

Recent charm results at LHCb

Xiao-Rui Lyu (吕晓睿) University of Chinese Academy Sciences

Outline

- Charm mixing and CPV
 - direct CPV with $D^+ \to K^+ K^- \pi^+$
 - time-dependent CPV with $D^0 \to K^- \pi^+$
 - CPV with Λ_c^+ two-body decays
- Charm rare decay
 - search for $D^0 \to K^+ K^- e^+ e^-$
 - search for $\Lambda_c^+ \to p \mu^+ \mu^-$
 - asymmetry around ϕ resonance in $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$
- Summary

Neutral D meson oscillation

• Time evolution can be described with effective hamiltonian

$$i\frac{\partial}{\partial t}\begin{pmatrix} M^{0}(t)\\ \overline{M}^{0}(t) \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} M & M_{12}\\ M_{12}^{*} & M \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma & \Gamma_{12}\\ \Gamma_{12}^{*} & \Gamma \end{pmatrix} \end{bmatrix} \begin{pmatrix} M^{0}(t)\\ \overline{M}^{0}(t) \end{pmatrix}$$

• Mixing parameters defined as

$$x_{12} \equiv \frac{2|M_{12}|}{\Gamma} \simeq \frac{\Delta m}{\Gamma}, \ y_{12} \equiv \frac{|\Gamma_{12}|}{\Gamma} \simeq \frac{\Delta \Gamma}{\Gamma}$$

0.1⊫ 0.1

0.2

0.3

0.4

0.5

0.6

x mixing: Channel for New Physics. *y* (long-distance) mixing: SM background. 3σ 4σ

X12 (%)

0.7

0.8

Charm CP violation

• CP Violation (CPV) highly suppressed in CKM hierarchy $\left(V_{cb} V_{bc}^* \right)$

 $CPV \propto \text{Im}\left(\frac{V_{cb}V_{bu}^*}{V_{cs}V_{su}^*}\right) \approx -6 \times 10^{-4}$ sensitive to NP effects

• LHCb discovered charm direct CPV in $D \rightarrow h^+h^-$ in 2019

 $\Delta \mathcal{A}^{CP} = \mathcal{A}^{CP}(K^+K^-) - \mathcal{A}^{CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$

• Another type of mixing-induced CPV has not been observed yet

吕晓睿

Local CPV in three-body decays $D^+ \to K^+ K^- \pi^+$

PRL133, 251801(2024)

- Variations of the strong phase across the Dalitz phase space may enhance the local CP asymmetries, being considerably larger than the integrated value
- The Cabibbo-favored mode $D_s^+ \to K^+ K^- \pi^+$ is taken as control channel (*C*)
- A_{CP} around the K^* and ϕ resonances is measured as

$$A_{
m raw}^{i,X} = rac{N_+^{i,X} - N_-^{i,X}}{N_+^{i,X} + N_-^{i,X}} \quad \Delta A_{CP}^i = A_{
m raw}^{i,S} - A_{
m raw}^{i,C}$$

$$A_{CP|S} = \frac{1}{2} \left[\left(\Delta A_{\rm raw}^{\rm top-left} + \Delta A_{\rm raw}^{\rm bottom-right} \right) - \left(\Delta A_{\rm raw}^{\rm top-right} + \Delta A_{\rm raw}^{\rm bottom-left} \right) \right]$$

Sign of CP asymmetry changes when acrossing resonance vertically and horizontally [PRD78, 072003 (2008)]

$$A_{CP|S}^{\phi\pi^+} = (0.95 \pm 0.43 \pm 0.26) \times 10^{-3}$$
$$A_{CP|S}^{\bar{K}^{*0}K^+} = (-0.26 \pm 0.56 \pm 0.18) \times 10^{-3}$$

Compatible with zero asymmetries.

0.5

 $\frac{1}{s(K^{-}\pi^{+})} \frac{1.5}{[\text{GeV}^{2}]}^{2}$

10

Local CPV in three-body decays $D^+ \to K^+ K^- \pi^+$

Ai,S Ai,C

PRL133, 251801(2024)

- Simultaneous model-independent search for any CPV across all Dalitz regions
- A_{CP} is measured in all Dalitz bins

$$\Delta A_{CP}^{i} = A_{\text{raw}}^{i,S} - A_{\text{raw}}^{i,C} - \Delta A_{\text{raw}}^{\text{global}} \qquad \Delta A_{\text{raw}}^{\text{global}} = \frac{\sum_{i}^{N_{\text{bins}}} \frac{A_{\text{raw}} - A_{\text{raw}}}{\sigma_{A_{\text{raw}}}^{2} + \sigma_{A_{\text{raw}}}^{2,C}}}{\sum_{i}^{N_{\text{bins}}} \frac{1}{\sigma_{A_{\text{raw}}}^{2,i,S} + \sigma_{A_{\text{raw}}}^{2,C}}}$$

- ΔA_{raw}^{global} is the global difference in asymmetries averaged over all bins in the Dalitz plots. Any global asymmetry difference between the Signal and Control channels is cancelled.
- The significance is estimated with the χ^2 test statistic as

$$\mathcal{S}^i_{\Delta_{CP}} = rac{\Delta A^i_{CP}}{\sigma_{\Delta A^i_{CP}}} \qquad \chi^2(\mathcal{S}_{\Delta_{CP}}) = \sum_i^{N_{ ext{bins}}} (\mathcal{S}^i_{\Delta_{CP}})^2$$

 $\chi^2/NDF=31.8/22$, corresponding p value is 8.1%. Consistent with CP symmetry.

