轻子味普适性理论研究 ***一些个人的总结和理解***

see also talks by Keche Li, Haibo Li, Longke Li, Xiaorui Lyu, Liang Sun, Jiesheng Yu Xinqiang Li, Fusheng Yu, Qin Qin, Yue-Long Shen, Qian Zhang

第5届LHCb前沿物理研讨会

袁兴博

华中师范大学

华中师范大学,武汉,2025.04.27

LFU: origin and observable

Experimental summary and implications for New Physics

LFU violation in New Physics

Summary

Flavour Physics

Flavour universal

- \blacktriangleright couplings $\propto \delta_{ii}$ in flavour space
- example: strong and electromagnetic interactions
- consequence of gauge invariance

Flavour diagonal

- couplings $\propto \lambda_i \delta_{ii}$ (diagonal, but not necessarily universal)
- example: Yukawa interactions

Flavour violation (changing)

- couplings involve different quarks
- ▶ no flavour violation in lepton sector ($m_{\nu} = 0$)
- example: W^{\pm} interactions in quark section

Flavour Changing Neutral Current (FCNC)

- absent at the tree-level
- arise at the one-loop, but suppressed by GIM mechanism

Why flavour physics

- New physics $\iff \mathcal{O}(10^9) B\bar{B}$ events at BaBar and Belle
- structure of CKM and mass
- ► CP violation
- strong interaction

experimental status

no evidence of NP $> 5\sigma$ but, anomalies $2 \sim 4\sigma$

CKM matrix

Cabibbo–Kobayashi–Maskawa matrix

- ► 3 mixing angules and 1 CP phase
- CP violation in the Standard Model

not enough to explain the baryon asymmetry in our universe

new CP violation sources

penguin diagram

Origin of LFU

Flavour universality in lepton sector

$$\bar{\ell}'_{R} \gamma^{\mu} Z_{\mu} Y \ell'_{R} \propto \begin{bmatrix} \bar{\ell}'_{R} & \bar{\mu}'_{R} & \bar{\tau}'_{R} \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \ell'_{R} \\ \mu'_{R} \\ \tau'_{R} \end{bmatrix} = \begin{bmatrix} \bar{\ell}_{R} & \bar{\mu}_{R} & \bar{\tau}_{R} \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$hypercharge of U(1)_{Y} \\ Y_{\ell_{R}} = Y_{\mu_{R}} = Y_{\tau_{R}} = -1$$

$$\ell'_{R} = U_{R} \ell_{R} \\ U_{R} : complex 3 \times 3 unitary matrix$$

$$\bar{\ell}'_{L} \gamma^{\mu} W_{\mu}^{-} \nu'_{L} \propto \begin{bmatrix} \bar{\ell}'_{L} & \bar{\mu}'_{L} & \bar{\tau}'_{L} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \nu'_{e,L} \\ \nu'_{\mu,L} \\ \nu'_{\tau,L} \end{bmatrix} = \begin{bmatrix} \bar{\ell}_{L} & \bar{\mu}_{L} & \bar{\tau}_{L} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \nu'_{e,L} \\ \nu'_{\mu,L} \\ \nu'_{\tau,L} \end{bmatrix}$$

$$neglecting neutrino masses, one can always choose U_{\mu} = U_{\ell}$$

$$flavour universal$$

Flavour non-universality in quark sector

$$\bar{u}_{L}^{\prime}\gamma^{\mu}W_{\mu}^{+}d_{L}^{\prime} \propto \begin{bmatrix} \bar{u}_{L}^{\prime} & \bar{c}_{L}^{\prime} & \bar{t}_{L}^{\prime} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} d_{L}^{\prime} \\ s_{L}^{\prime} \\ b_{L}^{\prime} \end{bmatrix} = \begin{bmatrix} \bar{u}_{L} & \bar{c}_{L} & \bar{t}_{L} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} d_{L} \\ s_{L} \\ b_{L} \end{bmatrix} = \begin{bmatrix} \bar{u}_{L} & \bar{c}_{L} & \bar{t}_{L} \end{bmatrix} \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} d_{L} \\ s_{L} \\ b_{L} \end{bmatrix}$$

accidental symmetry

i.e. symmetry holds for operators of dim=4, but broken by dim>4 operators

- U f ν

flavour non-universal and non-diagonal

LFU Observable

Definition

$$R_{\text{LFU}} \equiv \frac{\mathcal{O}(H \to \ell_1(+\ell_1) + X)}{\mathcal{O}(H \to \ell_2(+\ell_2) + X)}$$

Experimental uncertainty largely cancelled.

$$\Delta_{\mathsf{LFU}} \equiv \mathcal{O}(H \to \ell_1(+\ell_1) + X) - \mathcal{O}(H \to \ell_2(+\ell_2) + X)$$

General analysis within New Physics

input parameter (mass, CKM, ...)

$$R_{\mathsf{LFU}}^{\mu/e} \equiv \frac{\mathscr{O}(H \to \mu (+\mu) + X)}{\mathscr{O}(H \to e (+e) + X)} \approx \frac{1}{2} + \frac{1}{c} \cdot \frac{1}{h} \cdot \left(g_{\mu}^{\mathsf{NP}} - g_{e_{\mu}}^{\mathsf{NP}}\right)$$

SM hadronic parameter NP

hadronic (decay constant, form factor, ...) and parameter (CKM factor, ...) hadronic uncertainty uncertainty largely cancelled in the SM part remains in the NP part

examples:

$$R_{K} = \frac{\mathscr{B}(B \to K\mu^{+}\mu^{-})}{\mathscr{B}(B \to Ke^{+}e^{-})} \qquad R(D^{(*)}) = \frac{\mathfrak{B}(B \to D^{(*)}\tau)}{\mathfrak{B}(B \to D^{(*)}\ell)}$$

couplings

 π, K, τ systems

$> \pi$ decay

$$R_{e/\mu}^{P} = \frac{\Gamma[P \to e\bar{\nu}_{e}(\gamma)]}{\Gamma[P \to \mu\bar{\nu}_{\mu}(\gamma)]}$$

$$K \text{ decay}$$

$$R_{e/\mu}^{K} = \frac{\Gamma[K^{+} \to e^{+}\nu(\gamma)]}{\Gamma[K^{+} \to \mu^{+}\nu(\gamma)]}$$

$$R_{e/\mu}^{K \to \pi} = \frac{\Gamma[K \to \pi e\nu(\gamma)]}{\Gamma[K \to \pi \mu\nu(\gamma)]}$$

$$\tau \text{ decay}$$

$$\left(\frac{A_{\mu}}{A_{e}}\right)_{R^{\pi}_{e/\mu}} = 1.0010 \pm 0.0$$

$$\left(\frac{A_{\mu}}{A_{e}}\right)_{R_{e/\mu}^{K}} = 0.9978 \pm 0.0000$$

$$\left(\frac{A_{\mu}}{A_{e}}\right)_{R_{e/\mu}^{K_{L}\to\pi}} = 1.0022 \pm 0.0024$$

$$R_{\tau/e}^{\tau} = \frac{\text{Br}(\tau^- \to \mu^- \bar{\nu_{\mu}} \nu_{\tau})}{\text{Br}(\mu^- \to e^- \bar{\nu_e} \nu_{\mu})} \qquad \left(\frac{A_{\tau}}{A_e}\right)$$
$$R_{\tau/\mu}^{\tau} = \frac{\text{Br}(\tau^- \to e^- \bar{\nu_e} \nu_{\tau})}{\text{Br}(\mu^- \to e^- \bar{\nu_e} \nu_{\mu})} \qquad \left(\frac{A_{\tau}}{A_{\mu}}\right)$$
$$R_{\mu/e}^{\tau} = \frac{\text{Br}(\tau^- \to \mu^- \bar{\nu_{\mu}} \nu_{\tau})}{\text{Br}(\tau^- \to e^- \bar{\nu_e} \nu_{\tau})} \qquad \left(\frac{A_{\mu}}{A_{\mu}}\right)$$

 $R_{\tau/\mu}^{\tau\pi(K)} = \frac{\operatorname{Br}[\tau \to \pi(K)\nu_{\tau}]}{\operatorname{Br}[\pi(K) \to \mu\nu_{\mu}]}$

$$\begin{pmatrix} A_{\mu} \\ T \\ A_{e} \end{pmatrix}_{\tau} = 1.0018 \pm 0.0014$$
$$\begin{pmatrix} A_{\tau} \\ A_{\tau} \end{pmatrix}_{\tau} = 0.0064 \pm 0.0034$$

$$\left(\frac{i}{A_{\mu}}\right)_{\pi} = 0.9964 \pm 0.0038$$

- A. Pich, Prog. Part. Nucl. Phys. 75 (2014) 41
- B. Bryman, Cirigliano, Crivellin, Inguglia, Annu. Rev. Nucl. Part. Sci. 2022. 72:69-91

0009

LFU holds @O(0.1%)

