

Studies of baryonic b decays in PQCD

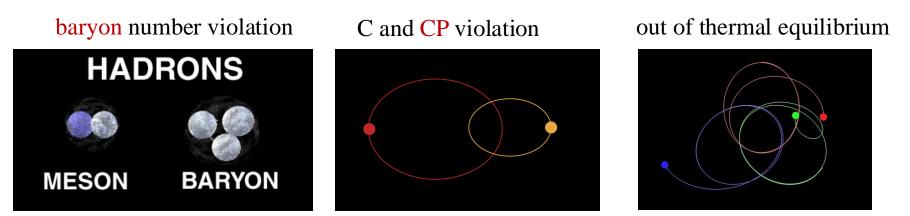
 $\Lambda_b \to pM \& B \to \mathcal{B}_c \overline{\mathcal{B}}'_c$ Ya Li (李亚) Nanjing Agricultural University

Based on arXiv:2409.02821 & JHEP 12 (2024) 159

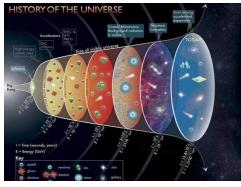
Jia-Jie Han(韩佳杰), Ji-Xin Yu, Jian-Peng Wang, Yue-Long Shen,

Hsiang-nan Li, Zhen-Jun Xiao & Fu-Sheng Yu

2025-04-27 CCNU



Why baryon physics? CPV of $\Lambda_b \rightarrow pM$ Discussions of $B \to \mathcal{B}_c \overline{\mathcal{B}}'_c$


Summary

Why baryon physics

- CP violation for Universal evolution
 - Sakharov conditions for Baryogenesis:

- CPV relates to most of parameters of SM, is helpful to test SM and search NP;
- CPV has been established for *K*, *B* and *D* meson decays, CKM mechanism has been established for CPV in B meson decays;
- The visible universe is mainly made of baryons. It is of great significance to search for baryon CPV !

period 1	H H				_		_ 1	The	Per	iodi	ic To	able	e of	the	Ele	eme	nts	18 (1000802 2 He
	6.941 3	2 2 2017182 4		otomic mas	762.5	345 <u>2</u>	6 0	omic number		i metals	metalloi		13	14	15	16	17	25.1797 10
2	Liteur	Be		nical symbo		е			_ other	r metals ition metals	hologen	15	B	C	N	0	F	Ne
3	22.00074.11 Na	Mg	electron o	nam configuration 4		# 49 ⁰	7	idation states if common any bol	a lanth	ionoids ioids	Coloctive Coloctive Income in p		Al Al	Si 14	Prospersor	S. 16		Ar Again
4	K	400 N a. 20 Ca	44,95591 21 Sc	Time 22	Venedium	51.9962 24 Cr	Mn	55.845 26 Fe	Coo	Ni Ni	63.540 29 Cu	Zn	Ga	Ge 32	As	Se 34	Br	Kington and Kington
5	Rb. 4478, 37	Sr 38	101 40545 39	11.224 40 Zr	Nb	Mo ⁴²	43 Tc	Ru	Rh	Pd 46	Ag	Cd 48	In 49	Sn	Sb	127.60 52 Te		Xe
6	Case 1	Ba	LU LU	Hf	100.9420 73	W 74	Re	Os	192207 77	Pt all	AU	Hg	204.3833 81	Pb	Bi Basedo	Po 84	At	Rn
7	Free North Parts	Ra 88	Lr Line	Rf Rulesfordure	(282) 105 Db	Sg	Bh	Hs Hs	Mt	Ds	878 111 Rg	249 112 Con	Uut	009 114 Uuq	Uup	Uuh	Uus	UU0
	notes • or of r • 1 kph	electrue configurat es, pleneers 113 I nome designated of = 98.485 pl/	a 11 Nove no by the UDAC		89 Th	Pr 90 Pa	91 U	d Prr 92 Ng	93 Pu	n Eu 94 241 An	95 Cr	n Bk	97 (250) Cf	98 Es	99 Er 99 Er	100 Mc	101 25%	102

2025/4/25

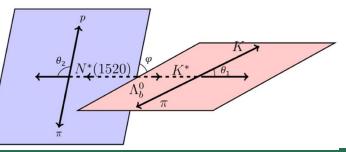
Opportunities

➢ Hyperon CPV:

 $A^{\alpha}_{CP}(\Lambda \to p\pi^{-}) = 0.0025 \pm 0.0048 \text{ [BESIII,2022]}$ v.s. $\mathcal{O}(10^{-5} \sim 10^{-4})$ [theory]

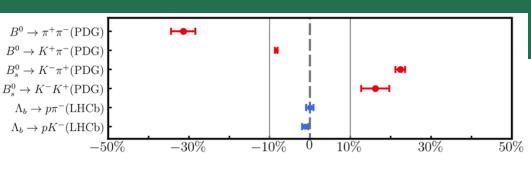
charm baryon CPV:

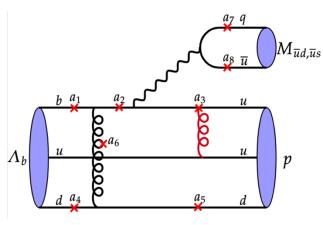
 $A_{CP}(\Lambda_c \to pK^+K^-/p\pi^+\pi^-) = 0.003 \pm 0.0091 \pm 0.0061$ [LHCb,2018] v.s. $\mathcal{O}(10^{-3})$ [theory]


- beauty hadron ~ 10% due to large weak phase difference
 $A_{CP}(B^0 \to K^+\pi^-) = (-8.34 \pm 0.32)\%$ $A_{CP}(B^0_S \to K^-\pi^+) = (22.4 \pm 1.2)\%$ [PDG2022]
- Precision of b-baryon CPV measurement reached of order 1%

 $A_{CP}(\Lambda_b \to p\pi^-) = (0.2 \pm 0.8 \pm 0.4)\%$ $A_{CP}(\Lambda_b \to pK^-) = (-1.1 \pm 0.7 \pm 0.4)\%$ [LHCb,2018,2024]

 $A_{CP}(\Lambda_b \to pK^-\pi^+\pi^-) = (2.45 \pm 0.46 \pm 0.10)\%$ **5.2** σ [LHCb,2025]