Mixing and CPV parameters with $D^0 \to K^- \pi^+$

- Full RUN2 data are analyzed to select prompt production of $D^{*+} \rightarrow D^0 \pi^+$
- The ratio of the time-dependent decay rates between the DCS $(K^+\pi^-)$ and CF $(K^-\pi^+)$ modes
- Two decay configurations are measured

$$R_{K\pi}^{+}(t) \equiv \frac{\Gamma(D^{0}(t) \to K^{+}\pi^{-})}{\Gamma(\overline{D}^{0}(t) \to K^{+}\pi^{-})} \qquad \qquad R_{K\pi}^{-}(t) \equiv \frac{\Gamma(\overline{D}^{0}(t) \to K^{-}\pi^{+})}{\Gamma(D^{0}(t) \to K^{-}\pi^{+})}$$

• Up to x_{12}^2 and y_{12}^2

 $R^{\pm}_{K\pi}(t) \approx R_{_{K\pi}}(1\pm A_{_{K\pi}}) + \sqrt{R_{_{K\pi}}(1\pm A_{_{K\pi}})} (c_{_{K\pi}}\pm \Delta c_{_{K\pi}}) t + (c_{_{K\pi}}'\pm \Delta c_{_{K\pi}}') t^2$

mixing parameters

$$c_{K\pi} \approx y_{12} \cos \phi_f^{\Gamma} \cos \Delta_f + x_{12} \cos \phi_f^{M} \sin \Delta_f$$
$$c'_{K\pi} \approx \frac{1}{4} (x_{12}^2 + y_{12}^2)$$

strong phase difference $\Delta_f = -10^\circ \pm 3^\circ$

CPV parameters

 $A_{K\pi} \equiv \frac{|A_{\bar{f}}/\bar{A}_{\bar{f}}|^2 - |\bar{A}_f/A_f|^2}{|A_{\bar{f}}/\bar{A}_{\bar{f}}|^2 + |\bar{A}_f/A_f|^2} \approx a_{\text{DCS}}^d \text{ direct CPV}$ $\Delta c_{K\pi} \approx x_{12} \sin \phi_f^M \cos \Delta_f - y_{12} \sin \phi_f^\Gamma \sin \Delta_f \text{ mixing CPV}$ $\Delta c'_{K\pi} \approx \frac{1}{2} x_{12} y_{12} \sin(\phi_f^M - \phi_f^\Gamma) \text{ interference CPV}$

吕晓睿

Complementary measurement to the prompt one with higher sensitivity to lower decay time

WS/RS ratio is measured as before (slightly different parametrization)

$$R^{\pm}(t) = \frac{N_{WS}^{\pm}(t)}{N_{RS}^{\pm}(t)} = R_D^{\pm} + \sqrt{R_D^{\pm}} y'^{\pm} \left(\frac{t}{\tau}\right) + \frac{x'^{2\pm} + y'^{\pm 2}}{4} \left(\frac{t}{\tau}\right)^2$$
$$R_D^{\pm} \equiv \left|\frac{\mathcal{A}_{K^+\pi^-}}{\overline{\mathcal{A}}_{K^+\pi^-}}\right|^2, \ R_D^{-} \equiv \left|\frac{\overline{\mathcal{A}}_{K^-\pi^+}}{\mathcal{A}_{K^-\pi^+}}\right|^2 \qquad \begin{pmatrix}x'^{\pm}\\y'^{\pm}\end{pmatrix} = |q/p|^{\pm 1} \begin{pmatrix}\cos\left[\delta \pm \phi\right] & \sin\left[\delta \pm \phi\right]\\-\sin\left[\delta \pm \phi\right] & \cos\left[\delta \pm \phi\right]\end{pmatrix} \begin{pmatrix}x\\y\end{pmatrix}$$

 $(r^+ + r^-)/2$ [10⁻³]

 $r^{+} - r^{-} [10^{-3}]$

5

3

1.(

0.5

0.0

-0.5

-1.0

 R_D

y'

 $(x')^2$

0

2

No CPV

JHEP03, 149 (2025)