0018

$$\left(\frac{A_{\mu}}{A_{e}}\right)_{R_{e/\mu}^{K^{\pm} \to \pi^{\pm}}} = 0.9995 \pm 0.0026$$

Z and W boson

Z boson decay

$\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$							Γ_2/Γ_1
VALUE	DOCUM	IENT ID		TECN	COMME	NT	-
1.0001 ± 0.0024 OUR AVE	RAGE						
0.9974 ± 0.0050	¹ AABO	UD	17Q	ATLS	$E_{\rm cm}^{pp} =$	7 TeV	
1.0009 ± 0.0028	² LEP-SI	LC	06		$E_{\rm cm}^{ee} =$	88–94 GeV	
$\Gamma(au^+ au^-)/\Gamma(extbf{e}^+ extbf{e}^-)$							Γ_3/Γ_1
	RACE	<u>DOCUM</u>	ENT ID)	<u>TECN</u>	COMMENT	
		1					
1.02 ± 0.06		¹ AAIJ		18ar	LHCB	$E_{\rm cm}^{\rho\rho} = 8 {\rm TeV}$	
1.0019 ± 0.0032		² LEP-SI	_C	06		$E_{cm}^{ee} = 88-94$	GeV
$\Gamma(au^+ au^-)/\Gamma(\mu^+\mu^-)$							Γ_3/Γ_2
VALUE		<u>DOCUM</u>	ENT ID)	TECN	COMMENT	
1.0010 ± 0.0026 OUR AVE	RAGE						
1.01 ± 0.05		¹ AAIJ		18 AR	LHCB	$E_{cm}^{pp} = 8 \text{ TeV}$	
$1.0010\!\pm\!0.0026$		² LEP-SI	_C	06		$E_{cm}^{ee} = 88-94$	GeV

7

Quarkonium

$$\begin{split} R^{\Upsilon(1S),\,\text{BaBar}}_{\tau/\mu} &= 1.005 \pm 0.013_{\text{stat}} \pm 0.022_{\text{syst}}, \\ R^{\Upsilon(1S),\,\text{CLEO}}_{\tau/\mu} &= 1.02 \pm 0.02_{\text{stat}} \pm 0.05_{\text{syst}}, \\ R^{\Upsilon(2S),\,\text{CLEO}}_{\tau/\mu} &= 1.04 \pm 0.04_{\text{stat}} \pm 0.05_{\text{syst}}, \\ R^{\Upsilon(3S),\,\text{CLEO}}_{\tau/\mu} &= 1.05 \pm 0.08_{\text{stat}} \pm 0.05_{\text{syst}}. \end{split}$$

Y(10		DDC
		FDG
Γ ₁	$ au^+ au^-$	(2.60 ± 0.10)%
Γ ₂	e^+e^-	(2.39 ± 0.08)%
Г ₃	$\mu^+ \mu^-$	(2.48 ± 0.04)%
Y(25	5)	
Г ₃	$ au^+ au^-$	$(2.00\pm0.21)\%$
Γ ₄	$\mu^+ \mu^-$	(1.93 ± 0.17) %
Γ ₅	e ⁺ e ⁻	$(1.91\pm 0.16)\%$
Y(39	S)	
Γ ₁₃	$\tau^+ \tau^-$	(2.29 ± 0.30) %
Γ ₁₄	$\mu^+ \mu^-$	$(2.18\pm~0.21)~\%$
Γ ₁₅	e^+e^-	$(2.18 \pm 0.20)\%$

Charmsector: charged current

Charm sector: neutral current

$$m^2_{
ho'}$$
 10

Drell-Yan + b jets

 R_D and R_{D*} anomalies: exp

R_D and R_{D*} anomalies: exp

3.3σ deviation from SM

 $\mathcal{R}(D^+) = 0.418 \pm 0.074 \text{ (stat)} \pm 0.051 \text{ (syst)}$ $\mathcal{R}(D^{*+}) = 0.306 \pm 0.034 \text{ (stat)} \pm 0.018 \text{ (syst)}$

1.7σ deviation from SM

R_D and R_{D*} anomalies: exp

 $\mathcal{R}(D_{1,2}^{**0}) = 0.13 \pm 0.03 \,(\text{stat}) \pm 0.01 \,(\text{syst}) \pm 0.02 \,(\text{ext})$ LHCb, arXiv: 2501.14943

 $R(J/\psi) = 0.17 \pm 0.33$ CMS, PRD111(2025)L051102

violation of the sum rules could be caused by right-handed neutrino, massive neutrino, ...

Belle II, arXiv:2504.11220

$${\cal R}(D^+_{e/\mu}) = 1.07 \pm 0.05 ({
m stat}) \pm 0.02 ({
m syst})$$
 1.2 σ diff. f

$${\cal R}(D_{e/\mu}^{+*}) = 1.08 \pm 0.04 ({
m stat}) \pm 0.02 ({
m syst})$$
 1.6 σ diff. for

$$R(X_{e/\mu}) = 1.007 \pm 0.009(\text{stat}) \pm 0.019(\text{syst}) \qquad \text{Belle II}$$

$$R(X_{\tau/e}) = 0.232 \pm 0.020(\text{stat}) \pm 0.037(\text{syst}),$$

$$R(X_{\tau/\mu}) = 0.222 \pm 0.027(\text{stat}) \pm 0.050(\text{syst}),$$

$$Combined$$

$$R(X_{\tau/\ell}) = 0.228 \pm 0.016(\text{stat}) \pm 0.036(\text{syst})$$

$$R(X_{\tau/\ell}) = 0.228 \pm 0.016(\text{stat}) \pm 0.036(\text{syst})$$

R_D and R_{D^*} anomalies

- Anomalies mainly from BaBar measurement
- **LHCb 2022: muonic tau,** 3 fb^{-1} @Run I
- **LHCb 2023: hadronic tau,** 2 fb^{-1} @Run II
- Outlook
 - Analysis based on Run I + II (9 fb^{-1})
 - ► R_{Λ_c} , R_{D_s} , R_D
 - ► Belle II

18

16

14

12

10-

[%]

Fotal uncertainty

R_D and R_{D*} anomalies: theory

uncertainty: current theo $\approx \exp(2040)$

$$R_{D^{(*)}} = \frac{\Gamma(B \to D^{(*)}\tau\nu)}{\Gamma(B \to D^{(*)}\ell\nu)}$$
$$R_{D} = \frac{\int_{m_{\tau}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to D\tau\nu)}{dq^{2}}}{\int_{m_{\ell}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to D\ell\nu)}{dq^{2}}}$$

form factor in $q^2 \in (m_\ell^2, m_\tau^2)$ not cancelled

$$\tilde{R}_{D} = \frac{\int_{m_{\tau}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to D\tau\nu)}{dq^{2}}}{\int_{m_{\tau}^{2}}^{q_{\max}^{2}} \frac{d\Gamma(B \to D\ell'\nu)}{dq^{2}}}$$

form factors in the same region

$$r_D(q^2) = \frac{\frac{d\Gamma(B \to D\tau\nu)}{dq^2}}{\frac{d\Gamma(B \to D\ell\nu)}{dq^2}}$$

Form factors could not be a problem for $R_{D^{(*)}}$ in the future, form factor fully cancelled, for large data samples but still important for angular observables e.g., $P_{\tau}(D^*)$ and $F_{L,\tau}(D^*)$.

 $b \rightarrow s \ell^+ \ell^- decays$

Flavour-Changing Neutral Current (FCNC)

- ► Tree-level: forbidden
- ► Loop-level: suppressed by GIM, $\mathscr{B} \leq \mathscr{O}(10^{-6})$
- Many observables: branching ratio, angular distribution, LFV ratio
- NP effects can be sizable compared to the SM amplitude
- This transition is LFU in the SM

⇒ Sensitive to New Physics

stribution, LFV ratio

 $b \rightarrow s \ell^+ \ell^-$: theory

Effective Hamiltonian

$$\mathscr{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \bigg(\sum_{i=1,\dots,6} C_i O_i + C_{7\gamma} O_{7\gamma} + C_{8g} O_{8g} \sum_{\ell} C_i O_{\ell} \bigg) \bigg|_{\ell}$$

Effective operator

$$\begin{split} O_1 &= (\bar{s}\gamma_\mu P_L T^a c) (\bar{c}\gamma^\mu P_L T^a b) \quad O_7^{(\prime)} = \frac{m_b}{e} (\bar{s}\sigma_{\mu\nu} P_{R(L)} b) F^{\mu\nu} \,, \quad O_9^{(\prime)\ell} \\ O_2 &= (\bar{s}\gamma_\mu P_L c) (\bar{c}\gamma^\mu P_L b) \qquad C_7^{\rm SM} \simeq -0.3 \,, \qquad C_9^{\rm SM} \end{split}$$

Feynman Diagram

 $\sum_{\ell} \sum_{i=9,10,P,S} (C_i^{\ell} O_i^{\ell} + C_i^{\prime \ell} O_i^{\prime \ell}))$

$$= (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\ell), \quad O_{10}^{(\prime)\ell} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \quad O_{S}^{(\prime\ell)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\ell)$$

$$\simeq 4, \qquad \qquad C_{10}^{SM} \simeq -4. \qquad \qquad O_{P}^{(\prime\ell)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\gamma_{5}\ell)$$