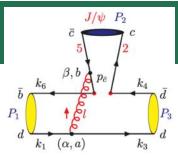

> LHCb is a baryon factory ! $\frac{N_{\Lambda_b}}{N_P^{0,-}} \sim 0.5$ $N_{\Lambda_b} \sim 10^{12}$ [LHCb,2012]


non-zero polarization, more observables

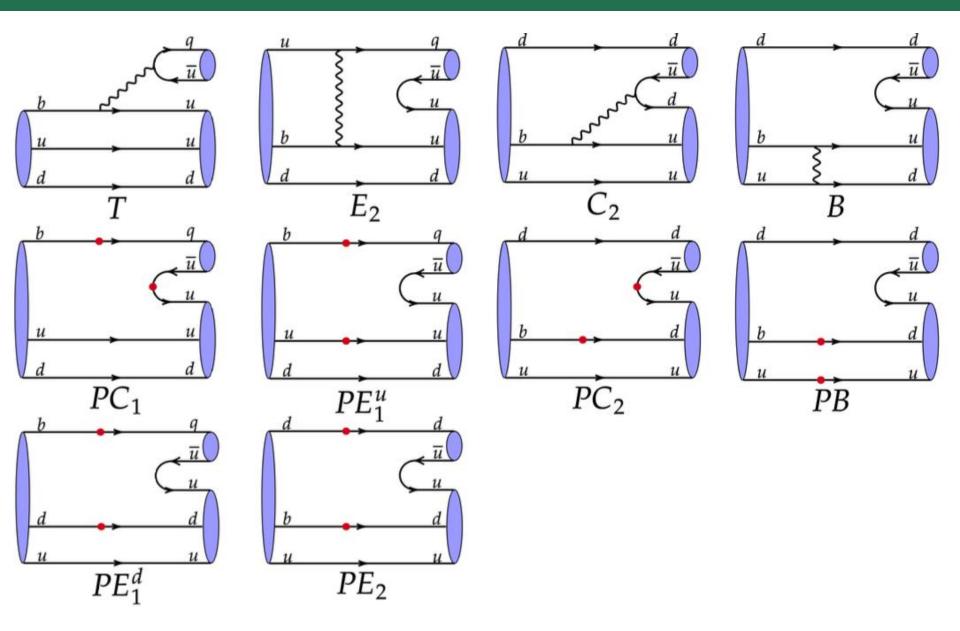
Challenges

- → why CPVs of $\Lambda_b \to p\pi$, *pK* are small ? $\frac{B_b^0}{B_b^0}$.
- > QCD dynamics for baryon are different
 - non-zero spin/polarization
 - one more energetic quark, one more hard gluon
 - power counting of baryon is different from meson
- QCD studies on baryon are listed
 - GFA (Hsiao, Yao, Geng, 2017; Liu, Geng, 2021)
 - QCDF (Zhu,Ke,Wei,2016,2018)
 - PQCD (Lü,Wang,Zou,Ali,Kramer,2009; Zhou,et.al.,2022~2023)
 - quark model(Geng,Liu,Tsai,et.al.,2019~2022)
 - Light-cone Sum rule (Jiang, Cheng, Khodjamirian, Yu, in progress)

	Exp.	GFA (Hsiao,Yao,Geng, 2017)	QCDF (Zhu,Ke,Wei, 2018)	PQCD(hybrid) (Lü,Wang,et.al., 2009)	LFQM (Geng,Liu,Tsai, 2021)	LCSR (Jiang,et.al., 2022)
$A_{CP}(\Lambda_b \to p\pi^-)\%$	0.20 ± 0.89	-3.9 ± 0.4	-3.4 ± 0.4	-31^{+42}_{-1}	-3.6 ± 0.20	-1.8
$A_{CP}(\Lambda_b \to pK^-)\%$	-1.1 ± 0.81	6.7 ± 0.4	10.1 ± 2.0	-5^{+26}_{-5}	6.36 ± 0.28	-0.1


PQCD approach

- \triangleright Collinear factorization, transverse momentum k_T is ignored
 - endpoint singularity, $\frac{1}{x_i(1-x_j)Q^2} \xrightarrow{x_{i,j} \to 0,1} \infty$
- > PQCD approach, based on k_T factorization, retain transverse momentum k_T
 - propagators ~ $\frac{1}{x_i(1-x_j)Q^2 + |k_{iT}|^2}$ [Sterman, Hsiang-nan Li, 1995~2000]
 - After resummation, Sudakov factors to suppress contribution from small k_T


$$\begin{aligned} \mathscr{A} &= \langle M_2 M_3 \,|\, \mathscr{H} \,|\, B \rangle \\ &\sim \int \frac{d^4 k_1}{(2\pi)^4} \frac{d^4 k_2}{(2\pi)^4} \frac{d^4 k_3}{(2\pi)^4} \Psi_B(k_1, \mu) \Psi_2(k_2, \mu) \Psi_3(k_3, \mu) \cdot H(k_1, k_2, k_3, \mu) C_i(\mu) \\ &\sim \int_0^1 dx_2 dx_2 dx_3 \int \frac{d^2 k_{1T}}{(2\pi)^2} \frac{d^2 k_{2T}}{(2\pi)^2} \frac{d^2 k_{3T}}{(2\pi)^2} \phi_B(x_1, k_{1T}, \mu) \phi_2(x_2, k_{2T}, \mu) \phi_3(x_3, k_{3T}, \mu) \cdot H(x_1, x_2, x_3, k_{1T}, k_{2T}, k_{3T}, \mu) C_i(\mu) \end{aligned}$$

PQCD has successfully predicted *B* meson CPV

$C_{\pi\pi}(B \to \pi^+\pi^-)\%$	$A_{CP}(B \to K^+\pi^-)\%$
~ -40 [Lü,Ukai,Yang,2000]	~ -18 [Keum,Li,Sanda,2000]
$-30 \pm 25 \pm 4$ [BaBar,2002]	$-19 \pm 10 \pm 3$ [BaBar,2001]
-12.8 ^{+3.48} _{-3.29} [Chai,Cheng,Ju,Yan, Lü,Xiao,2022]	-5.43 ^{+2.25} _{-2.34} [Chai,Cheng,Ju,Yan, Lü,Xiao,2022]
-31.4 ± 3 [PDG]	-8.31 ± 0.31 [PDG]

Topological diagrams of two-body decays

Explain CPVs of $\Lambda_b \rightarrow p\pi^-$, pK^- in PQCD

➢ Baryons have half-integer spin, and thus two partial wave amplitudes.