LHCb 5.4 fb^{-1}

All CPV allowed

8

 $\begin{array}{c} 10 \\ \langle t \rangle \ [\tau_{D^0}] \end{array}$

Data No CPV No direct CPV

6

 $(347.0 \pm 5.5 \pm 1.4) \times 10^{-5}$

 $(5.8 \pm 1.6 \pm 0.2) \times 10^{-3}$

 $(0.0\pm 1.2\pm 0.1)\times 10^{-4}$

R_D	$(347.1 \pm 5.5 \pm 1.3) \times 10^{-5}$
$y^{\prime +}$	$(5.4 \pm 1.9 \pm 0.5) \times 10^{-3}$
$(x'^+)^2$	$(0.0 \pm 1.5 \pm 0.3) imes 10^{-4}$
y'^-	$(6.3 \pm 1.9 \pm 0.4) \times 10^{-3}$
$(x'^-)^2$	$(0.1 \pm 1.6 \pm 0.3) \times 10^{-4}$

Alle	Allow CPV						
R_D^+	$(355.2 \pm 7.9 \pm 2.3) imes 10^{-5}$						
y'^+	$(3.6\pm2.2\pm0.3) imes10^{-3}$						
$(x'^+)^2$	$(1.1 \pm 1.6 \pm 0.1) imes 10^{-4}$						
R_D^-	$(339.1 \pm 7.9 \pm 2.3) imes 10^{-5}$						
y'^-	$(8.1\pm2.3\pm0.3) imes10^{-3}$						
$(x'^-)^2$	$(-1.1 \pm 1.9 \pm 0.1) imes 10^{-4}$						
$A_D \equiv \frac{R_D^+ - R}{R_D^+ + R}$	$rac{2D}{2D} = (2.3 \pm 1.7) \%$						

consistent with CP symmetry

Combinations of prompt and SL-tagged results

JHEP03, 149 (2025)

Param	eters prompt	SL-tagge	ed
$\overline{R_{K\pi}}$	$(343.1 \pm 2.0) \times 10^{-5}$	R_D	$(347.2\pm5.8) imes10^{-5}$
$C_{K\pi}$	$(51.4 \pm 3.5) \times 10^{-4}$	$c_{K\pi}$	$(5.8 \pm 1.6) imes 10^{-3}$
$c'_{K\pi}$	$(13.1 \pm 3.7) \times 10^{-6}$	$c'_{K\pi}$	$(0.9 \pm 2.6) imes 10^{-5}$
$A_{K\pi}$	$(-7.1 \pm 6.0) \times 10^{-3}$	A_D	$(2.3 \pm 1.7) imes 10^{-2}$
$\Delta c_{K\pi}$	$(3.0 \pm 3.6) \times 10^{-4}$	$\Delta c_{K\pi}$	$(-2.3 \pm 1.6) imes 10^{-3}$
$\Delta c'_{K\pi}$	$(-1.9 \pm 3.8) \times 10^{-6}$	$\Delta c'_{K\pi}$	$(2.1 \pm 2.6) \times 10^{-5}$

about a few percent improvement

LH

• CKM angle γ , Charm mixing and CPV parameters measurement included in a single fit

 \rightarrow improves precision on single observables exploiting full information

• 9 new LHCb measurements during 2023-2024 are included

$$\begin{aligned} x &= (0.41 \pm 0.05)\% \\ y &= (0.621^{+0.022}_{-0.021})\% \\ |q/p| &= 0.989 \pm 0.015 \\ \phi &= (-2.5 \pm 1.2)^{\circ} \\ a^d_{\pi^+\pi^-} &= (22 \pm 6) \times 10^{-4} \\ a^d_{K^+K^-} &= (6^{+6}_{-5}) \times 10^{-4} \\ \gamma &= (64.6 \pm 2.8)^{\circ} \end{aligned}$$

Previous determination $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$

Global fits to constraint CPV

LHCb-CONF-2024-004

Assuming CPV for DCS within SM is 0, $a_{DCS}^d=0$, i.e, only one amplitude contributing to decay

Fit is repeated applying external constraint to a_{DCS}^d . Hence, it improves sensitivity to charm CPV observables.

CPV search in Λ_c^+ two-body decays

- CP symmetry can be precisely tested in baryon weak decay by studying the polarization of the produced daughter particles.
- For simple case of Λ_c^+ decaying into $\frac{1}{2}^+$ baryon and a 0^- meson, decay asymmetries can be defined as

• This study takes advantage of nearly 100% longitudinal polarization of the Λ_c^+ from $\Lambda_b^0 \to \Lambda_c^+ h^-$

CPV search in Λ_c^+ two-body decays

PRL133 (2024) 26, 261804

RUN1+2 data

IH

$\frac{LHCb}{CPV}$ CPV search in Λ_c^+ two-body decays

PRL133 (2024) 26, 261804

The parameters β , γ , and Δ are measured for the first time

Decay	$\Lambda_c^+ \to \Lambda \pi^+$	$\Lambda_c^+ \to \Lambda K^+$
β	$0.368 \pm 0.019 \pm 0.008$	$0.35 \pm 0.12 \pm 0.04$
$ar{eta}$	$-0.387\pm0.018\pm0.010$	$-0.32 \pm 0.11 \pm 0.03$
γ	$0.502 \pm 0.016 \pm 0.006$	$-0.743 \pm 0.067 \pm 0.024$
$ar{\gamma}$	$0.480 \pm 0.016 \pm 0.007$	$-0.828 \pm 0.049 \pm 0.013$
Δ (rad)	$0.633 \pm 0.036 \pm 0.013$	$2.70 \pm 0.17 \pm 0.04$
$\bar{\Delta} \ (\mathrm{rad})$	$-0.678 \pm 0.035 \pm 0.013$	$-2.78 \pm 0.13 \pm 0.03$
R_{eta}	$0.012 \pm 0.017 \pm 0.005$	$-0.04 \pm 0.15 \pm 0.02$
R'_{eta}	$-0.481 \pm 0.019 \pm 0.009$	$-0.65 \pm 0.17 \pm 0.07$