 $h \rightarrow s \ell^+ \ell^-$: theory

Effective Hamiltonian

$$\mathscr{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \left(\sum_{i=1,\dots,6} C_i O_i + C_{7\gamma} O_{7\gamma} + C_{8g} O_{8g} \sum_{\ell} \sum_{i=9,10,P,S} (C_i^{\ell} O_i^{\ell} + C_i^{\prime \ell} O_i^{\prime \ell}) \right)$$

Effective operator

 $O_{1} = (\bar{s}\gamma_{\mu}P_{L}T^{a}c)(\bar{c}\gamma^{\mu}P_{L}T^{a}b) \quad O_{7}^{(\prime)} = \frac{m_{b}}{e}(\bar{s}\sigma_{\mu\nu}P_{R(L)}b)F^{\mu\nu}, \quad O_{9}^{(\prime)\ell} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\ell), \quad O_{10}^{(\prime)\ell} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \quad O_{S}^{(\prime\ell)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\ell')$ $C_9^{\rm SM} \simeq 4$, $C_{10}^{\rm SM} \simeq -4$. $O_P^{(\prime\ell)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\gamma_5\ell)$ $O_2 = (ar{s} \gamma_\mu P_L c) (ar{c} \gamma^\mu P_L b) \qquad C_7^{
m SM} \simeq -0.3 \, ,$

 $\textbf{Amplitude:} \quad \mathcal{M}(B \to M\ell\ell) = \langle M\ell\ell | \mathcal{H}_{eff} | B \rangle = \mathcal{N} \left[\left(\mathcal{A}_{V}^{\mu} + \mathcal{H}^{\mu} \right) \, \bar{u}_{\ell} \gamma_{\mu} v_{\ell} + \mathcal{A}_{A}^{\mu} \, \bar{u}_{\ell} \gamma_{\mu} \gamma_{5} v_{\ell} + \mathcal{A}_{S} \, \bar{u}_{\ell} v_{\ell} + \mathcal{A}_{P} \, \bar{u}_{\ell} \gamma_{5} v_{\ell} \right]$

Local: В

 $\mathcal{A}^{\mu}_{\Lambda} = \mathcal{C}_{10} \langle M | \bar{s} \gamma^{\mu} P_L b | B \rangle + (P_L \leftrightarrow P_R, C_i \to C'_i)$ $\mathcal{A}_{S,P} = \mathcal{C}_{S,P} \langle M | \bar{s} P_R b | B \rangle + (P_L \leftrightarrow P_R, C_i \to C'_i)$

From talk by B. Capdevila, M. Fedele, S. Neshatpour, P. Stangl

Wilson Coefficient

- perturbative
- short-distance physics
- q^2 independent
- NNLO QCD + NLO EW@SM
- parameterization of heavy NP

 $-C_i = C_i^{\rm SM} + C_i^{\rm NP}$

 $\mathcal{A}_{V}^{\mu} = -\frac{2im_{b}}{a^{2}} C_{7} \langle M | \bar{s} \sigma^{\mu\nu} q_{\nu} P_{R} b | B \rangle + C_{9} \langle M | \bar{s} \gamma^{\mu} P_{L} b | B \rangle + (P_{L} \leftrightarrow P_{R}, C_{i} \to C_{i}')$

Matrix Element

- non-perturbative
- long-distance physics
- q^2 dependent
- theoretically challenging
- main source of uncertainties

 $b \rightarrow s \ell^+ \ell^-$: theory

 $h \rightarrow s \ell^+ \ell^-$: observables

Angular Distribution

Lepton Flavour Universality (LFU) ratio

function of $(C_{7\gamma}, C_9, C_{10})$

$$R_{K} = \frac{\mathscr{B}(B \to K\mu^{+}\mu^{-})}{\mathscr{B}(B \to Ke^{+}e^{-})}$$

 $ightarrow R_{K}^{\mathrm{SM}} \approx 1$

Hadronic uncertainties cancel

 $\triangleright \mathcal{O}(10^{-2})$ QED correction

deviation from unity

Physics beyond the SM

 $+\frac{1}{4}(1-F_{L})\sin^{2}\theta_{k}\cos 2\theta_{\ell}-F_{L}\cos^{2}\theta_{k}\cos 2\theta_{\ell}$ $+\dot{S}_3 \sin^2 \theta_k \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_k \sin 2\theta_\ell \cos \phi$ $+S_5 \sin 2\theta_k \sin \theta_\ell \cos \phi + \frac{4}{3}A_{FB} \sin^2 \theta_k \cos \theta_\ell$ $+S_7 \sin 2\theta_k \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_k \sin 2\theta_\ell \sin \phi$ $+S_9 \sin^2 \theta_k \sin^2 \theta_\ell \sin 2\phi$],

 $P_1 = \frac{2S_3}{1 - F_L}$ $P_2 = \frac{2}{3} \frac{A_{\rm FB}}{1 - F_L}$ I - I'L $\frac{S_{j=4,5,7,8}}{F_L(1-F_L)}$ $P'_{i=4,5,6,8}$

 $F_L, A_{FB}, S_i = f(C_7, C_9, C_{10}),$ combinations of K^{*0} decay amplitudes

angular observables

 $b \rightarrow s \ell^+ \ell^-: LFU$

Flavour anomalies: New Physics interpretation μ_{NP} -??? 2 $\mathcal{B}(B^+ \to K^+ e^+ e^-) [1.1, 6.0] \mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) \mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-) \ [1.0, 6.0] -$

Flavour anomalies: New Physics interpretation

$$O_T = (\bar{c}_R \sigma^{\mu\nu} b_L) (\bar{\ell}_R \sigma_{\mu\nu} v_{\tau L})$$

$b \rightarrow s \ell \ell$ global fit

Recent Global Fit

		All		
1D Hyp.	Best fit	$1\sigma/2\sigma$	$\operatorname{Pull}_{\mathrm{SM}}$	p-value
$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	-0.67	$egin{array}{c} [-0.82, -0.52] \ [-0.98, -0.37] \end{array}$	4.5	20.2%
$\mathcal{C}_{9\mu}^{ m NP}=-\mathcal{C}_{10\mu}^{ m NP}$	-0.19	[-0.25, -0.13] [-0.32, -0.07]	3.1	9.9%

Ciuchini et al 2212.10516 Alguero et al 2304.07330 Qiaoyi Wen, Fanrong Xu 2305.19038

	All		
2D Hyp.	Best fit	$\operatorname{Pull}_{\mathrm{SM}}$	p-value
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{10\mu}^{ ext{NP}})$	(-0.82, -0.17)	4.4	21.9%
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7'})$	(-0.68, +0.01)	4.2	19.4%
$(\mathcal{C}_{9\mu}^{ m NP},\mathcal{C}_{9'\mu})$	(-0.78, +0.21)	4.3	20.7%
$(\mathcal{C}_{9\mu}^{ m NP},\mathcal{C}_{10'\mu})$	(-0.76, -0.12)	4.3	20.5%
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9e}^{ ext{NP}})$	(-1.17, -0.97)	5.6	40.3%

Scenario		Best-fit point	1σ	$\operatorname{Pull}_{\mathrm{SM}}$	p-value
Scenario 0	$\mathcal{C}_{9\mu}^{ ext{NP}} = \mathcal{C}_{9e}^{ ext{NP}} = \mathcal{C}_{9}^{ ext{U}}$	-1.17	[-1.33, -1.00]	5.8	39.9 %
	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-1.02	$\left[-1.43,-0.61\right]$		
Scenario 5	$\mathcal{C}^{\mathrm{V}}_{10\mu}$	-0.35	[-0.75, -0.00]	4.1	21.0%
	$\mathcal{C}_9^{\mathrm{U}}=\mathcal{C}_{10}^{\mathrm{U}}$	+0.19	[-0.16, +0.58]		
Scopario 6	$\mathcal{C}_{9\mu}^{\mathrm{V}}=-\mathcal{C}_{10\mu}^{\mathrm{V}}$	-0.27	$\left[-0.34,-0.20\right]$	4.0	180%
Scenario 0	$\mathcal{C}_9^{\mathrm{U}}=\mathcal{C}_{10}^{\mathrm{U}}$	-0.41	$\left[-0.53,-0.29\right]$	4.0	10.0 /0
Sconario 7	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-0.21	[-0.39, -0.02]	5.6	103%
Scenario 7	$\mathcal{C}_9^{\mathrm{U}}$	-0.97	[-1.21, -0.72]	5.0	40.3 /0
Seconaria 9	$\mathcal{C}_{9\mu}^{\mathrm{V}}=-\mathcal{C}_{10\mu}^{\mathrm{V}}$	-0.08	[-0.14, -0.02]	5.6	11 1 07
Scenario 8	$\mathcal{C}_9^{\mathrm{U}}$	-1.10	[-1.27, -0.91]	0.0	41.1 /0

$$O_9 = (\bar{b}\gamma^{\mu}P_L s)(\bar{\ell}\gamma_{\mu}\ell)$$

$$O_{10} = (\bar{b}\gamma^{\mu}P_L s)(\bar{\ell}\gamma_{\mu}\gamma_5\ell)$$

 $\mathscr{B}(B_s \to \mu^+ \mu^-)$ consistent with SM (C_{10} can't be too large)

$$C_{9e} = C_9^U$$

 $C_{9\mu} = C_9^U + C_9^V$

$b \rightarrow s \ell \ell \text{ global fit and } (g-2)_{\mu}$

Recent Global Fit

		All		
1D Hyp.	Best fit	$1\sigma/2\sigma$	$\operatorname{Pull}_{\mathrm{SM}}$	p-value
$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	-0.67	$egin{array}{c} [-0.82, -0.52] \ [-0.98, -0.37] \end{array}$	4.5	20.2%
$\mathcal{C}_{9\mu}^{ m NP}=-\mathcal{C}_{10\mu}^{ m NP}$	-0.19	[-0.25, -0.13] [-0.32, -0.07]	3.1	9.9%