$$\begin{aligned} \mathcal{A}(\Lambda_{b} \rightarrow ph) &= i\bar{u}_{p}(S + P\gamma_{5})u_{\Lambda_{b}} \\ S \text{ wave } S &= \begin{pmatrix} \lambda_{T}|S_{T}|e^{i\delta_{T}^{S}} \\ \lambda_{T}|P_{T}|e^{i\delta_{T}^{P}} \\ \lambda_{T}|P_{T}|e^{i\delta_{T}^{P}} \\ \end{pmatrix} + \begin{pmatrix} \lambda_{P}|S_{P}|e^{i\delta_{P}^{P}} \\ \lambda_{P}|P_{P}|e^{i\delta_{P}^{P}} \\ \end{pmatrix} \\ \begin{pmatrix} A_{CP}^{s} &= \frac{|P|^{2} - |\bar{P}|^{2}}{|P|^{2} + |\bar{P}|^{2}} \\ = \frac{-2r_{P}sin\Delta\phi sin\Delta\delta_{S}}{1 + r_{s}^{2} + 2r_{S}cos\Delta\phi cos\Delta\delta_{S}}, \\ A_{CP}^{b} &= \frac{|P|^{2} - |\bar{P}|^{2}}{|P|^{2} + |\bar{P}|^{2}} \\ = \frac{-2r_{P}sin\Delta\phi sin\Delta\delta_{S}}{1 + r_{P}^{2} + 2r_{P}cos\Delta\phi cos\Delta\delta_{P}} \\ \end{pmatrix} \\ A_{CP}^{dir} &= \frac{\Gamma(\Lambda_{b} \rightarrow ph) - \bar{\Gamma}(\bar{\Lambda}_{b} \rightarrow \bar{p}\bar{h})}{\Gamma(\Lambda_{b} \rightarrow ph) + \bar{\Gamma}(\bar{\Lambda}_{b} \rightarrow \bar{p}\bar{h})} \\ &= \frac{M_{+}^{2}(|S|^{2} - |\bar{S}|^{2}) + M_{-}^{2}(|P|^{2} - |\bar{P}|^{2})}{M_{+}^{2}(|S|^{2} + |\bar{S}|^{2}) + M_{-}^{2}(|P|^{2} - |\bar{P}|^{2})} \\ &= \frac{M_{+}^{2}(|S|^{2} + |\bar{S}|^{2}) + M_{-}^{2}(|P|^{2} + |\bar{P}|^{2})}{M_{+}^{2}(|S|^{2} + |\bar{S}|^{2}) + M_{-}^{2}(|P|^{2} + |\bar{P}|^{2})} \\ &= \frac{|S|^{2}}{|S|^{2} + \frac{M_{+}^{2}}{1 + A_{CP}^{2}} \\ &= \kappa_{S}A_{CP}^{S-wave} + \kappa_{P}A_{CP}^{P-wave} \\ &= \kappa_{S}A_{CP}^{S-wave} + \kappa_{P}A_{CP}^{P-wave} \\ &= weights \quad \kappa_{S} \approx \frac{|S|^{2}}{|S|^{2} + \kappa|P|^{2}}, \quad \kappa_{P} \approx \frac{\kappa|P|^{2}}{|S|^{2} + \kappa|P|^{2}} \end{aligned}$$

Signs between S- and P-wave

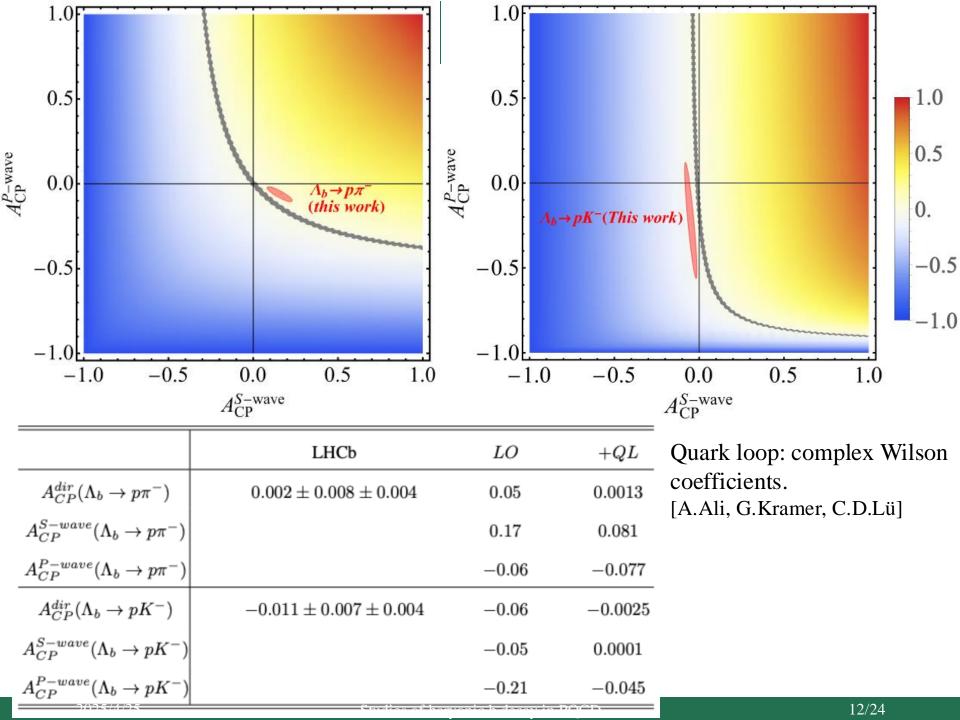
> PQCD approach

$$\begin{aligned} \mathcal{A} &= \left\langle M_2 M_3 \, | \, \mathcal{H} \, | \, B \right\rangle \\ &\sim \int \frac{d^4 k_1}{(2\pi)^4} \frac{d^4 k_2}{(2\pi)^4} \frac{d^4 k_3}{(2\pi)^4} \Psi_B(k_1, \mu) \Psi_2(k_2, \mu) \Psi_3(k_3, \mu) \cdot H(k_1, k_2, k_3, \mu) C_i(\mu) \\ &\sim \int_0^1 dx_2 dx_2 dx_3 \int \frac{d^2 k_{1T}}{(2\pi)^2} \frac{d^2 k_{2T}}{(2\pi)^2} \frac{d^2 k_{3T}}{(2\pi)^2} \phi_B(x_1, k_{1T}, \mu) \phi_2(x_2, k_{2T}, \mu) \phi_3(x_3, k_{3T}, \mu) \cdot H(x_1, x_2, x_3, k_{1T}, k_{2T}, k_{3T}, \mu) C_i(\mu) \end{aligned}$$

