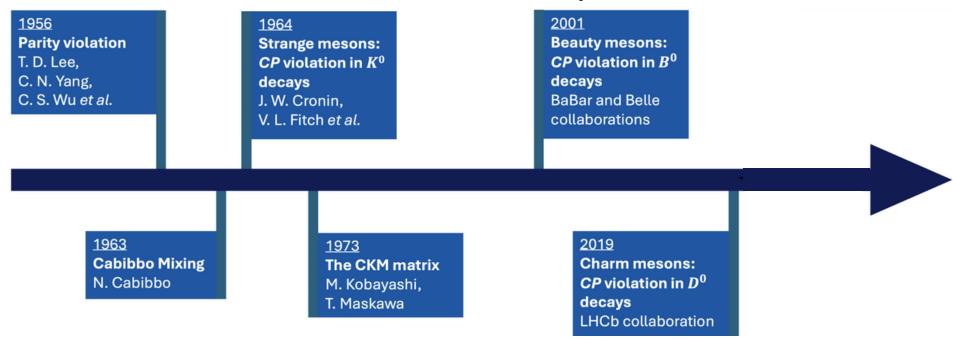
Baryon asymmetry in the Universe

- "Why is there more matter than antimatter?"
 - One of the 125 questions listed by *Sciences* in 2005
- Sakharov conditions in baryogenesis:
 - Baryon number violation
 - C and CP violation
 - Out of thermal equilibrium
- CP violation
 - One of the main purpose of LHCb experiment

CP violation

• The only source of CP violation in the Standard Model is through CKM mechanism

$$V_{CKM} = egin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \ -|V_{cd}| & |V_{cs}| & |V_{cb}| \ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix} + \mathcal{O}(10^{-3})$$

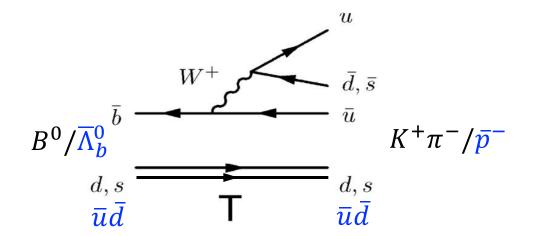

- Quark mixing matrix
- A single phase parameter gives rise to quark CPV
- However, insufficient to explain baryon asymmetry in the universe

$$J_Y \sim J_{CP} \prod \frac{\left(m_{U_i}^2 - m_{U_j}^2\right)}{v^2} \prod \frac{\left(m_{D_i}^2 - m_{D_j}^2\right)}{v^2} \ll \frac{n_B - n_{\overline{B}}}{n_{\gamma}}$$

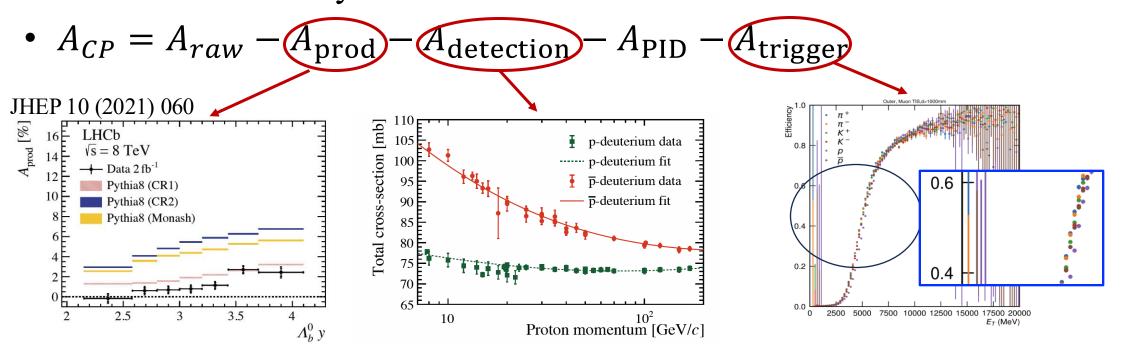
Beyond SM CP violation needed

CP violation in meson decays

• Well established, in K, B, Bs, and D systems


- Only found in meson systems before 2025
- Baryon CPV could appear in decays mediated by similar quark transition as known CP-violating meson decays