$$R_{\beta} = (\beta + \bar{\beta})/(\alpha - \bar{\alpha}) = \tan \Delta \phi \qquad R'_{\beta} \equiv (\beta - \bar{\beta})/(\alpha - \bar{\alpha}) = \tan \Delta \delta$$

$$\frac{\text{no CPV is seen}}{\Lambda_{c}^{+} \to \Lambda \pi^{+}} \qquad \Lambda_{c}^{+} \to \Lambda K^{+}$$

$$\Delta \phi = 0.01 \pm 0.02 \qquad \Delta \phi = -0.03 \pm 0.15$$

$$\Delta \delta = 2.693 \pm 0.017 \qquad \Delta \delta = 2.57 \pm 0.19$$

Charm Rare Decays

Rainbow of the Charm decays:

from forbidden to not-so-rare decays

$D^0 \rightarrow \mu^+ e^-$	$D_{(s)}^+ \rightarrow \pi^+ l^+ l^-$	$D^0 \rightarrow \pi^- \pi^+ V(\rightarrow ll)$	$D^0 \to K^{*0} \gamma$
$D^0 \rightarrow pe^-$	$D_{(s)}^{(s)} \rightarrow K^+ l^+ l^-$	$D^0 \to \rho \ V(\to ll)$	$D^0 \rightarrow (\phi, \rho, \omega) \gamma$
$D^+_{(s)} \rightarrow h^+ \mu^+ e^-$	$D^0 \rightarrow K^- \pi^+ l^+ l^-$	$D^0 \to K^+ K^- V (\to ll)$	$D^+ \rightarrow \pi^+ \phi(\rightarrow ll)$
	$D^0 \to K^{*0} l^+ l^-$	$D^0 \rightarrow \phi \ V(\rightarrow ll)$	$D_s \to \pi \ \varphi(\to u)$

LFV, LNV,	BNV			FC	NC				VMD	F	Radia	tive
0	10 ⁻¹⁵	10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹²	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	10 ⁻⁵	10 ⁻⁴
$D^+_{(s)} \rightarrow h^- l^+ l^+$ $D^0 \rightarrow X^0 \mu^+ e^-$ $D^0 \rightarrow X^{} l^+ l^+$			D^0	$D^0 \rightarrow ee$	$\rightarrow \mu\mu$	$D^{0} \rightarrow \pi^{0}$ $D^{0} \rightarrow \rho$ $D^{0} \rightarrow K^{+}$ $D^{0} \rightarrow \phi$	$\pi^{+}l^{+}l^{-}$ $l^{+}l^{-}$ $K^{-}l^{+}l^{-}$ $l^{+}l^{-}$	$D^{0} \rightarrow D^{0} \rightarrow D^{0$	$\frac{K^{+}\pi^{-}V(}{K^{*0}}V(\rightarrow \gamma\gamma)$	$(\rightarrow ll) D^{+}$ $(ll) D^{0}$ D^{0}	$f^+ \to \pi^+ \phi$ $f^0 \to K^- \pi$ $f^0 \to K^{*0} V$	$(\rightarrow ll)$ $T^{+}V(\rightarrow ll)$ $V(\rightarrow ll)$

[PRD 66 (2002) 014009]

FCNC

- short distance contributions to effective $c \rightarrow u$ transitions are tiny (< 10^{-9})
- Short distance : interested, computable by pQCD, directly • test SM $\mathcal{B}_{D^0 \to X^0_u e^+ e^-} \simeq 8 \cdot 10^{-9} \quad \mathcal{B}_{D^+ \to X^+_u e^+ e^-} \simeq 2 \cdot 10^{-8}$

FCNC suppressed in SM

•

m_{ee} (GeV)

World-wide searches until 2021

 K^*

LHCb Search for $D^0 \rightarrow h^+h^-e^+e^-$ decays

- LHCb firstly observed the FCNC processes $D^0 \to \pi^+ \pi^- \mu^+ \mu^-$ and $K^+ K^- \mu^+ \mu^-$ [PRL119, 181805(2017)] $B(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 1.10) \times 10^{-7}$ $B(D^0 \to K^+ K^- \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.18) \times 10^{-7}$
- It is well motivated to search for the di-electron mode, to probe the universality of the electroweak interaction couplings to leptons of different generations
- Previous best upper limits (ULs) on branching fractions (BFs) are from BESIII