	All		
2D Hyp.	Best fit	$\operatorname{Pull}_{\mathrm{SM}}$	p-value
$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{10\mu}^{ ext{NP}})$	(-0.82, -0.17)	4.4	21.9%
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7'})$	(-0.68, +0.01)	4.2	19.4%
$(\mathcal{C}_{9\mu}^{ m NP},\mathcal{C}_{9'\mu})$	(-0.78, +0.21)	4.3	20.7%
$(\mathcal{C}_{9\mu}^{ m NP},\mathcal{C}_{10'\mu})$	(-0.76, -0.12)	4.3	20.5%
$(\mathcal{C}^{\mathrm{NP}}_{9\mu},\mathcal{C}^{\mathrm{NP}}_{9e})$	(-1.17, -0.97)	5.6	40.3%

Scenario		Best-fit point	1σ	$\operatorname{Pull}_{\mathrm{SM}}$	p-value
Scenario 0	$\mathcal{C}_{9\mu}^{ ext{NP}} = \mathcal{C}_{9e}^{ ext{NP}} = \mathcal{C}_{9}^{ ext{U}}$	-1.17	[-1.33, -1.00]	5.8	39.9 %
	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-1.02	$\left[-1.43,-0.61\right]$		
Scenario 5	$\mathcal{C}^{\mathrm{V}}_{10\mu}$	-0.35	[-0.75, -0.00]	4.1	21.0%
	$\mathcal{C}_9^{\mathrm{U}}=\mathcal{C}_{10}^{\mathrm{U}}$	+0.19	[-0.16, +0.58]		
Sconario 6	$\mathcal{C}_{9\mu}^{\mathrm{V}}=-\mathcal{C}_{10\mu}^{\mathrm{V}}$	-0.27	$\left[-0.34,-0.20\right]$	4.0	180%
Scenario 0	$\mathcal{C}_9^{\mathrm{U}}=\mathcal{C}_{10}^{\mathrm{U}}$	-0.41	$\left[-0.53,-0.29\right]$	4.0	10.0 /0
Sconario 7	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-0.21	$\left[-0.39, -0.02 ight]$	5.6	103%
Scenario 7	$\mathcal{C}_9^{\mathrm{U}}$	-0.97	[-1.21, -0.72]	0.0	40.0 /0
Sconario 8	$\mathcal{C}_{9\mu}^{\mathrm{V}}=-\mathcal{C}_{10\mu}^{\mathrm{V}}$	-0.08	[-0.14, -0.02]	5.6	11 1 0%
Scenario o	$\mathcal{C}_9^{\mathrm{U}}$	-1.10	[-1.27, -0.91]	0.0	41.1 /0

Charm-loop contribution

$$C_{9e} = C_{9\mu} = \mathbf{0}$$

> Charm-loop contribution is expected to be $\Delta C_{\mathbf{q}}^{U}(q^{2})$, but not $\Delta C_{\mathbf{q}}^{U}$

Solution Global fit prefer to $C_{9e} = C_{9\mu} \neq C_9^{SM} \iff \mathscr{B}(B_s \to \mu^+ \mu^-)_{exp}$ is consistent with SM **Charm-loop could mimic** $C_{9e} = C_{9\mu}$ $O_9 = (\bar{b}\gamma^{\mu}P_L s)(\bar{\ell}\gamma_{\mu}\ell)$ $O_{10} = (\bar{b}\gamma^{\mu}P_L s)(\bar{\ell}\gamma_{\mu}\gamma_5\ell)$ $C_9^{\text{SM}} + \Delta C_q^{U, \text{charm loop}} + \Delta C_q^{U, \text{NP}}$

-1.0

LFU violation in NP

LFU in SM

$$\bar{\ell}'_{R}\gamma^{\mu}Z_{\mu}Y\ell'_{R} \propto \begin{bmatrix} \bar{e}'_{R} & \bar{\mu}'_{R} & \bar{\tau}'_{R} \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} e'_{R} \\ \mu'_{R} \\ \tau'_{R} \end{bmatrix} = \begin{bmatrix} \bar{e}_{R} & \bar{\mu}_{R} & \bar{\tau}_{R} \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\text{hypercharge of } U(1)_{Y}$$

$$Y_{e_{R}} = Y_{\mu_{R}} = Y_{\tau_{R}} = -1$$

$$\text{flavour universal}$$

LFU violation in NP

$$\bar{\ell}'_{R}\gamma^{\mu}Z'_{\mu}Y'\ell'_{R} \propto \begin{bmatrix} \bar{e}'_{R} & \bar{\mu}'_{R} & \bar{\tau}'_{R} \end{bmatrix} \begin{bmatrix} Y'_{e_{R}} & 0 & 0\\ 0 & Y'_{\mu_{R}} & 0\\ 0 & 0 & Y'_{\tau_{R}} \end{bmatrix} \begin{bmatrix} e_{R} \\ \mu'_{R} \\ \tau'_{R} \end{bmatrix} = \begin{bmatrix} \bar{e}_{R} & \bar{\mu}_{R} & \bar{\tau}_{R} \end{bmatrix} U_{R}^{\dagger} \begin{bmatrix} Y'_{e_{R}} & 0 & 0\\ 0 & Y'_{\mu_{R}} & 0\\ 0 & 0 & Y'_{\tau_{R}} \end{bmatrix} \begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{bmatrix} \begin{bmatrix} e_{11} \\ \mu'_{R} \\ \tau'_{R} \end{bmatrix}$$

$$\text{hypercharge of } U(1)'$$

$$Y'_{e_{R}} \neq Y'_{\mu_{R}} \neq Y'_{\tau_{R}}$$

$$\text{flavour non-universality is generated, but flavour violation usually can't be avoided.}$$

 $I_{e_R} \neq I_{\mu_R} \neq I_{\tau_R}$

We learn that

$$b \to s\mu\mu/b \to see \neq SM \Longrightarrow \begin{cases} b \to \\ b \to \end{cases}$$
$$b \to c\tau\nu/b \to c\mu\nu \neq SM \Longrightarrow b \to u$$

What's the magnitude of NP effects in these related channels? Can they satisfy the current exp bound? Flavour structure ! 28

 $se\mu, b \rightarrow se\tau, b \rightarrow s\mu\tau$ $d\mu\mu/b \rightarrow dee, s \rightarrow d\mu\mu/s \rightarrow dee, b\bar{b} \rightarrow \mu\mu/b\bar{b} \rightarrow ee, \dots$

 $u\tau\nu/b \rightarrow u\mu\nu, c \rightarrow s\tau\nu/c \rightarrow s\mu\nu, \dots$

Origin of LFUV: connection to flavour structure

	Branching fractions				
	Measured upper limit at	Measured upper limit at Prediction maximum [or range]			
Decay mode	90% CL [8,84]	NO	IO		
$B \rightarrow K e^{\pm} \mu^{\mp}$	3.8×10^{-8}	2.9×10^{-9}	3.0×10^{-9}		
$B \rightarrow K^* e^{\pm} \mu^{\mp}$	5.1×10^{-7}	7.8×10^{-9}	7.8×10^{-9}		
$B_s ightarrow e^{\pm} \mu^{\mp}$	1.1×10^{-8}	8.6×10^{-12}	9.0×10^{-12}		
$B ightarrow \pi e^{\pm} \mu^{\mp}$	9.2×10^{-8}	1.2×10^{-10}	1.3×10^{-10}		
$B \rightarrow ho e^{\pm} \mu^{\mp}$	3.2×10^{-6}	3.1×10^{-10}	3.2×10^{-10}		
$B^0 o e^\pm \mu^\mp$	2.8×10^{-9}	2.6×10^{-13}	2.7×10^{-13}		

C.W.Chiang, X.G.He, J.Tandean, **XBY**, 1706.02696 C.S.Kim, **XBY**, Y.J.Zheng, 1602.08107