Signs of S- and P-wave depend on interaction and wave functions

$$\mathcal{A} \sim \bar{N}\gamma_{\mu}(1-\gamma_{5})\phi_{\pi}\phi_{\Lambda_{b}}\phi_{p}\gamma^{\mu}(1-\gamma_{5})\Lambda_{b} \qquad \mathcal{A} \sim \bar{N}(1+\gamma_{5})\phi_{\pi}\phi_{\Lambda_{b}}\phi_{p}(1-\gamma_{5})\Lambda_{b} \\ \xrightarrow{\phi_{\pi}=\gamma_{5}\not{g}, \quad \phi_{\Lambda_{b}}=\not{p}\gamma_{5}, \quad \phi_{p}=\not{p}' \\ \sim \bar{N}(\not{p}-\not{p}')(1-\gamma_{5})\Lambda_{b} \qquad \qquad \mathcal{N}[(M_{\Lambda_{b}}-m_{p})] + (M_{\Lambda_{b}}+m_{p})\gamma_{5}]\Lambda_{b} \qquad \sim \bar{N}[m_{p}] \xrightarrow{\phi_{\pi}=\gamma_{5}\not{g}, \quad \phi_{p}=\not{p}'}{\rho_{\pi}}$$

Partial wave amplitudes of $\Lambda_b \rightarrow p\pi^-$, pK^- in PQCD


> The above crude argument needs to be justified by comprehensive QCD calculations

$\Lambda_b \to p \pi^-$	S	$\delta^S(^\circ)$	$\operatorname{Real}(S)$	$\operatorname{Imag}(S)$	P	$\delta^P(^\circ)$	$\operatorname{Real}(P)$	Imag(P)
T_{f}	707.17	0.00	707.17	0.00	1004.44	0.00	1004.44	0.00
T_{nf}	51.72	-96.64	-5.98	-51.38	267.72	-97.92	-36.90	-265.17
$T_f + T_{nf}$	703.07	-4.19	701.19	-51.38	1003.22	-15.33	967.54	-265.17
C_2	29.37	154.96	-26.61	12.43	41.51	179.80	-41.51	0.14
E_2	66.94	-145.26	-55.01	-38.14	72.58	119.94	-36.23	62.89
B	10.40	112.64	-4.00	9.60	23.65	-122.56	-12.73	-19.93
Tree	619.26	-6.26	615.57	-67.49	904.75	-14.21	877.08	-222.06
$P_f^{C_1}$	58.44	0.00	58.44	0.00	2.90	0.00	2.90	0.00
$P_{nf}^{C_1}$	1.24	-115.38	-0.53	-1.12	11.16	-95.25	-1.02	-11.11
$P_{f}^{C_{1}} + P_{nf}^{C_{1}}$	57.91	-1.11	57.90	-1.12	11.27	-80.38	1.88	-11.11
P^{C_2}	13.36	-116.10	-5.88	-12.00	14.93	71.96	4.62	14.20
$P^{E_1^u}$	9.48	-87.62	0.39	-9.47	8.83	114.44	-3.65	8.04
P^B	1.36	-51.30	0.85	-1.06	1.55	-159.86	-1.46	-0.53
$P^{E_1^d} + P^{E_2}$	3.87	-98.18	-0.55	-3.83	1.41	-12.55	1.37	-0.31
Penguin	59.45	-27.54	52.71	-27.49	10.65	74.93	2.77	10.28

CPV of $\Lambda_b \rightarrow p\pi^-$, pK^-

 $A_{CP}^{\rm dir} \approx \kappa_S A_{CP}^{S\text{-wave}} + \kappa_P A_{CP}^{P\text{-wave}}$

$Br(imes 10^{-6})$		
$\Lambda_b \to p\pi^- \ 3.34^{+2.53+1.33+0.10+0.47}_{-1.30-1.10-0.11-0.14}$		
$\Lambda_b \to p K^- \ 2.83^{+2.17+1.17+0.49+2.19}_{-1.05-0.92-0.37-0.66}$		
A_{CP}^{dir}	$A^S_{CP}(\kappa_S)$	$A^P_{CP}(\kappa_P)$
$\Lambda_b \to p\pi^- \ 0.05^{+0.00+0.00+0.00+0.02}_{-0.02-0.01-0.02-0.01}$	$0.17 \begin{smallmatrix} 0.01 + 0.01 + 0.03 + 0.04 \\ 0.04 - 0.04 - 0.07 - 0.04 \end{smallmatrix} (49\%)$	$-0.06^{+0.01+0.03+0.02+0.00}_{-0.02-0.03-0.03-0.01}(51\%$
$\Lambda_b \to pK^ 0.06^{+0.01+0.01+0.02+0.00}_{-0.01-0.01-0.01-0.00}$	$-0.05^{+0.02+0.02+0.04+0.00}_{-0.02-0.01-0.03-0.00}(94\%)$	$-0.21^{+0.07+0.23+0.29+0.04}_{-0.15-0.33-0.27-0.01}(6\%$
lpha	A^{lpha}_{CP}	$\langle lpha angle$
$\Lambda_b \to p\pi^ 0.94^{+0.00+0.02+0.01+0.03}_{-0.02-0.02-0.02-0.02}$	$0.02\substack{+0.00+0.01+0.00+0.01\\-0.01-0.01-0.01-0.01}$	$-0.96\substack{+0.00+0.01+0.01+0.02\\-0.00-0.01-0.01-0.01}$
$\Lambda_b \to pK^- \ 0.23^{+0.04+0.02+0.10+0.15}_{-0.03-0.05-0.12-0.07}$	$0.04\substack{+0.02+0.02+0.01+0.01\\-0.02-0.03-0.01-0.01}$	$0.20\substack{+0.02+0.01+0.11+0.14\\-0.02-0.02-0.02-0.12-0.06}$
eta	A_{CP}^{eta}	$\langle \beta \rangle$
$\Lambda_b \to p\pi^- \ 0.34^{+0.00+0.05+0.01+0.07}_{-0.06-0.06-0.06-0.05}$	$0.22\substack{+0.00+0.00+0.03+0.07\\-0.01-0.01-0.04-0.03}$	$0.12\substack{+0.00+0.05+0.03+0.00\\-0.05-0.05-0.04-0.02}$
$\Lambda_b \to pK^ 0.39^{+0.03+0.08+0.08+0.12}_{-0.01-0.04-0.07-0.01}$	$-0.44\substack{+0.01+0.01+0.02+0.08\\-0.00-0.00-0.01-0.04}$	$0.05\substack{+0.03+0.08+0.07+0.04\\-0.01-0.05-0.07-0.02}$
γ	A_{CP}^{γ}	$\langle \gamma angle$
$\Lambda_b \to p\pi^- \ 0.09^{+0.02+0.04+0.04+0.04}_{-0.04-0.06-0.06-0.01}$	$0.11^{+0.01+0.02+0.03+0.03}_{-0.02-0.03-0.04-0.02}$	$-0.02\substack{+0.01+0.02+0.01+0.01\\-0.02-0.04-0.01-0.00}$
$\Lambda_b \to pK^- \ 0.89^{+0.02+0.04+0.04+0.00}_{-0.01-0.02-0.05-0.01}$	$0.02^{+0.02-0.03-0.04-0.02}_{-0.01-0.03-0.04-0.00}$	$0.87\substack{+0.00+0.01+0.02+0.00\\-0.00-0.01-0.02-0.01}$