	(×10 ⁻⁶)		
Decay	Upper limit	Experiment	Year
$D^0 \to \pi^0 e^+ e^-$	0.4	BESIII	2018
$D^0 ightarrow \eta e^+ e^-$	0.3	BESIII	2018
$D^0 ightarrow \omega e^+ e^-$	0.6	BESIII	2018
$D^0 \rightarrow K^0_S e^+ e^-$	1.2	BESIII	2018
$D^0 \rightarrow \rho e^+ e^-$	124.0	E791	2001
$D^0 ightarrow \phi e^+ e^-$	59.0	E791	2001
$D^0 ightarrow ar{K}^{*0} e^+ e^-$	47.0	E791	2001
$D^0 \rightarrow \pi^+\pi^- e^+ e^-$	0.7	BESIII	2018
$D^0 \to K^+ K^- e^+ e^-$	1.1	BESIII	2018
$D^0 \rightarrow K^- \pi^+ e^+ e^-$	4.1	BESIII	2018

EXAMPLE Search for $D^0 \to \pi^+\pi^-e^+e^-$

- Observation of $D^0 \rightarrow \pi^+\pi^- e^+ e^-$ in ρ/ω and ϕ mass regions
- The current best upper limits on BF in other regions have been established.
- The BF in the di-electron mode is compatible with the one of the di-muon mode.

	$D^0 ightarrow \pi^+\pi^-$	~e^+e^-
$m(e^+e^-)$ region	[MeV/c ²]	$\mathcal{B}~[10^{-7}]$
Low mass	211–525	< 4.8(5.4)
η	525–565	< 2.3 (2.7)
$ ho^0/\omega$	565–950	$4.5 \pm 1.0 \pm 0.7 \pm 0.6$
ϕ	950–1100	$3.8 \pm 0.7 \pm 0.4 \pm 0.5$
High mass	> 1100	< 2.0 (2.2)
Total	_	$13.3 \pm 1.1 \pm 1.7 \pm 1.8$

arXiv:2412.09414

KHEP Search for $D^0 \to K^+K^-e^+e^-$

第5届LHCb前沿物理研讨会

arXiv:2412.09414

 D^0 are selected from the decays of $D^{*+} \rightarrow D^0 \pi^+$

- No evidences with the current precision.
- The current best upper limits on the BFs have been established.
- Observation of $D^0 \rightarrow \pi^+\pi^- e^+ e^-$ in ρ/ω and ϕ mass regions

$$\begin{array}{ccc} D^0 \to {\cal K}^+ {\cal K}^- e^+ e^- \\ m(e^+ e^-) \mbox{ region } [\mbox{ MeV}/c^2] & {\cal B} \ [10^{-7}] \\ \mbox{Low mass } 211-525 & < 1.0 \ (1.1) \\ \eta & 525-565 & < 0.4 \ (0.5) \\ \rho^0/\omega & > 565 & < 2.2 \ (2.5) \end{array}$$

no evidence for lepton flavour universality violation

Search for $\Lambda_{\rm c}^+ \rightarrow p \mu^+ \mu^-$

PRD110, 052007 (2024)

• LHCb searched for $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ based on RUN1 data and place the best UL in 2018

Mode	Limit $\times 10^{6}$	Experiment
pe^+e^-	5.5	BABAR
$p\mu^+\mu^-$	340.0	E653
	44.0	BABAR
	0.077	LHCb

- LHCb searched for $\Lambda_c^+ \rightarrow p\mu^+\mu^-$ in the resonant and non-resonant di-muon mass regions with LHCb RUN2 (5.4 fb⁻¹) data
 - ✓ Determine the branching fractions in the ρ , ω and η resonant regions;
 - \checkmark Search the FCNC process in the non-resonant region;
 - $\checkmark\,$ uses the ϕ resonant region as normalization.

Search for $\Lambda_{\rm c}^+ \rightarrow p \mu^+ \mu^-$

PRD110, 052007 (2024)

No signal evidence for the FCNC process in the non-resonant region

The best upper limit: $\mathcal{B}(\Lambda_c^+ \to p\mu^+\mu^-) < 2.9 \ (3.2) \times 10^{-8}$ at 90% (95%) CL.

$$\mathcal{B}(\Lambda_c^+ \to p\omega) = (9.82 \pm 1.23 \text{ (stat.)} \pm 0.73 \text{ (syst.)} \pm 2.79 \text{ (ext.)}) \times 10^{-4},$$

$$\mathcal{B}(\Lambda_c^+ \to p\rho) = (1.52 \pm 0.34 \text{ (stat.)} \pm 0.14 \text{ (syst.)} \pm 0.24 \text{ (ext.)}) \times 10^{-3},$$

$$\mathcal{B}(\Lambda_c^+ \to p\eta) = (1.67 \pm 0.69 \text{ (stat.)} \pm 0.23 \text{ (syst.)} \pm 0.34 \text{ (ext.)}) \times 10^{-3},$$

consistent with those measurements from BESIII and BELLE via non-leptonic decays

吕晓睿

Resonance enhanced asymmetries in

- Λ⁺_c → pμ⁺μ⁻
 Angular distributions and CP asymmetries on Λ⁺_c → pμ⁺μ⁻ in the resonant regions can be used to separate the short and long-distance contributions.
- Interference effects between SM resonant and beyond-SM amplitudes can produce asymmetries as large as O(%)