LFU violation in NP

LFU in SM

$$\bar{\ell}'_{R}\gamma^{\mu}Z_{\mu}Y\ell'_{R} \propto \begin{bmatrix} \bar{e}'_{R} & \bar{\mu}'_{R} & \bar{\tau}'_{R} \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} e'_{R} \\ \mu'_{R} \\ \tau'_{R} \end{bmatrix} = \begin{bmatrix} \bar{e}_{R} & \bar{\mu}_{R} & \bar{\tau}_{R} \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\text{hypercharge of } U(1)_{Y}$$

$$Y_{e_{R}} = Y_{\mu_{R}} = Y_{\tau_{R}} = -1$$

$$\text{flavour universal}$$

LFU violation in NP

$$\bar{\ell}'_{R}\gamma^{\mu}Z'_{\mu}Y'\ell'_{R} \propto \begin{bmatrix} \bar{e}'_{R} & \bar{\mu}'_{R} & \bar{\tau}'_{R} \end{bmatrix} \begin{bmatrix} Y'_{e_{R}} & 0 & 0\\ 0 & Y'_{\mu_{R}} & 0\\ 0 & 0 & Y'_{\tau_{R}} \end{bmatrix} \begin{bmatrix} e_{R} \\ \mu'_{R} \\ \tau'_{R} \end{bmatrix} = \begin{bmatrix} \bar{e}_{R} & \bar{\mu}_{R} & \bar{\tau}_{R} \end{bmatrix} U_{R}^{\dagger} \begin{bmatrix} Y'_{e_{R}} & 0 & 0\\ 0 & Y'_{\mu_{R}} & 0\\ 0 & 0 & Y'_{\tau_{R}} \end{bmatrix} \begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{bmatrix} \begin{bmatrix} e_{11} \\ \mu'_{R} \\ \tau'_{R} \end{bmatrix}$$

$$\text{hypercharge of } U(1)'$$

$$Y'_{e_{R}} \neq Y'_{\mu_{R}} \neq Y'_{\tau_{R}}$$

$$\text{flavour non-universality is generated, but flavour violation usually can't be avoided.}$$

 $I_{e_R} \neq I_{\mu_R} \neq I_{\tau_R}$

We learn that

$$b \to s\mu\mu/b \to see \neq SM \Longrightarrow \begin{cases} b \to \\ b \to \end{cases}$$
$$b \to c\tau\nu/b \to c\mu\nu \neq SM \Longrightarrow b \to u$$

What's the magnitude of NP effects in these related channels? Can they satisfy the current exp bound? Flavour structure ! 30

 $se\mu, b \rightarrow se\tau, b \rightarrow s\mu\tau$ $d\mu\mu/b \rightarrow dee, s \rightarrow d\mu\mu/s \rightarrow dee, b\bar{b} \rightarrow \mu\mu/b\bar{b} \rightarrow ee, \dots$

 $u\tau\nu/b \rightarrow u\mu\nu, c \rightarrow s\tau\nu/c \rightarrow s\mu\nu, \dots$

Physics beyond the Standard Model

Problems of the SM \implies Physics beyond the SM

$$+ \ldots = \frac{c}{16\pi^2} \Lambda^2$$

$$^2 = 125 \,\mathrm{GeV}^2$$

Theories beyond the SM

Origin of LFU violation

Flavour deconstruction

- Flavour non-universal interactions already at the TeV scale.
- Ist and 2nd gen have small masses due to couple to NP at heavier scales.
- ► 3 gens are not identical copies up to high scales.

Covone, Davighi, Isidori, Pesut/2407.10950 Isidori/2308.11612 Fuentes-Martín, Lizana/2402.09507 Davighi, Gosnay, Miller, Renner/2312.13346 Barbieri, Isidori/2312.14004

... ...

Navarro, King/2305.07690 Davighi, Stefanek/2305.16280 Davighi, Isidori/2303.01520

to connect NP flavour problem and Higgs hierarchy problem

 $\psi_{1,2}$ ~ massless

 $[U(2)^n \text{ symm.}]$

mainly to ψ_3

Barbieri et

SM is embedded in a gauge symmetry that contains a separate factor for each fermion family

 $G_{\text{universal}} \times G_1 \times G_2 \times G_3$

$SU(3)_c \times SU(2)_L$	$\times U(1)_{Y_1}$	$\times U(1)_{Y_2}$	imes U(1)
	q_1	q_2	q_3
	u_1^c	u_2^c	u_3^c
	d_1^c	d_2^c	d_3^c
	ℓ_1	ℓ_2	ℓ_3
	e_1^c	e^c_2	e^c_3

Gauge Model of Generation Nonuniversality

Xiao-yuan Li^(a) and Ernest Ma

Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (Received 13 October 1981)

An electroweak gauge model is discussed, where generations are associated with separate gauge groups with different couplings. The observed μ -e universality is the result of a mass-scale inequality, $\nu_{03} \ll \nu_{12}$, in much the same way as strong isospin is the result of m_{μ} , $m_d \ll 1$ GeV. However, in contrast to the standard model. it is now possible to have (1) a longer τ lifetime, (2) an observable $B^0 - \overline{B}^0$ mixing, and (3) many gauge bosons W_i, Z_i in place of W, Z with $M_{W_i} > M_W$ and $M_{Z_i} > M_Z$.

Arkani-Hamed, Cohen, Georgi, hep-th/0104005 Craig, Green, Katz, 1103.3708

Summary

Backup

Definition of Pull

To quantify the level of agreement between a given hypothesis and the data, we compute the corresponding p-value of goodness-of-fit:

$$p = \int_{\chi^2_{\rm min}}^{\infty} d\chi^2 f(\chi^2; n_{\rm dof}), \qquad (8)$$

where $n_{dof} = N_{obs} - n$. Finally, to compare the descriptions offered by two different nested hypotheses H_0 and H_1 (with n_{H_0} , n_{H_1} the respective number of degrees of freedom and $n_{H_0} < n_{H_1}$), we compute their relative Pull, measured in units of Gaussian standard deviations (σ):

$$\operatorname{Pull}_{H_0H_1} = \sqrt{2} \operatorname{Erf}^{-1} \left[F(\Delta \chi^2_{H_0H_1}; n_{\mathrm{H_0H_1}}) \right], \tag{9}$$

with $\Delta \chi^2_{H_0H_1} = \chi^2_{H_0,\min} - \chi^2_{H_1,\min}$, $n_{H_0H_1} = n_{H_1} - n_{H_0}$, F the χ^2 cumulative distribution function and Erf⁻¹ the inverse error function. Most of the time, we compare a given NP scenario with the SM case, denoting the result as Pull_{SM} unless there is a risk of ambiguity. Our statistical Non-local matrix element

$$\begin{aligned} \mathcal{A}_{\lambda}^{L,R} &= \mathcal{N}\left\{ \left[(\mathcal{C}_{9} \pm \mathcal{C}_{9}') \mp (\mathcal{C}_{10} \pm \mathcal{C}_{10}') \right] \mathcal{F}_{\lambda}(q^{2},k^{2}) \right. \\ &+ \frac{2m_{b}M_{B}}{q^{2}} \left[(\mathcal{C}_{7} \pm \mathcal{C}_{7}') \mathcal{F}_{\lambda}^{T}(q^{2},k^{2}) - 16\pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}(q^{2},k^{2}) \right] \right\} \end{aligned}$$

A. $(g-2)_{\mu}$ and $(g-2)_{e}$

According to the window observable theory [53, 54] and the SM prediction [55], the current disagreement concerning the Δa_{μ} designations has emerged as follows [55–58]:

$$\Delta a_{\mu}^{\text{window}} = (1.81 \pm 0.47) \times 10^{-9},$$

On the other hand, the electron magnetic dipole moment [59] with its experiment measurement through Rb in 2020 [60, 61], the discrepancy with SM prediction can be expressed as follows:

$$\Delta a_e^{\rm Rb} = 34(16) \times 10^{-14},$$

whereas the Cs atoms measurement method search has obtained a lower bound [62],

$$\Delta a_e^{\rm Cs} = -102(26) \times 10^{-14},$$

Phase I

٠

- $R^{\pi}_{e/\mu} = \Gamma(\pi \to e \bar{\nu}_e(\gamma) / \Gamma(\pi \to \mu \bar{\nu}_{\mu}(\gamma))$ Improvement by a factor of 15
- Comparable with the theoretical uncertainty ٠
- NP at the PeV scale can be probed

Phase II & III

$$\frac{\Gamma(\pi^+ \to \pi^0 e^+ \nu)}{\Gamma(\text{Total})}$$

with a precision < 0.2%

- Improvement by a factor of 3 (Phase II) / 10(Phase III)
- CKM unitarity check by theoretically cleanest IV_{ud}l