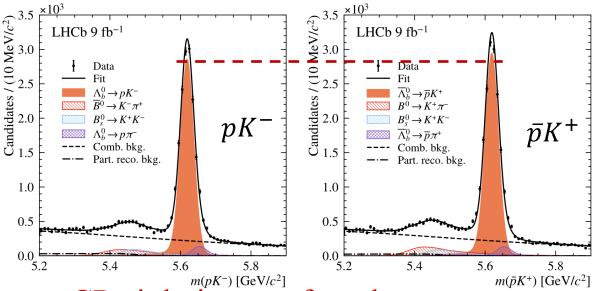
Baryonic CP violation searches @ LHCb


	Methods	Data	Paper
$\Lambda_b^0 \to p K^-/p\pi^-$	A_{CP}	3fb ⁻¹	PLB 787 (2018) 124-133
$\Lambda_b^0 \to p K_s^0 \pi^-$	A_{CP} , ΔA_{CP}	1fb ⁻¹	JHEP 04 (2014) 087
$\Lambda_b^0 \to p D^0 K^-$	Miranda S_{CP}^i	9fb ⁻¹	PRD104 (2021) 112008
$\Lambda_b^0 \to \Lambda h h'$	A_{CP} , ΔA_{CP}	3fb^{-1}	JHEP05(2016)081
$\Lambda_b^0 \to p K^- \mu^+ \mu^-$	ΔA_{CP}	3fb^{-1}	JHEP 06 (2017) 108
$\Lambda_b^0 \to \Lambda \gamma$	photon polarization asy.	3fb^{-1}	PRD105 (2022) L051104
$\Lambda_b^0/\Xi_b^0\to ph^-h^+h^-$	ΔA_{CP} , TPA, Energy test	3fb ⁻¹ &6.6fb ⁻¹	EPJC (2019) 79:745 PRD 102 (2020) 051101
$\Xi_b^- \to p K^- K^+$	Amplitude analysis	$5 \mathrm{fb^{-1}}$	Phys. Rev. D 104, 052010
$\Lambda_c^+ \to p K^- K^+ / p \pi^- \pi^+$	ΔA_{CP}	3fb^{-1}	JHEP 03 (2018) 182
$\Xi_c^0 \to p K^- \pi^+$	kNN	3fb^{-1}	EPJC 2020, 80, 986

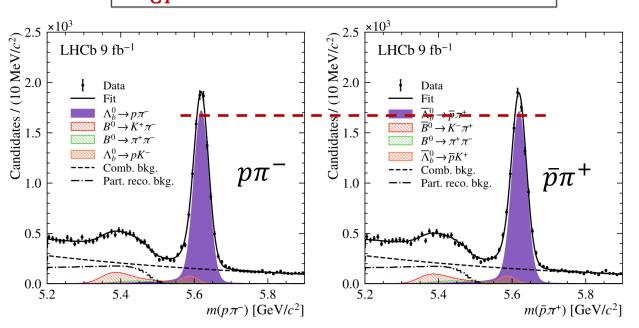
CP violation in $\Lambda_b^0 \to ph^-$ decays

- Large yield and high purity
- CP violation predicted: ~5% PRD 102 (2012) 034033 PRD 95 (2017) 093001

• Crucial to control systematics

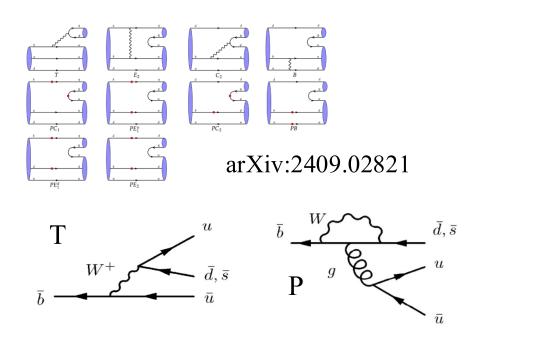


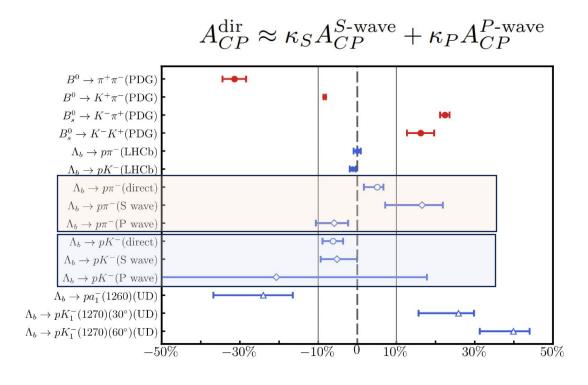
CP violation in $\Lambda_b^0 \to ph^-$ decays