Two asymmetries are probed:

A

• CP asymmetry

$$_{CP} \equiv \frac{\Gamma(\Lambda_c^+ \to p\mu^+\mu^-) - \Gamma(\overline{\Lambda}_c^- \to \overline{p}\mu^+\mu^-)}{\Gamma(\Lambda_c^+ \to p\mu^+\mu^-) + \Gamma(\overline{\Lambda}_c^- \to \overline{p}\mu^+\mu^-)}$$

In real practice, raw asymmetry A_{CP}^{raw} is measured directly and A_{CP} is determined after correcting the production and detection asymmetries

$$A_{CP}^{raw} = \frac{N\left(\Lambda_{c}^{+}\right) - N\left(\overline{\Lambda}_{c}^{-}\right)}{N\left(\Lambda_{c}^{+}\right) + N\left(\overline{\Lambda}_{c}^{-}\right)} = A_{CP} + \frac{A_{P}\left(\Lambda_{c}^{+}\right) + A_{D}\left(p\right)}{N\left(\Lambda_{c}^{+}\right) + N\left(\overline{\Lambda}_{c}^{-}\right)} = 0\right)$$

 $\Lambda_c^+ \rightarrow pK_S^0, K_S^0 \rightarrow \pi^+\pi^-$ is used as control sample to estimate the nuisance asymmetries

• Forward-backward asymmetry

$$A_{\rm FB} \equiv \frac{\Gamma(\cos\theta > 0) - \Gamma(\cos\theta < 0)}{\Gamma(\cos\theta > 0) + \Gamma(\cos\theta < 0)}$$

CP-average and CP asymmetry can enhance sensitivity to real and imaginary parts of NP couplings $\sum A = \frac{1}{2} \left(A^{A_c^+} + A^{\overline{A_c^-}} \right) = A A_{--} = \frac{1}{2} \left(A^{A_c^+} - A^{\overline{A_c^-}} \right)$

$$\Sigma A_{FB} = \frac{1}{2} \left(A_{FB}^{\Lambda_c^+} + A_{FB}^{\overline{\Lambda}_c^-} \right) \qquad \Delta A_{FB} = \frac{1}{2} \left(A_{FB}^{\Lambda_c^+} - A_{FB}^{\overline{\Lambda}_c^-} \right)$$

第5届LHCb前沿物理研讨会

arXiv:2502.04013

- confirm the SM prediction
- help to constrain the parameter space of NP models [Hiller et al, arXiv 2410.00115]

Summary

- Charm physics is a unique probe to test the SM and search for new physics
- Many new measurement in the charm physics with many different observables
 - \checkmark improved precisions on mixing and CPV parameters
 - ✓ except $D^0 \to h^+ h^-$, no evidence of CP violation seen yet
 - best precisions in constraining the rates of the charmed FCNC decays
- Great prospects from LHCb with Run 3 dataset
 - new precision measurement will be possible
 - ✓ record luminosity of > 9.5 fb⁻¹

Thank you!

Backup Slides

Run I (2/fb)

PRL 119, 181805 (2017)

Rarest charm-hadron decays ever observed:

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7}$ $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7}$

where the uncertainties are statistical, systematic and due to the BF of the normalization decay

$D^0 \rightarrow h^+ h^- \mu^+ \mu^-$: angular and CP asymmetries

- All asym. consistent with zero
- No dependency on dimuon mass

Observation of the decay $D^0 \rightarrow K^- \pi^+ e^+ e^-$ at BaBar

[PRL 122 081802 (2019)]

LHCb

- Measurement restricted to $675 < m_{\mu\mu} < 875 \,{
 m MeV}/c^2$
- $BF(D^0 \to K^- \pi^+ \mu^- \mu^+) =$ $(4.12\pm0.12_{stat}\pm0.38_{syst})\times10^{-6}$
- In agreement with SM predictions [JHEP 04 (2013) 135]
- Ideal normalisation mode for $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$

BaBar

 $m(e^+e^-)$ [GeV/c²]

Observation for $675 < m_{ee} < 875 \,\mathrm{MeV}/c^2$ $BF(D^0 \rightarrow K^- \pi^+ e^- e^-) =$ $(4.0 \pm 0.5 \pm 0.2 \pm 0.1) imes 10^{-6}$ In agreement with LHCb's $D^0
ightarrow K^- \pi^+ \mu^+ \mu^-$ Limits elsewhere at 10^{-6} level

Search for $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$

• Similar approach to $D_s^+ \rightarrow h^+ \mu^+ \mu^-$ search analysis (split in dimoun mass regions, normalise to ϕ region)

- Significant signal (5 σ) in the ω region
- Best limit on the non-resonant component, ${\cal B}(\Lambda_c o p \mu^+ \mu^-) < 7.7 imes 10^{-8}$ at 90% CL

Acceptance corrections

The detector and the offline selection may have different efficiencies in different regions of the $(m_{\mu\mu}, \cos\theta)$ -phase space.