Exotic searches

Heavy neutral lepton ٠

PIONEER experiment is approved by Paul Scherrer Institute in Switzerland in 2022

PIONEER goal

Overview of LFU results with charm meson decays

Mode	Measured $\mathcal{B}(\ell)/\mathcal{B}(\ell')$	SM Prediction
$D^+ \to \frac{\tau}{\mu}\nu$	3.21 ± 0.77	2.66
$D_s^+ \to \frac{\tau}{\mu}\nu$	9.72 ± 0.37	9.75
$D^0 \to \rho^- \frac{\mu}{e} \nu$	0.90 ± 0.11	0.93 - 0.96
$D^+ \to \eta \frac{\mu}{e} \nu$	0.91 ± 0.13	0.97 - 1.00
$D^+ \to \omega \frac{\mu}{e} \nu$	1.05 ± 0.14	0.93 - 0.99
$D^+ \to \pi^0 \frac{\mu}{e} \nu$	0.964 ± 0.045	~ 0.985
$D^0 \to \pi^+ \frac{\mu}{e} \nu$	0.922 ± 0.037	~ 0.985
$D^0 \to K^+ \frac{\mu}{e} \nu$	0.974 ± 0.014	~ 0.970

Credit Alex Gilman

MANCHESTER

The University of Manchester

1824

No tensions with the SM expectation within the current precision

THE ROYAL SOCIETY

Evelina Gersabeck, Tests of lepton flavour universality with (semi-)leptonic decays of charmed mesons

Values deviate from I because of the different available phase space

33

$b \rightarrow s \nu \bar{\nu}$: exp & theory

2021 Apr

2023 Aug

${\mathop{\rm SM}_{0.497\pm0.037}}$	$\operatorname{Average}_{1.3\pm0.4}$ Gani	ev@EPS-HEP, 23 Aug 2023/Be	lle II, 2311.14647	ם ג Iav
		Belle II (362 fb ⁻¹ , combined $_{2.3\pm0.7}$ This analysis, preliminary) 2 P	;hua !2, 2 ?ubl
	- O	Belle II (362 fb ⁻¹ , hadronic) 1.1 ± 1.1 This analysis, preliminary	2 R	ם µ Rev
		Belle II (362 fb ⁻¹ , inclusive) $_{2.7\pm0.7}$ This analysis, preliminary	B P	ielle ⁱ ubl 계 a
	0	Belle II (63 fb ⁻¹ , inclusive) 1.9 ± 1.5 PRL127, 181802) n
	•	Belle (711 fb ⁻¹ , semileptonic $_{1.0\pm0.6}$ PRD96, 091101	F e	ran -Pr
	•		C	ם ב Cor
	-	BaBar (418 fb ⁻¹ , semilepton $_{0.2\pm0.8}$ PRD82, 112002	ic)	eng -Pr
-		BaBar (429 fb ⁻¹ , hadronic) 1.5 ± 1.3 PRD87, 112005	R S e	≀ec 5hu- ;-Pr
0	2 4	6 8	10	Ъ к
	$10^5 imes Br($	$B^+ \rightarrow K^+ \nu \overline{\nu})$		

Impact of B→K

Thomas E. Browde Bhubaneswar, Inst Published in: Phys 🖾 pdf 🛛 🖉 DO

Phenomenological study of a gauged L_{μ} - L_{τ} model with a scalar leptoqua

Chuan-Hung Chen (Taiwan, Natl. Cheng Kung U. and NCTS, Taipei), Cheng-Wei Chiang (7 Wei Su (Taiwan, Natl. Taiwan U.) (May 16, 2023) Published in: *Phys.Rev.D* 109 (2024) 5, 5 • e-Print: 2305.09256 [hep-ph] 🖾 pdf 🕜 DOI 🖃 cite 📑 claim

Higgs portal interpretation of the Belle II $B^+ \rightarrow K^+ \nu \nu$ measurement David McKeen (TRIUMF), John N. Ng (TRIUMF), Douglas Tuckler (TRIUMF and Simon Fras Published in: Phys.Rev.D 109 (2024) 7, 075006 • e-Print: 2312.00982 [hep-ph]

🖟 pdf 🕜 DOI 🖃 cite 🔂 claim

Light new physics in $B \to K^{(*)} \nu \nu$? Wolfgang Altmannshofer (UC, Santa Cruz, Inst. Part. Phys.), Andreas Crivellin (Zurich U.), Inguglia (Vienna, OAW), Jorge Martin Camalich (IAC, La Laguna) (Nov 24, 2023) Published in: Phys.Rev.D 109 (2024) 7, 075008 • e-Print: 2311.14629 [hep-ph] 🖻 pdf 🕜 DOI 🖃 cite 🗔 claim

 $B \rightarrow K \nu \nu$, MiniBooNE and muon g - 2 anomalies from a dark sector Alakabha Datta (Mississippi U. and SLAC and UC, Santa Cruz), Danny Marfatia (Hawaii U.) 2023) Published in: *Phys.Rev.D* 109 (2024) 3, L031701 • e-Print: 2310.15136 [hep-ph] 🖟 pdf 🕜 DOI 🖃 cite 🔂 claim

 $B o K^*M_X$ vs $B o KM_X$ as a probe of a scalar-mediator dark mat Alexander Berezhnoy (SINP, Moscow), Dmitri Melikhov (SINP, Moscow and Dubna, JINR at Published in: EPL 145 (2024) 1, 14001 • e-Print: 2309.17191 [hep-ph] pdf 🔗 DOI 🖃 cite 🗔 claim

vor anomalies in leptoquark model with gauged $U(1)_{L_{u}-L_{\tau}}$

ian-Hung Chen (Taiwan, Natl. Cheng Kung U. and Unlisted, TW), Cheng-Wei Chiang (T 2023) lished in: Phys.Rev.D 109 (2024) 7, 075004 · e-Print: 2309.12904 [hep-ph] pdf 🖉 DOI 🖃 cite 🗟 claim

visiting models that enhance $B^+ \to K^+ \nu p$ in light of the new Belle II mea e-II Collaboration • Xiao-Gang He (Tsung-Dao Lee Inst., Shanghai and Taiwan, Natl. Ta lished in: Phys.Rev.D 109 (2024) 7, 075019 · e-Print: 2309.12741 [hep-ph] pdf 🔗 DOI 🖃 cite 📑 claim

new look at b
ightarrow s observables in 331 models

cesco Loparco (Jan 22, 2024) rint: 2401.11999 [hep-ph] pdf 🔁 cite 🗟 claim

relating $B o K^{(*)}
u ar{
u}$ and flavor anomalies in SMEFT J-Zhi Chen, Qiaoyi Wen, Fanrong Xu (Jan 21, 2024) rint: 2401.11552 [hep-ph] pdf 🖃 cite 🗔 claim

cent $B^+\!
ightarrow K^+
uar{
u}$ Excess and Muon g-2 Illuminating Light Dark Se J-Yu Ho, Jongkuk Kim, Pyungwon Ko (Jan 18, 2024) Print: 2401.10112 [hep-ph]

(νν ⁻	measure	ments on beyond the Standard Model theories		#69		
er (H t. Ph s. <i>R</i> ev	awaii U.), Nilendra G. Deshpande (Oregon U.), Rusa Mandal (Siegen U.), Rahul Sinha (IMSc, Chennai and /s.) (Jul 2, 2021) /D 104 (2021) 5. 053007 • e-Print: 2107.01080 [hep-ph]					
OI	[∃ cite	🗟 claim	C reference search			