• Data driven corrections and use control mode $(\Lambda_b^0 \to \Lambda_c^+(pK^-\pi^+)\pi^-)$ to cancel nuisance asymmetries

$$\begin{split} A_{CP}^{pK^{-}} &= \Delta A_{\text{raw}} - \Delta A_{\text{D}}^{p} - \Delta A_{\text{D}}^{K^{-}} - \Delta A_{\text{PID}} - \Delta A_{\text{P}}^{\Lambda_{b}^{0}} - \Delta A_{\text{T}} - A_{\text{D}}^{\pi^{-}} - A_{\text{D}}^{\pi^{+}} + A_{CP}^{\Lambda_{c}^{+}\pi^{-}} \\ A_{CP}^{p\pi^{-}} &= \Delta A_{\text{raw}} - \Delta A_{\text{D}}^{p} - \Delta A_{\text{D}}^{\pi^{-}} - \Delta A_{\text{PID}} - \Delta A_{\text{P}}^{\Lambda_{b}^{0}} - \Delta A_{\text{T}} - A_{\text{D}}^{K^{-}} - A_{\text{D}}^{\pi^{+}} + A_{CP}^{\Lambda_{c}^{+}\pi^{-}} \end{split}$$

$$A_{CP}^{pK^{-}} = (-1.1 \pm 0.7 \pm 0.4)\%$$


$$A_{CP}^{p\pi^{-}} = (+0.2 \pm 0.8 \pm 0.4)\%$$


Why so small?

•
$$A_{CP} \propto \left| \frac{P}{T} \right| \sin(\delta_T - \delta_P) \sin(\phi_T - \phi_P)$$

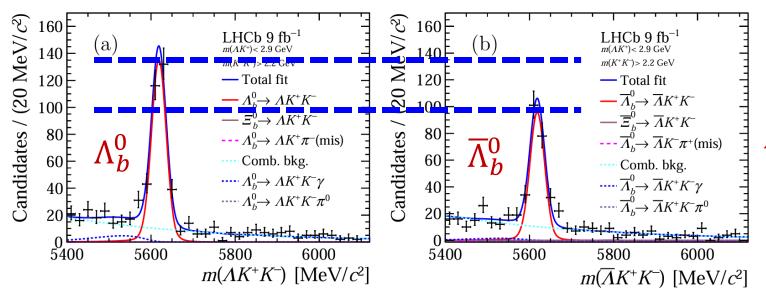
- One diagram overwhelming? small strong phase difference?
- Dynamics more complex than mesons

Possible cancellation of S and P amplitudes

Favoring multiple body decays

CP asymmetry in $\Lambda_b^0 \to \Lambda h_1^+ h_2^-$ decays

- Three Λ_b^0 decays $\Lambda \pi^+ \pi^-$, $\Lambda K^+ \pi^-$, $\Lambda K^+ K^-$; one Ξ_b^0 decay
- $\Lambda_b^0 \to \Lambda_c^+ (\to \Lambda \pi^+) \pi^-$ as control channel

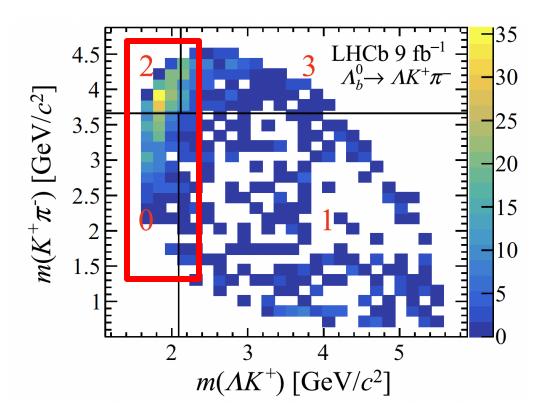

$$\Delta \mathcal{A}^{CP} \left(\Lambda_b^0 \to \Lambda \pi^+ \pi^- \right) = -0.013 \pm 0.053 \pm 0.018,$$