The distributions at generation level and after the offline selection are compared.

The **relative efficiencies** in the phase space ⁵ are:

$$\epsilon\left(m_{\mu\mu},\cos heta
ight)=rac{f_{selected}\left(m_{\mu\mu},\cos heta
ight)}{f_{generated}\left(m_{\mu\mu},\cos heta
ight)}$$

and the acceptance weights:

$$\lambda_{corr} = rac{1}{\epsilon}$$

Alternative parametrization

$$\bar{R}^{\pm}(t) \approx R_D(1 \pm A_D) + \sqrt{R_D(1 \pm A_D)} (c_{K\pi} \pm \Delta c_{K\pi}) \left(\frac{t}{\tau_{D^0}}\right) + (c'_{K\pi} \pm \Delta c'_{K\pi}) \left(\frac{t}{\tau_{D^0}}\right)^2,$$
(A.3)

where

$$R_D = \frac{R_D^+ + R_D^-}{2},$$
 (A.4)

$$c_{K\pi} = \frac{y'^+ + y'^-}{2},\tag{A.5}$$

$$c'_{K\pi} = \frac{1}{2} \left[\frac{(x'^+)^2 + (y'^+)^2}{4} + \frac{(x'^-)^2 + (y'^-)^2}{4} \right],$$
 (A.6)

$$A_D = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-},\tag{A.7}$$

$$\Delta c_{K\pi} = \frac{y'^+ - y'^-}{2},\tag{A.8}$$

$$\Delta c'_{K\pi} = \frac{1}{2} \left[\frac{(x'^+)^2 + (y'^+)^2}{4} - \frac{(x'^-)^2 + (y'^-)^2}{4} \right].$$
(A.9)

Formula

$$\begin{split} \frac{\mathrm{d}^5\Gamma}{\mathrm{d}\cos\theta_0\mathrm{d}\cos\theta_1\mathrm{d}\phi_1\mathrm{d}\cos\theta_2\mathrm{d}\phi_2} &\propto \left(1 + \alpha_{\Lambda_b^0}\alpha_{\Lambda_c^+}\cos\theta_1 + \alpha_{\Lambda_c^+}\alpha_\Lambda\cos\theta_2 + \alpha_{\Lambda_b^0}\alpha_\Lambda\cos\theta_1\cos\theta_2 \\ &\quad - \alpha_{\Lambda_b^0}\gamma_{\Lambda_c^+}\alpha_\Lambda\sin\theta_1\sin\theta_2\cos\phi_2 + \alpha_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\theta_1\sin\theta_2\sin\phi_2\right) \\ &\quad + P_z \cdot (\alpha_{\Lambda_b^0}\cos\theta_0 + \alpha_{\Lambda_c^+}\cos\theta_0\cos\theta_1 + \alpha_{\Lambda_b^0}\alpha_{\Lambda_c^+}\alpha_\Lambda\cos\theta_0\cos\theta_2 \\ &\quad + \alpha_\Lambda\cos\theta_0\cos\theta_1\cos\theta_2 - \gamma_{\Lambda_b^0}\alpha_{\Lambda_c^+}\sin\theta_0\sin\theta_1\cos\phi_1 + \beta_{\Lambda_b^0}\alpha_{\Lambda_c^+}\sin\theta_0\sin\theta_1\sin\phi_1 \\ &\quad - \gamma_{\Lambda_c^+}\alpha_\Lambda\cos\theta_0\sin\theta_1\sin\theta_2\cos\phi_2 + \beta_{\Lambda_c^+}\alpha_\Lambda\cos\theta_0\sin\theta_1\sin\theta_2\sin\phi_2 \\ &\quad - \gamma_{\Lambda_b^0}\alpha_\Lambda\sin\theta_0\sin\theta_1\cos\theta_2\cos\phi_1 + \beta_{\Lambda_b^0}\alpha_\Lambda\sin\theta_0\sin\theta_2\cos\phi_1\sin\phi_2 \\ &\quad + \beta_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\theta_0\sin\theta_2\sin\phi_2\cos\phi_1\cos\phi_2 + \beta_{\Lambda_b^0}\gamma_{\Lambda_c^+}\alpha_\Lambda\sin\theta_0\sin\theta_2\cos\phi_1\sin\phi_2 \\ &\quad + \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\theta_0\sin\theta_2\sin\phi_2\cos\phi_1\cos\phi_2 + \gamma_{\Lambda_b^0}\gamma_{\Lambda_c^+}\alpha_\Lambda\sin\theta_0\sin\phi_2\sin\phi_1\sin\phi_2 \\ &\quad + \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\theta_0\cos\theta_1\sin\theta_2\cos\phi_1\cos\phi_2 \\ &\quad + \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\theta_0\cos\theta_1\sin\theta_2\cos\phi_1\cos\phi_2 \\ &\quad + \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\theta_0\cos\theta_1\sin\theta_2\sin\phi_2\cos\phi_1\cos\phi_2 \\ &\quad + \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\theta_0\cos\theta_1\sin\theta_2\sin\phi_2\sin\phi_1\cos\phi_2 \\ &\quad + \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\theta_0\cos\theta_1\sin\theta_2\sin\phi_2\sin\phi_1\cos\phi_2 \\ &\quad + \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\theta_0\cos\phi_1\sin\phi_2\sin\phi_1\cos\phi_2 \\ &\quad + \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\theta_0\cos\phi_1\sin\phi_2\sin\phi_1\cos\phi_2 \\ &\quad - \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\theta_0\cos\phi_1\sin\phi_2\sin\phi_1\cos\phi_2 \\ &\quad - \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\phi_0\cos\phi_1\sin\phi_2\sin\phi_1\cos\phi_2 \\ &\quad - \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\phi_0\cos\phi_1\sin\phi_2\sin\phi_1\cos\phi_2 \\ &\quad - \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\phi_0\cos\phi_1\sin\phi_2\cos\phi_1\cos\phi_2 \\ &\quad + \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\phi_0\cos\phi_1\sin\phi_2\sin\phi_1\cos\phi_2 \\ &\quad - \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\phi_0\cos\phi_1\sin\phi_2\sin\phi_1\cos\phi_2 \\ &\quad - \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\phi_0\cos\phi_1\sin\phi_2\sin\phi_1\cos\phi_2 \\ &\quad - \gamma_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\phi_0\cos\phi_1\sin\phi_2\sin\phi_1\cos\phi_2 \\ &\quad - \beta_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\phi_0\cos\phi_1\sin\phi_2\sin\phi_1\cos\phi_2 \\ &\quad - \beta_{\Lambda_b^0}\beta_{\Lambda_c^+}\alpha_\Lambda\sin\phi_0\cos\phi_1\sin\phi_2\sin\phi_1\sin\phi_2), \end{split}$$