Predict CPVs of $\Lambda_b \rightarrow p\rho^-$, pK^{*-}

Invariant amplitudes $\mathcal{M}^{L} \left[B_{i}(1/2^{+}) \to B_{f}(1/2^{+}) + V \right] = \bar{u}_{f}(p_{f})\epsilon_{L}^{*\mu} \left[A_{1}^{L}\gamma_{\mu}\gamma_{5} + A_{2}^{L}\frac{(p_{f})_{\mu}}{m_{i}}\gamma_{5} + B_{1}^{L}\gamma_{\mu} + B_{2}^{L}\frac{(p_{f})_{\mu}}{m_{i}} \right] u_{i}(p_{i}),$ $\mathcal{M}^{T} \left[B_{i}(1/2^{+}) \to B_{f}(1/2^{+}) + V \right] = \bar{u}_{f}(p_{f})\epsilon_{T}^{*\mu} \left[A_{1}^{T}\gamma_{\mu}\gamma_{5} + B_{1}^{T}\gamma_{\mu} \right] u_{i}(p_{i}).$

Partial wave amplitudes

$$\begin{split} S^{T} &= -A_{1}^{T}, \\ S^{L} &= -A_{1}^{L}, \\ P_{1} &= -\frac{p_{c}}{E_{V}} \left(\frac{m_{i} + m_{f}}{E_{f} + m_{f}} B_{1}^{L} + B_{2}^{L} \right), \\ P_{2} &= \frac{p_{c}}{E_{f} + m_{f}} B_{1}^{T}, \\ D &= -\frac{p_{c}^{2}}{E_{V}(E_{f} + m_{f})} \left(A_{1}^{L} - A_{2}^{L} \right). \\ \Gamma(1/2^{+} \to 1/2^{+} + V) &= \frac{p_{c}}{4\pi} \frac{E_{f} + m_{f}}{m_{i}} \left\{ 2(|S|^{2} + |P_{2}|^{2}) + \frac{E_{V}^{2}}{m_{V}^{2}} (|S + D|^{2} + |P_{1}|^{2}) \right\} \end{split}$$

Helicity amplitudes

$$\mathcal{B} = \frac{p_c \tau_{\Lambda_b}}{8\pi m_i^2} \left[\begin{array}{l} H_{1/2,1} = -M_+ A_1^T - M_- B_1^T, \\ H_{-1/2,-1} = M_+ A_1^T - M_- B_1^T, \\ H_{-1/2,0} = \frac{1}{\sqrt{2}m_V} \left[M_+ (m_i - m_f) A_1^L - M_- p_c A_2^L + M_- (m_i + m_f) B_1^L + M_+ p_c B_2^L \right], \\ H_{-1/2,0} = \frac{1}{\sqrt{2}m_V} \left[-M_+ (m_i - m_f) A_1^L + M_- p_c A_2^L + M_- (m_i + m_f) B_1^L + M_+ p_c B_2^L \right]. \\ \mathcal{B} = \frac{p_c \tau_{\Lambda_b}}{8\pi m_i^2} (|H_{1/2,1}|^2 + |H_{-1/2,-1}|^2 + |H_{1/2,0}|^2 + |H_{-1/2,0}|^2). \quad [\text{Koener,Kramer,1992}] \\ \text{[Cheng,1996]} \end{array} \right]$$

 $A_{CP}^{dir} \approx \kappa_{S^{T}} A_{CP}^{S^{T}} + \kappa_{P_{2}} A_{CP}^{P_{2}} + \kappa_{D+S^{L}} A_{CP}^{D+S^{L}} + \kappa_{P_{1}} A_{CP}^{P_{1}}$