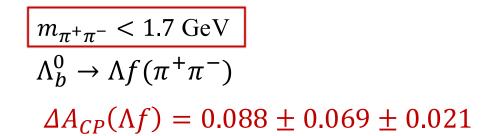
$$\Delta \mathcal{A}^{CP} \left(\Lambda_b^0 \to \Lambda K^+ \pi^- \right) = -0.118 \pm 0.045 \pm 0.021,$$

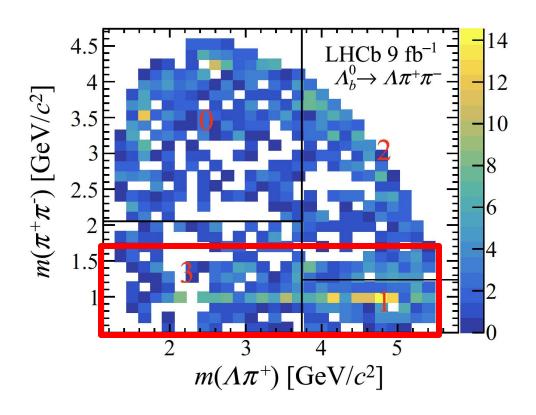
$$\Delta \mathcal{A}^{CP} \left(\Lambda_b^0 \to \Lambda K^+ K^- \right) = 0.083 \pm 0.023 \pm 0.016,$$

$$\Delta \mathcal{A}^{CP} \left(\Xi_b^0 \to \Lambda K^- \pi^+ \right) = 0.27 \pm 0.12 \pm 0.05,$$

 3.1σ , evidence for CPV


 $\Lambda_b^0 \to \Lambda K^+ K^- \text{ decay}$


Local CP asymmetry for $\Lambda_b^0 \to \Lambda K^+\pi^- / \Lambda_b^0 \to \Lambda \pi^+\pi^-$

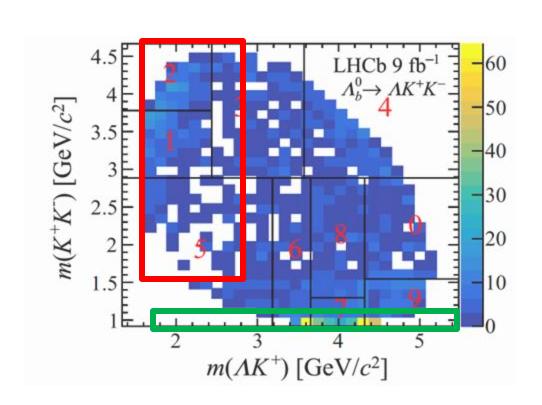

$$m_{\Lambda K^{+}} < 2.3 \text{ GeV}$$

$$\Lambda_{b}^{0} \to N^{*+} (\to \Lambda K^{+}) \pi^{-}$$

$$\Delta A_{CP}(N^{*+}\pi^{-}) = -0.078 \pm 0.051 \pm 0.027$$

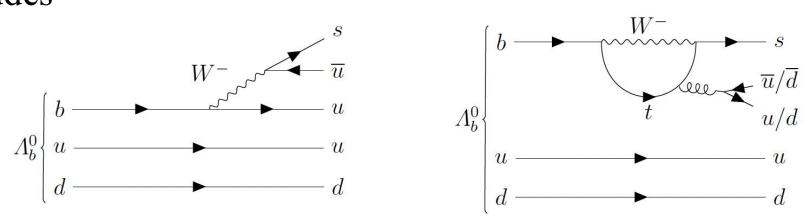
Local CP asymmetry for $\Lambda_b^0 \to \Lambda K^+ K^-$