Current facilities for charm study

- Hadron colliders (huge cross-section, energy boost)
 - LHCb: 9fb⁻¹ until now; world's largest sample of c-hadron decays in charged modes (x40 current B factories)
 - Solution Soluti Solution Solution Solution Solution Solution Solution S
 - Threshold production (BESIII)
 - Pair production and double tag technique
 - Low backgrounds and high efficiency
 - Quantum correlations and CP-tagging are unique

Charm samples

	prompt cc					
Hadron colliders	LHCb	7, 8 TeV	3/fb	1.4 mb	$3.6 imes10^{12}$	
		13 TeV	6/fb	2.6 mb	13.2×10^{12}	
	CDF	2 TeV	10/fb	0.1 mb	$2.3 imes10^{11}$	

 $c\bar{c}$ from continuum

$\mathbf{e}^+\mathbf{e}^-$ collider	Belle BaBar	10.6 GeV 10.6 GeV	1/ab 550/fb	1.3 nb 1.3 nb	$\begin{array}{c} 1.3\times10^9\\ 0.7\times10^9\end{array}$	
	Charm factories at $D\bar{D}$ threshold					
	BESIII	3.7 GeV	3/fb	3 nb	$20 imes 10^6$	
	Cleo-c	3.7 GeV	0.8/fb	3 nb	$5 imes 10^6$	

LHCb prospects for future measurements

Limits on BFs (away from resonances for multibody)

Mode	Upgrade (50 ${ m fb}^{-1}$)	Upgrade II (300 ${ m fb}^{-1}$)
$D^0 ightarrow \mu^+ \mu^-$	$4.2 imes 10^{-10}$	$1.3 imes10^{-10}$
$D^+ ightarrow \pi^+ \mu^+ \mu^-$	10 ⁻⁸	$3 imes 10^{-9}$
$D_s^+ ightarrow K^+ \mu^+ \mu^-$	10 ⁻⁸	$3 imes 10^{-9}$
$\Lambda ightarrow p \mu \mu$	$1.1 imes10^{-8}$	$4.4 imes 10^{-9}$
$D^0 o e \mu$	10 ⁻⁹	$4.1 imes10^{-9}$

Statistical precision on A_{CP} (PS integrated)

Mode	Upgrade (50 ${ m fb}^{-1}$)	Upgrade II ($300{ m fb}^{-1}$)
$D^+ ightarrow \pi^+ \mu^+ \mu^-$	0.2%	0.08%
$D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$	1%	0.4%
$D^0 \rightarrow K^- \pi^+ \mu^+ \mu^-$	0.3%	0.13%
$D^0 ightarrow K^+ \pi^- \mu^+ \mu^-$	12%	5%
$D^0 ightarrow K^+ K^- \mu^+ \mu^-$	4%	1.7%