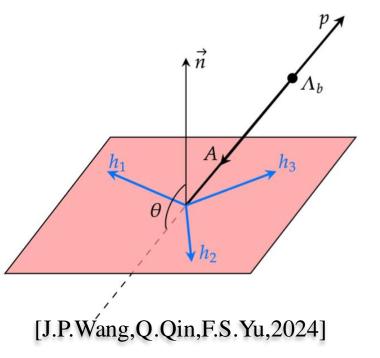
	$Br(imes 10^{-6})$	A_{CP}^{dir} ,	$A_{CP}^{S^T}(\kappa_{S^T})$
$\Lambda_b o p \rho^-$	$9.66\substack{+6.23+3.23+0.21+1.89\\-3.50-3.03-1.20-0.75}$	$0.03\substack{+0.02+0.01+0.00+0.02\\-0.02-0.03-0.03-0.02}$	$0.01^{+0.00+0.00+0.00+0.00}_{-0.01-0.02-0.02-0.02-0.02}(7\%)$
$\Lambda_b \to p K^{*-}$	$2.83^{+1.77+0.46+0.37+0.63}_{-1.29-1.23-0.53-0.66}$	$-0.05^{+0.04+0.07+0.01+0.05}_{-0.11-0.07-0.06-0.08}$	$-0.15^{+0.06+0.09+0.02+0.05}_{-0.00-0.04-0.05-0.00}(6\%)$
	$A_{CP}^{S^L+D}(\kappa_{S^L+D})$	$A^{P_1}_{CP}(\kappa_{P_1})$	$A^{P_2}_{CP}(\kappa_{P_2})$
$\Lambda_b \to p \rho^- \ 0$	$.02^{+0.03+0.04+0.02+0.05}_{-0.02-0.02-0.00-0.00}(44\%)$	$0.03^{+0.04+0.00+0.00+0.00}_{-0.05-0.04-0.10-0.05}(45\%)$	$0.17^{+0.00+0.00+0.01+0.03}_{-0.02-0.03-0.03-0.04}(4\%)$
$\Lambda_b \to p K^{*-}0$	$.27^{+0.02+0.06+0.05+0.03}_{-0.17-0.11-0.02-0.18}(33\%)$	$-0.23^{+0.05+0.07+0.02+0.05}_{-0.11-0.11-0.09-0.03}(55\%)$	$-0.14^{+0.01+0.00+0.02+0.01}_{-0.04-0.09-0.02-0.03}(6\%)$
	α	A^{lpha}_{CP}	$\langle lpha angle$
$\Lambda_b \to p \rho^-$	$-0.83\substack{+0.02+0.01+0.00+0.00\\-0.02-0.05-0.04-0.01}$	$-0.01\substack{+0.01+0.01+0.01+0.00\\-0.00-0.00-0.01-0.00}$	$-0.83\substack{+0.01+0.01+0.01+}_{-0.02-0.05-0.04-0.01}, 0.00$
$\Lambda_b \to p K^{*-}$	$-1.00\substack{+0.01+0.01+0.00+0.01\\-0.00-0.00-0.00-0.00}$	$-0.00+0.00+0.00+0.00+0.00\\-0.00-0.00-0.00-0.0$	$-1.00\substack{+0.00+0.01+0.00+0.00\\-0.00-0.00-0.00-0.00}$
	eta	A^{eta}_{CP}	$\langle \beta \rangle$
$\Lambda_b \to p \rho^-$	$-0.98\substack{+0.05+0.07+0.05+0.06\\-0.00-0.00-0.00-0.00}$	$0.00\substack{+0.01+0.02+0.01+0.02\\-0.00-0.00-0.00-0.00}$	$-0.99\substack{+0.04+0.05+0.04+0.04\\-0.00-0.00-0.00-0.00}$
$\Lambda_b \to p K^{*-}$	$-0.90\substack{+0.07+0.17+0.11+0.00\\-0.03-0.03-0.00-0.03}$	$-0.02\substack{+0.04+0.06+0.04+0.01\\-0.00-0.04-0.00-0.00}$	$-0.88\substack{+0.06+0.11+0.08+0.00\\-0.03-0.06-0.00-0.04}$
	γ	A_{CP}^γ	$\langle \gamma angle$
$\Lambda_b \to p \rho^-$	$-0.11\substack{+0.01+0.01+0.01+0.01\\-0.01-0.01-0.02-0.00}$	$-0.01+0.00+0.00+0.00+0.00\\-0.00-0.00-0.00-0.0$	$-0.10\substack{+0.01+0.01+0.01+0.00\\-0.01-0.01-0.02-0.00}$
$\Lambda_b \to p K^{*-}$	$-0.12\substack{+0.01+0.00+0.02+0.00\\-0.06-0.05-0.03-0.05}$	$0.02\substack{+0.01+0.03+0.01+0.01\\-0.02-0.02-0.01-0.01}$	$-0.14\substack{+0.01+0.01+0.02+0.00\\-0.04-0.07-0.04-0.04}$
	Λ	A^{Λ}_{CP}	$\langle\Lambda angle$
$\Lambda_b o p \rho^-$	$-0.96\substack{+0.05+0.06+0.04+0.05\\-0.00-0.00-0.00-0.00}$	$0.00\substack{+0.01+0.02+0.01+0.02\\-0.00-0.00-0.00-0.00}$	$-0.97\substack{+0.04+0.04+0.03+\\-0.00-0.00-0.00-0.00}^{+0.04+0.03+}$
$\Lambda_b \to p K^{*-}$	$-0.91\substack{+0.06+0.15+0.09+0.00\\-0.02-0.02-0.00-0.03}$	$-0.01\substack{+0.03+0.06+0.03+0.01\\-0.00-0.03-0.00-0.00}$	$-0.90\substack{+0.05+0.09+0.07+0.00\\-0.03-0.05-0.01-0.03}$
	${\mathcal J}$	$A_{CP}^{\mathcal{J}}$	$\langle \mathcal{J} angle$
$\Lambda_b \to p \rho^-$	$1.66\substack{+0.04+0.04+0.02+0.02\\-0.03-0.03-0.05-0.00}$	$-0.01\substack{+0.01+0.01+0.01+0.00\\-0.01-0.01-0.01-0.00-0.00}$	$1.67\substack{+0.03+0.04+0.02+0.02\\-0.05-0.03-0.05-0.00}$
$\Lambda_b \to p K^{*-}$	$1.67\substack{+0.02+0.00+0.04+0.00\\-0.14-0.12-0.08-0.12}$	$0.04\substack{+0.02+0.05+0.02+0.01\\-0.06-0.04-0.02-0.03}$	$1.63\substack{+0.01+0.03+0.04+0.00\\-0.08-0.15-0.09-0.09}$

Predict CPVs of $\Lambda_b \rightarrow pa_1, pK_1(1270), pK_1(1400)$

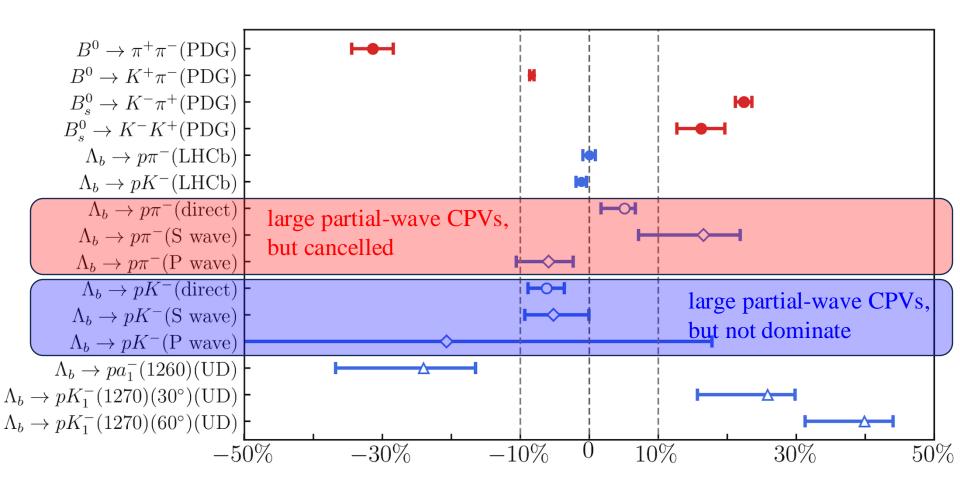
$$A_{CP}^{dir} \approx \kappa_{S^{T}} A_{CP}^{S^{T}} + \kappa_{P_{2}} A_{CP}^{P_{2}} + \kappa_{D+S^{L}} A_{CP}^{D+S^{L}} + \kappa_{P_{1}} A_{CP}^{P_{1}}$$