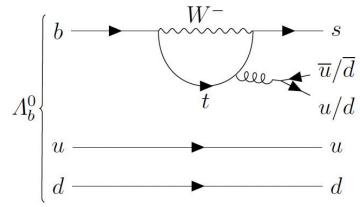
• Two resonance-dominated regions


$$m_{K^+K^-} < 1.1 \text{ GeV}$$
 $\Lambda_b^0 \to \Lambda \phi (\to K^+K^-) \text{ or non-resonant:}$
 $\Delta A_{CP}(\Lambda \phi) = 0.150 \pm 0.055 \pm 0.021$
 $m_{\Lambda K^+} < 2.9 \text{ GeV}$
 $\Lambda_b^0 \to N^{*+}(\to \Lambda K^+)K^-: \text{ possibly via } b \to u \bar{u} s$
 $\Delta A_{CP}(N^{*+}K^-) = 0.165 \pm 0.048 \pm 0.017 \text{ (local } 3.2\sigma)$

• Many N^{*+} may contribute to $\Lambda_b^0 \to N^{*+}K^-$ Several related N^{*+} channels to cross-check

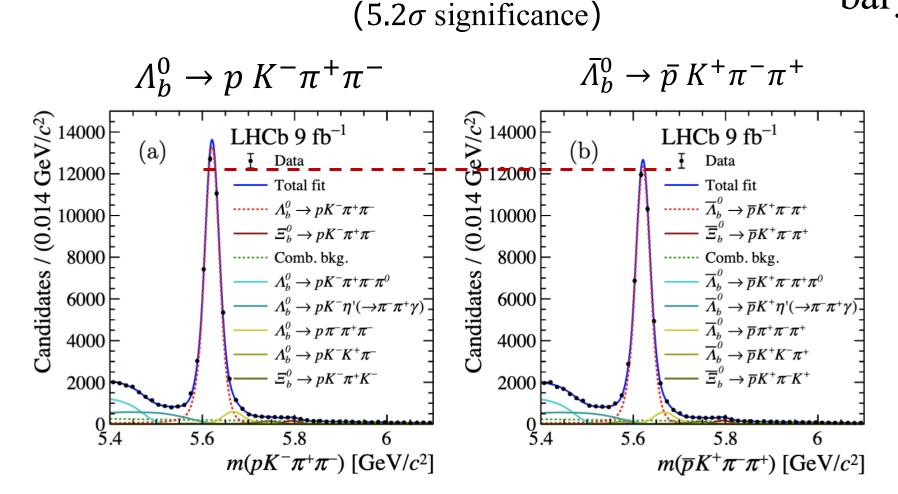
$$N^{*+} \rightarrow \Lambda K^{+} \qquad \Rightarrow \Lambda_{b}^{0} \rightarrow N^{*+} (\Lambda K^{+}) K^{-}$$


$$N^{*+} \rightarrow p \pi^{+} \pi^{-} \Rightarrow \Lambda_{b}^{0} \rightarrow N^{*+} (p \pi^{+} \pi^{-}) K^{-}$$


$$N^{*+} \rightarrow p \pi^{0} \qquad \Rightarrow \Lambda_{b}^{0} \rightarrow N^{*+} (\rightarrow p \pi^{0}) K^{-}$$

CP asymmetry in $\Lambda_b^0 \to p K^- \pi^+ \pi^-$

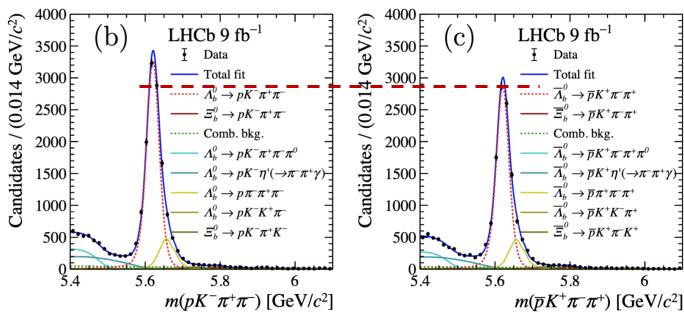
• A_{CP} arises from interference between the tree- and loop-level amplitudes