30+ theory papers !	Explaining the $B^+ o K^+ u ar{ u}$ excess via a massles E. Gabrielli, L. Marzola, K. Müürsepp, M. Raidal (Feb 8, 2024)
Jark #42 Taiwan, Natl. Taiwan U. and NCTS, Taipei), Chun-	pdf ⊡ cite ि claim
\Box reference search \ominus 3 citations	Decoding the $B o K u u$ excess at Belle II: kinema Kåre Fridell, Mitrajyoti Ghosh, Takemichi Okui, Kohsaku Tobioka e-Print: 2312.12507 [hep-ph]
#29 ser U.) (Dec 1, 2023)	🖾 pdf 🖃 cite 🗟 claim
ि reference search € 10 citations #30	Understanding the first measurement of $B(B \rightarrow K \nu n)$ Lukas Allwicher (Zurich U.), Damir Becirevic (IJCLab, Orsay), G Orsay), Olcyr Sumensari (IJCLab, Orsay) (Sep 5, 2023) Published in: <i>Phys.Lett.B</i> 848 (2024) 138411 • e-Print: 2309.0
, Huw Haigh (Vienna, OAW), Gianluca	🖾 pdf 🕜 DOI 🖃 cite 🗒 claim
ि reference search #31 /, Lopamudra Mukherjee (Nankai U.) (Oct 23,	Implications of an enhanced $B \to K\nu\nu$ branching rateRigo Bause (Tech. U., Dortmund (main)), Hector Gisbert (INFN, Sussex U.) (Aug 31, 2023)Published in: Phys.Rev.D 109 (2024) 1, 015006 • e-Print: 2300Published in: Phys.Rev.D 109 (2024) 1, 015006 • e-Print: 2300Published in: Phys.Rev.D 109 (2024) 1, 015006 • e-Print: 2300Published in: Phys.Rev.D 109 (2024) 1, 015006 • e-Print: 2300
$\[\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	B meson anomalies and large $B^+ o K^+ u \overline{ u}$ in not Peter Athron (Nanjing Normal U.), R. Martinez (Colombia, U. Na Published in: <i>JHEP</i> 02 (2024) 121 • e-Print: 2308.13426 [hep
tter scenario #33	[∄ pdf ⊘ DOI 🖃 cite 📑 claim
nd Vienna U.) (Sep 29, 2023) ित्र reference search	SMEFT predictions for semileptonic processes Siddhartha Karmakar, Amol Dighe, Rick S. Gupta (Apr 15, 2024
#34	e-Print: 2404.10061 [hep-ph]
Taiwan, Natl. Taiwan U. and Unlisted, TW) (Sep	Implications of $B o K u ar u$ under Rank-One Flavor David Marzocca, Marco Nardecchia, Alfredo Stanzione, Claudio
$\overline{\mathbb{R}}$ reference search \Im 9 citations	e-Print: 2404.06533 [hep-ph]
asurement #35 aiwan U.) et al. (Sep 22, 2023)	The quark flavor-violating ALPs in light of B me
\mathbb{F}_{Q} reference search \mathfrak{S} 16 citations	Yuan (Nankai U.) (Feb 21, 2024)
#18	Published in: <i>JHEP</i> 05 (2024) 232 • e-Print: 2402.14232
☐ reference search	Scalar dark matter explanation of the excess in the Xiao-Gang He, Xiao-Dong Ma, Michael A. Schmidt, German Va e-Print: 2403.12485 [hep-ph]
ि	Status and prospects of rare decays at Belle-II Elisa Manoni (Mar 12, 2024) Published in: <i>PoS</i> WIFAI2023 (2024) 024 • Contribution to: WI
	🖹 pdf 🕜 DOI 🖃 cite 📑 claim
	Rare B and K decays in a scotogenic model

odf 🖃 cite 🗟 claim \Box reference search \bigcirc 4 citations

A tale of Tobias Fe	f invisibilit elkl (New Sou	y: constra th Wales U.)	ints on new physic , Sze Lok Li (New South	s in b \rightarrow svv Wales U.), Michael A	. Schmidt (New South Wales U.) (Nov 8, 2	#65 2021)
Published	1 in: <i>JHEP</i> 12	(2021) 118	• e-Print: 2111.04327	[hep-ph]		
μ ραι	<i>©</i> D0I	L→ cite	<u>-9</u> claim		La reference search	- 24 citations
Evolaini	ing the B^+	$- \rightarrow K^+$	$\sqrt{\nu}$ excess via a mag	seless dark nhoto	2	#16
E. Gabriel	Ili, L. Marzola 2402.05901	, K. Müürser	op, M. Raidal (Feb 8, 20	24)	I	
고 pdf		🗟 claim			C reference search	
						-
Decodi Kåre Frid e-Print: 2	ng the <i>B</i> - ell, Mitrajyoti 2312.12507	ightarrow K u u e Ghosh, Take [hep-ph]	xcess at Belle II: kir emichi Okui, Kohsaku To	nematics, operato obioka (Dec 19, 2023)	rs, and masses	#27
🖾 pdf	[] cite	🗟 claim			হি reference search	➔ 10 citations
Underst Lukas Allv Orsay), O Publishec	tanding the wicher (Zuric Plcyr Sumens d in: Phys.Let	e first mea h U.), Damir ari (IJCLab, ¹ t. <i>B</i> 848 (202	asurement of B(B → Becirevic (IJCLab, Orsa Orsay) (Sep 5, 2023) 24) 138411 • e-Print: 2	→ Κνν) ay), Gioacchino Piazza 309.02246 [hep-ph]	a (IJCLab, Orsay), Salvador Rosauro-Alca	#38 raz (IJCLab,
占 pdf	ି DOI	[∃ cite	🗟 claim		C reference search	
Implicat Rigo Baus Sussex U Publishec	tions of an se (Tech. U., .) (Aug 31, 2 d in: <i>Phys.Rev</i>	enhanced Dortmund (r 023) <i>v.D</i> 109 (202	$B \rightarrow K\nu\nu$ branchin main)), Hector Gisbert (24) 1, 015006 ⋅ e-Print:	g ratio INFN, Padua and Padu : 2309.00075 [hep-pl	มล U.), Gudrun Hiller (Tech. U., Dortmund า]	#39 (main) and
占 pdf	ℓ DOI	[ite	🗟 claim		বি reference search	
Peter Ath Publishec 나 pdf	ron (Nanjing d in: <i>JHEP</i> 02 <i>论</i> DOI	Normal U.), (2024) 121 ⊡ cite	R. Martinez (Colombia, • e-Print: 2308.13426	U. Natl.), Cristian Sier [hep-ph]	ra (Nanjing Normal U.) (Aug 25, 2023) 뎒 reference search	➔ 22 citations
SMEFT Siddharth	prediction	I S for sem i Amol Dighe	l eptonic processes , Rick S. Gupta (Apr 15,	3 2024)		#4
🖾 pdf	[→ cite	🗟 claim			a reference search	➔ 0 citations
Implicat David Ma e-Print: 2	tions of <i>B</i> rzocca, Marc 2404.06533	$ ightarrow K u ar{ u}$ co Nardecch [hep-ph]	under Rank-One Fl ia, Alfredo Stanzione, C	avor Violation hyp Iaudio Toni (Apr 9, 20	pothesis 24)	#5
🖾 pdf	[∃ cite	🗟 claim			হি reference search	➔ 0 citations
The qu Tong Li (Yuan (Na Publishe	iark flavoi (Nankai U.), ankai U.) (Fe ed in: <i>JHEP</i> (violatinų Zhuoni Qia eb 21, 2024	g ALPs in light of 1 n (Hangzhou Normal ¹) 232 • e-Print: 2402.14	B mesons and ha U.), Michael A. Schr 4232 [hep-ph]	adron colliders nidt (Sydney U. and New South Wales	#20 U.), Man
占 pdf	ଡି DOI	[∃ cite	🗐 claim		ि reference search	e 3 citations
Scalar o Xiao-Gan e-Print: 2	dark matte ng He, Xiao-D 2403.12485	r explanat oong Ma, Mic [hep-ph]	ion of the excess ir chael A. Schmidt, Germa	n the Belle II B^+\t an Valencia, Raymond	o K^+ + \mbox{invisible} measure R. Volkas (Mar 19, 2024)	ement #9
占 pdf	[→ cite	🗟 claim			a reference search	
Status a Elisa Man Published	and prospe noni (Mar 12, d in: <i>PoS</i> WIF	ects of rar 2024) Al2023 (202	e decays at Belle-II	l o: WIFAI 2023, 024		#10
占 pdf	ℓ∂ DOI	[∃ cite	🗟 claim		হি reference search	➔ 0 citations
Rare B	and K de	cays in a s	scotogenic model niang (Mar 5, 2024)			#11
e-Print: 2	403.02897	[hep-ph]				
🖾 pdf	, ite	🗟 claim			a reference search	➔ 2 citations

he quark flavor-violating ALPs in light of B mesons and hadron colliders
ng Li (Nankai U.), Zhuoni Qian (Hangzhou Normal U.), Michael A. Schmidt (Sydney U. and New South Wales Ian (Nankai U.) (Feb 21, 2024)
ublished in: JHEP 05 (2024) 232 • e-Print: 2402.14232 [hep-ph]

کے pdf	[→ cite	🗟 claim	a reference s

$b \rightarrow s \nu \bar{\nu}$: exp & theory

2021 Apr

2023 Aug

41

$b \rightarrow s \nu \bar{\nu}$: exp & theory

	Observable	SM	Exp	Unit
	$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})$	4.16 ± 0.57	$23\pm5^{+5}_{-4}$	10^{-6}
	$\mathcal{B}(B^0 \to K^0 \nu \bar{\nu})$	3.85 ± 0.52	< 26	10^{-6}
b	$\mathcal{B}(B^+ \to K^{*+} \nu \bar{\nu})$	9.70 ± 0.94	< 61	10^{-6}
$D \rightarrow S$	$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$	9.00 ± 0.87	< 18	10^{-6}
	$\mathcal{B}(B_s \to \phi \nu \bar{\nu})$	9.93 ± 0.72	< 5400	10^{-6}
	$\mathcal{B}(B_s \to \nu \bar{\nu})$	≈ 0	< 5.9	10^{-4}
	$\mathcal{B}(B^+ \to \pi^+ \nu \bar{\nu})$	1.40 ± 0.18	< 140	10^{-7}
	$\mathcal{B}(B^0 o \pi^0 \nu \bar{\nu})$	6.52 ± 0.85	< 900	10^{-8}
$b \rightarrow d$	$\mathcal{B}(B^+ \to \rho^+ \nu \bar{\nu})$	4.06 ± 0.79	< 300	10^{-7}
	${\cal B}(B^0 o ho^0 u ar u)$	1.89 ± 0.36	< 400	10^{-7}
	${\cal B}(B^0 o u ar u)$	≈ 0	< 1.4	10^{-4}
$c \rightarrow d$	$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$	8.42 ± 0.61	$10.6^{+4.0}_{-3.4}\pm0.9$	10^{-11}
5 -7 U	$\mathcal{B}(K_L o \pi^0 u ar{ u})$	3.41 ± 0.45	< 300	10^{-11}

 $B^0 \rightarrow K^{*0} \nu \bar{\nu}$ can put strong constraints on related **BSM** effects.