$ \begin{pmatrix} K_1(1270)\rangle \\ K_1(1400)\rangle \end{pmatrix} = \begin{pmatrix} \sin\theta_{K_1} & \cos\theta_{K_1} \\ \cos\theta_{K_1} & -\sin\theta_{K_1} \end{pmatrix} \begin{pmatrix} K_1 \\ K_1 \\ K_1 \end{pmatrix} $	$\left. \begin{array}{c} A \\ B \end{array} \right) $
$\theta_K \sim 30^\circ/60^\circ$	

	$Br(imes 10^{-6})$	A_{CP}^{dir}	$A_{CP}^{S^T}(\kappa_{S^T})$
$\Lambda_b \to pa_1^-(1260)$	$11.06\substack{+8.21+3.88+0.91+1.73\\-4.30-3.32-0.46-0.06}$	$-0.01\substack{+0.01+0.03+0.02+0.03\\-0.00-0.01-0.02-0.00}$	$-0.22^{+0.04+0.07+0.05+0.04}_{-0.03-0.07-0.07-0.07-0.01}(6\%)$
$\Lambda_b \to p K_1^-(1270)(30^\circ)$	$5.48\substack{+3.63+1.94+0.27+2.49\\-1.87-1.55-0.31-1.11}$	$0.09\substack{+0.03+0.07+0.03+0.01\\-0.04-0.02-0.02-0.02}$	$0.34^{+0.00+0.01+0.01+0.00}_{-0.02-0.03-0.01-0.05}(8\%)$
$\Lambda_b \to p K_1^-(1400)(30^\circ)$	$1.25\substack{+0.59+0.33+0.13+0.64\\-0.39-0.19-0.19-0.31}$	$0.06\substack{+0.03+0.05+0.03+0.00\\-0.03-0.09-0.04-0.01}$	$0.71^{+0.05+0.06+0.03+0.03}_{-0.02-0.16-0.04-0.13}(13\%)$
$\Lambda_b \to p K_1^-(1270)(60^\circ)$	$6.28\substack{+3.97+1.93+0.18+2.79\\-2.13-1.51-0.41-1.32}$	$0.07\substack{+0.01+0.03+0.03+0.01\\-0.04-0.04-0.03-0.00}$	$0.46^{+0.00+0.00+0.02+0.01}_{-0.02-0.04-0.02-0.07}(9\%)$
$\Lambda_b \to p K_1^-(1400)(60^\circ)$	$0.53\substack{+0.33+0.38+0.09+0.36\\-0.16-0.19-0.22-0.13}$	$0.08\substack{+0.11+0.09+0.12+0.00\\-0.08-0.11-0.04-0.03}$	$0.07^{+0.00+0.41+0.08+0.22}_{-0.12-0.09-0.15-0.10}(3\%)$
	$A_{CP}^{S^L+D}(\kappa_{S^L+D})$	$A_{CP}^{P_1}(\kappa_{P_1})$	$A^{P_2}_{CP}(\kappa_{P_2})$
$\Lambda_b \to pa_1^-(1260)$	$-0.11^{+0.02+0.01+0.02+0.02}_{-0.00-0.01-0.07-0.03}(46\%)$	$0.18^{+0.03+0.02+0.04+0.09}_{-0.03-0.02-0.03-0.04}(40\%)$	$-0.24^{+0.01+0.05+0.04+0.03}_{-0.02-0.09-0.06-0.06}(8\%)$
$\Lambda_b \to p K_1^-(1270)(30^\circ)$	$-0.11^{+0.01+0.08+0.08+0.03}_{-0.04-0.06-0.03-0.00}(42\%)$	$0.19^{+0.10+0.13+0.05+0.02}_{-0.06-0.09-0.11-0.01}(42\%)$	$0.33^{+0.00+0.04+0.02+0.00}_{-0.02-0.03-0.02-0.03}(8\%)$
$\Lambda_b \to p K_1^-(1400)(30^\circ$	$0.81^{+0.09+0.17+0.07+0.04}_{-0.12-0.14-0.11-0.00}(17\%)$	$-0.41^{+0.04+0.05+0.08+0.03}_{-0.07-0.05-0.11-0.04}(60\%)$	$0.78^{+0.04+0.11+0.09+0.05}_{-0.06-0.20-0.04-0.10}(10\%)$
$\Lambda_b \to p K_1^-(1270)(60^\circ)$	$0.06^{+0.01+0.08+0.07+0.03}_{-0.03-0.07-0.04-0.00}(37\%)$	$-0.07^{+0.05+0.06+0.04+0.01}_{-0.06-0.05-0.05-0.05-0.02}(45\%)$	$0.46^{+0.00+0.04+0.04+0.02}_{-0.01-0.03-0.02-0.06}(9\%)$
$\Lambda_b \to p K_1^-(1400)(60^\circ)$	$-0.82^{+0.14+0.19+0.12+0.21}_{-0.07-0.09-0.07-0.02}(30\%)$	$0.52^{+0.06+0.12+0.37+0.00}_{-0.01-0.14-0.03-0.07}(64\%)$	$-0.28^{+0.27+0.04+0.03+0.03}_{-0.07-0.36-0.25-0.16}(3\%)$


Results of $\Lambda_b \rightarrow pa_1, pK_1$

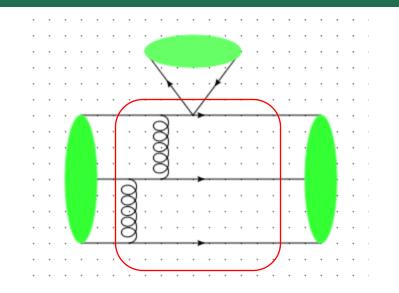
• The angle distribution for $\Lambda_b \rightarrow pA \rightarrow ph_1h_2h_3$:


$$\frac{d\Gamma}{d\cos\theta} \supset R \ \mathcal{R}e(S^T P_2^*) \ \cos\theta$$

• up-down asymmetry :

$$A_{UD} \equiv \frac{\Gamma(\cos\theta > 0) - \Gamma(\cos\theta < 0)}{\Gamma(\cos\theta > 0) + \Gamma(\cos\theta < 0)} = R \ \mathcal{R}e(S^T P_2^*)$$
$$A_{CP}^{UD} = \frac{A_{UD} + \bar{A}_{UD}}{A_{UD} - \bar{A}_{UD}}$$