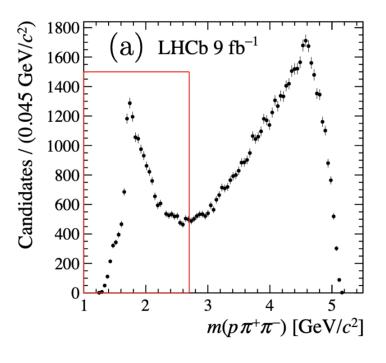


- Rich resonance structures
 - $\Lambda_b^0 \to N^{*+}(p \, \pi^+ \pi^-) K^-, \ p \, K^{*-}(K^- \pi^+ \pi^-), \ \Lambda(p \, K^-) f(\pi^+ \pi^-),$ $N^{*0}(p \pi^{-})K^{*0}(K^{-}\pi^{+})$
- Control channel $\Lambda_b^0 \to \Lambda_c^+(p K^-\pi^+)\pi^-$ to subtract these nuisance asymmetries

CP asymmetry in $\Lambda_b^0 \to p K^- \pi^+ \pi^-$

$$A_{CP} = (2.45 \pm 0.46 \pm 0.10)\%$$

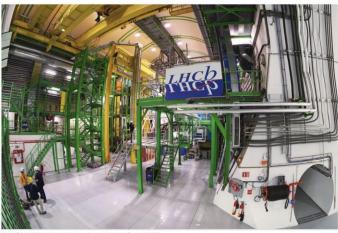

First observation of baryon CP violation


arXiv:2503.16954

Local CP violation in selected regions of the phase space

Decay topology	Mass region (GeV/ c^2)	\mathcal{A}_{CP}	
$\Lambda_b^0 \to R(pK^-)R(\pi^+\pi^-)$	$m_{pK^-} < 2.2$ $m_{\pi^+\pi^-} < 1.1$	$(5.3 \pm 1.3 \pm 0.2)\%$	
$\Lambda_b^0 \to R(p\pi^-)R(K^-\pi^+)$	$m_{p\pi^-} < 1.7$ $0.8 < m_{\pi^+K^-} < 1.0$ or $1.1 < m_{\pi^+K^-} < 1.6$	$(2.7 \pm 0.8 \pm 0.1)\%$	
$\Lambda_b^0 \to R(p\pi^+\pi^-)K^-$	$m_{p\pi^+\pi^-} < 2.7$	$(5.4 \pm 0.9 \pm 0.1)\%$	(6.0σ)
$\Lambda_b^0 \to R(K^-\pi^+\pi^-)p$	$m_{K^-\pi^+\pi^-} < 2.0$	$(2.0 \pm 1.2 \pm 0.3)\%$	

*N**+ resonance region

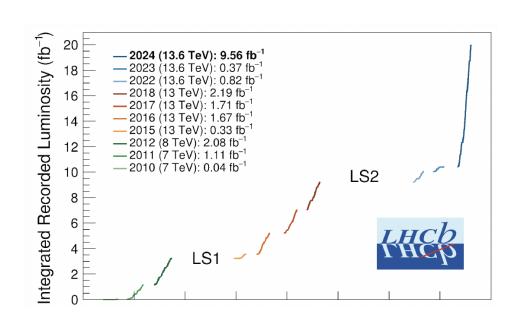


1956 1964 2001 2025 **Parity violation Beauty mesons:** Strange mesons: **Beauty baryons:** T. D. Lee, CP violation in K^0 **CP** violation in B^0 *CP* violation in Λ_b^0 C. N. Yang, decays decays decays C. S. Wu et al. BaBar and Belle J. W. Cronin, LHCb collaboration V. L. Fitch et al. collaborations 24.3.2025 1963 2019 1973 **Cabibbo Mixing** The CKM matrix **Charm mesons:** N. Cabibbo **CP** violation in D^0 M. Kobayashi, decays T. Maskawa LHCb collaboration

A new piece in the matterantimatter puzzle

The LHCb experiment at CERN has revealed a fundamental asymmetry in the behaviour of particles called baryons

25 MARCH, 2025



View of the LHCb experiment in its underground cavern (image: CERN)

Conclusions and prospects

- CP violation is a rich field of study
- Essential to precisely test the SM and constraint/guide New Physics models
- LHCb has a leading role for CP violation searches
- Direct CP violation in baryon decays observed
- 2024 sample size comparable to the sum of Run 1&2

• More results will come!