$b \rightarrow s \nu \bar{\nu}$: SMEFT

B.F.Hou, X.Q.Li, M.Shen, Y.D.Yang, XBY, 2402.19208

SMEFT notation:
$$l = \begin{pmatrix} \nu \\ e \end{pmatrix}_L$$
, $q = \begin{pmatrix} u \\ d \end{pmatrix}_L$, d

SMEFT

$$\begin{aligned}
\mathcal{Q}_{Hq}^{(1)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r}), \\
\mathcal{Q}_{Hq}^{(3)} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r}), \\
\mathcal{Q}_{Hd} &= (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r}), \\
\mathcal{Q}_{Ld} &= (\bar{l}_{p}\gamma^{\mu}l_{r})(\bar{d}_{s}\gamma_{\mu}d_{t}), \\
\mathcal{Q}_{lq}^{(1)} &= (\bar{l}_{p}\gamma^{\mu}l_{r})(\bar{q}_{s}\gamma_{\mu}q_{t}), \\
\mathcal{Q}_{lq}^{(3)} &= (\bar{l}_{p}\gamma^{\mu}\tau^{I}l_{r})(\bar{q}_{s}\tau^{I}\gamma_{\mu}q_{t}), \\
\mathcal{Q}_{L}^{(3)} &= (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\nu}_{i}\gamma^{\mu}P_{L}\nu_{j}) \\
\mathcal{O}_{R}^{\nu_{i}\nu_{j}} &= (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\nu}_{i}\gamma^{\mu}P_{L}\nu_{j})
\end{aligned}$$

$$\begin{array}{c}
\text{one LEFT operato} \\
\text{just the SM operat}
\end{aligned}$$

$$O_{9,ij}' = (\bar{b}\gamma^{\mu}P_R s)(\bar{\ell}_i\gamma_{\mu}\ell_j)$$
$$O_{10,ij}' = (\bar{b}\gamma^{\mu}P_R s)(\bar{\ell}_i\gamma_{\mu}\gamma_5\ell_j)$$

Cabibbo Angle Anomaly

► unitarity of CKM: $VV^{\dagger} = V^{\dagger}V = 1$

unitarity triangle

ct

All measurements agree with the CKM picture in the SM !!! However, ...

Cabibbo Angle Anomaly

$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

 $|V_{ud}|^2_{\text{global}} + |V_{us}|^2_{\text{global}} + |V_{ub}|^2 - 1 = -0.00151(53)$ $|V_{ud}|^2_{\beta} + |V_{us}|^2_{K_{\ell_3}} + |V_{ub}|^2 - 1$ = -0.00176(54), $|V_{ud}|^2_{\beta} + |V_{us}|^2_{K_{u2}/\pi_{u2},\beta} + |V_{ub}|^2 - 1 = -0.000\,98(56)\,,$ $|V_{ud}|^2_{K_{u2}/\pi_{u2}, K_{\ell_3}} + |V_{us}|^2_{K_{\ell_3}} + |V_{ub}|^2 - 1 = -0.0163(62),$

Cabibbo Angle Anomaly

From unitarity for the first row of CKM ($|V_{\mu b}|^2 \sim 10^{-5}$)

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

From data

Crivellin, Kirk, Kitahara, Mescia, 2212.06862

 $|V_{ud}|^2_{\text{global}} + |V_{us}|^2_{\text{global}} + |V_{ub}|^2 - 1 = -0.00151(53)$

Connection to LFUV

Crivellin, Hoferichter, 2002.07184

 $|V_{us}|_{\text{global}} = 0.224\,05(35)$ V_{ud} from β decay: $n \begin{cases} \frac{1}{d} \\ \frac{1}{d} \end{cases}$ d > p $G_F^0 \cdot (1 + \epsilon_e) \cdot V_{ud}^0 = G_F \cdot (1 - \epsilon_\mu) \cdot V_{ud}^0$ $G_F = G_F^0 (1 + \epsilon_e + \epsilon_u)$ G_F from μ decay: $g_2(1+\epsilon_\mu)$ $g_2(1+\epsilon_e)$

 V_{ud}^{β} can receive the contribution from ϵ_{μ} , but no ϵ_{e}

Observable	Measurement
$\frac{K \to \pi \mu \bar{\nu}}{K \to \pi e \bar{\nu}} \simeq 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee}$	1.0010(25) [77]
$\frac{K \to \mu \nu}{K \to e \nu} \simeq 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee}$	0.9978(18) $[3, 78, 79]$
$\frac{\pi \to \mu \nu}{\pi \to e \nu} \simeq 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee}$	$1.0010(9) \ [3, \ 80-82]$
$rac{ au o \mu u ar{ u}}{ au o e u ar{ u}} \simeq 1 + arepsilon_{\mu\mu} - arepsilon_{ee}$	1.0018(14) $[3, 32]$
$\frac{W \to \mu \bar{\nu}}{W \to e \bar{\nu}} \simeq 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee}$	0.9960(100) [83, 84]
$\frac{B \to D^{(*)} \mu \nu}{B \to D^{(*)} e \nu} \simeq 1 + \varepsilon_{\mu\mu} - \varepsilon_{ee}$	0.9890(120) [85]
$R(V_{us}) \simeq 1 - \left(\frac{V_{ud}}{V_{us}}\right)^2 \varepsilon_{\mu\mu}$	0.9891(33) [11]
	0.9927(39) $[14]$

- 2)_µ

$$a_{\mu} = (g-2)/2$$

7116 ± 184

$a_{\mu}^{HLbL} \times 10^{11}$	LO
Phenomenology	92 ± 19
Lattice QCD	79 ± 35

$a_{\mu}^{\text{QED}} =$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(× 1
=	116 584 718.931 (104)	
	12000+ Feynman diagr Analytical calculation @ α Partly analytical @ α Numerical @ α^5	α^{2}, α^{3} α^{4}

Aoyama, Hayakawa, Kinoshita, Nio (2012-2019)

- 2)_µ $(g \cdot$

unit: 10^{-11}

Bohr magneton

 $a_{\mu}^{\rm SM} = 116591810 \pm 43$ $a_{\mu}^{\rm exp} = 116592061 \pm 41$

$$a_{\mu} = (g-2)/2$$

+ ...

 $a_{\mu}^{HVP} \times 10^{11}$ LO NLO NNLO e⁺e⁻ data -98 ± 7 6931±40 12 ± 1 Lattice QCD 7116 ± 184

$a_{\mu}^{HLbL} \times 10^{11}$	LO
Phenomenology	92 ± 19
Lattice QCD	79 ± 35

•
$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = 251 \pm 59$$

4.2 sigma difference !!!

Experiment	Beam	Measurement	$\delta \mathbf{a}_{\mu}/\mathbf{a}_{\mu}$	Required th. terms
Columbia-Nevis (57)	μ^+	g=2.00±0.10		g=2
Columbia-Nevis (59)	μ^+	0.001 13(+16)(-12)	12.4%	α/π
CERN 1 (61)	μ^+	0.001 145(22)	1.9%	α/π
CERN 1 (62)	μ^+	0.001 162(5)	0.43%	$(\alpha/\pi)^2$
CERN 2 (68)	μ^+	0.001 166 16(31)	265 ppm	$(\alpha/\pi)^3$
CERN 3 (75)	μ^{\pm}	0.001 165 895(27)	23 ppm	$(\alpha/\pi)^3$ + had
CERN 3 (79)	μ^{\pm}	0.001 165 911(11)	7.3 ppm	$(\alpha/\pi)^3$ + had
BNL E821 (00)	μ^+	0.001 165 919 1(59)	5 ppm	$(\alpha/\pi)^3$ + had
BNL E821 (01)	μ^+	0.001 165 920 2(16)	1.3 ppm	$(\alpha/\pi)^4$ + had + weak
BNL E821 (02)	μ^+	0.001 165 920 3(8)	0.7 ppm	$(\alpha/\pi)^4$ + had + weak + ?
BNL E821 (04)	μ^-	0.001 165 921 4(8)(3)	0.7 ppm	$(\alpha/\pi)^4$ + had + weak +?
> FNAL Run1 (21)	μ^+	0.001 165 920 40(54)	0.46 ppm	$(\alpha/\pi)^4$ + had + weak + ?
48				

RBC and UKQCD, 2301.08696