	a_{UD}	A ^{UD} A ^{CP}
$\Lambda_b \to pa_1^-(1260)$	$-0.09\substack{+0.00+0.01+0.02+0.00\\-0.01-0.01-0.01-0.01}$	$-0.24\substack{+0.03+0.05+0.05+0.03\\-0.03-0.09-0.06-0.06}$
$\Lambda_b ightarrow p K_1^-(1270)(30^\circ)$	$-0.19\substack{+0.03+0.02+0.01+0.01\\-0.02-0.02-0.01-0.02}$	$0.26\substack{+0.02+0.03+0.01+0.00\\-0.03-0.08-0.04-0.04}$
$\Lambda_b ightarrow p K_1^-(1400)(30^\circ)$	$-0.38\substack{+0.06+0.10+0.05+0.00\\-0.06-0.09-0.07-0.03}$	$0.72\substack{+0.05+0.13+0.07+0.05\\-0.05-0.23-0.03-0.12}$
$\Lambda_b ightarrow p K_1^-(1270)(60^\circ)$	$-0.24\substack{+0.04+0.04+0.01+0.00\\-0.02-0.03-0.02-0.03}$	$0.40\substack{+0.02+0.03+0.02+0.01\\-0.01-0.04-0.03-0.07}$
$\Lambda_b \to p K_1^-(1400)(60^\circ)$	$-0.04\substack{+0.02+0.02+0.01+0.02\\-0.01-0.05-0.03-0.01}$	$-0.19\substack{+0.12+0.14+0.00+0.06\\-0.18-0.19-0.20-0.00}$


Discussions of $B \to \mathcal{B}_c \overline{\mathcal{B}}'_c$

Higher twist corrections to doubly-charmed baryonic B decays

Zhou Rui⁽¹⁾, Zhi-Tian Zou⁽¹⁾ and Ying Li⁽¹⁾

BASED ON JHEP 12 (2024) 159

 $M \propto \psi_{\rm B} \otimes \underline{H} \otimes \psi_{\overline{B_c}} \otimes \psi_{B_c}$

- The hard amplitude involves eight external on shell quarks, four of which correspond to the four-fermion operators and four of which are the spectator quarks in the final states.
- > The hard kernels start at α_s^2 in the PQCD approach.
- > Hadronic LCDAs are the necessary inputs in PQCD calculations.

Numerical results

Invariant amplitudes $\mathcal{M} = \langle \mathcal{B}_c \bar{\mathcal{B}}_c | \mathcal{H}_{eff} | B \rangle = \bar{u} [H_S + H_P \gamma_5] v$

B-meson LCDAs: [Phys. Rev. D 74 (2006) 014027]

$$\Phi_B = -\frac{i}{\sqrt{2N_c}}(\not\!\!\!\!/ + M)\gamma_5\left(\phi_B^- + \frac{\not\!\!\!/ + }{\sqrt{2}}(\phi_B^- - \phi_B^+)\right)$$

Mode	Type	Amplitude	ϕ_B	$ar{\phi}_B$	$\phi_B + ar{\phi}_B$
		H_S	$1.2 \times 10^{-7} + i8.3 \times 10^{-9}$	$2.0 \times 10^{-8} + i3.2 \times 10^{-8}$	$1.4 \times 10^{-7} + i4.0 \times 10^{-8}$
$B^- \to \Xi_c^0 \bar{\Lambda}_c^-$	C	H_P	$-7.8 \times 10^{-9} + i4.9 \times 10^{-8}$	$-1.0 \times 10^{-8} + i1.5 \times 10^{-8}$	$-1.8 \times 10^{-8} + i6.4 \times 10^{-8}$
		$ \mathcal{M} (\mathrm{GeV})$	3.7×10^{-7}	1.3×10^{-7}	4.8×10^{-7}
		H_S	$4.8 \times 10^{-9} - i1.1 \times 10^{-8}$	$5.0 \times 10^{-9} + i8.6 \times 10^{-9}$	$9.8 \times 10^{-9} - i2.4 \times 10^{-9}$
$\bar{B}^0_s \to \Lambda^+_c \bar{\Lambda}^c$	E	H_P	$-9.6 \times 10^{-10} + i1.9 \times 10^{-8}$	$5.8 \times 10^{-9} - i3.0 \times 10^{-9}$	$4.8 \times 10^{-9} + i1.6 \times 10^{-8}$
		$ \mathcal{M} (\mathrm{GeV})$	1.1×10^{-7}	4.5×10^{-8}	9.5×10^{-8}
		H_S	$7.8 \times 10^{-9} + i6.1 \times 10^{-9}$	$1.0 \times 10^{-10} + i1.7 \times 10^{-9}$	$7.9 \times 10^{-9} + i7.8 \times 10^{-9}$
$\bar{B}^0 \to \Lambda_c^+ \bar{\Lambda}_c^-$	C + E	H_P	$-2.5 \times 10^{-9} + i1.5 \times 10^{-9}$	$-2.8\times10^{-9}+i2.3\times10^{-9}$	$-5.3 \times 10^{-9} + i3.8 \times 10^{-9}$
		$ \mathcal{M} (\mathrm{GeV})$	3.0×10^{-8}	2.0×10^{-8}	4.5×10^{-8}

- > The subleading contributions can reach as much as (30-70)% of leading ones.
- The interference patterns for C and E amplitudes differ, with the former being constructive and the latter destructive.
- The inclusion of subleading correction can obviously enhance or reduce the total amplitudes.

> Magnitude of amplitude(GeV) from various twist combinations of the baryon and antibaryon LCDAs.

$$\epsilon^{ijk} \langle 0|q_{1\alpha}^{i}(t_{1})q_{2\beta}^{j}(t_{2})c_{\gamma}^{k}(0)|\mathcal{B}_{c}\rangle = \frac{f^{(1)}}{8} \Big[(\not n \gamma_{5}C)_{\alpha\beta}\phi_{2}(t_{1},t_{2}) + (\not n \gamma_{5}C)_{\alpha\beta}\phi_{4}(t_{1},t_{2}) \Big] u_{\gamma} \\ + \frac{f^{(2)}}{4} \Big[(\gamma_{5}C)_{\alpha\beta}\phi_{3}^{s}(t_{1},t_{2}) - \frac{i}{2} (\sigma_{\bar{n}n}\gamma_{5}C)_{\alpha\beta}\phi_{3}^{a}(t_{1},t_{2}) \Big] u_{\gamma}$$

	Twist-2	Twist-3	Twist-4
$B^-\to \Xi^0_c \bar\Lambda^c$			
Twist-2	$3.5 imes10^{-8}$	$1.7 imes 10^{-7}$	$9.6 imes 10^{-8}$
Twist-3	1.4×10^{-7}	1.9×10^{-7}	1.4×10^{-7}
Twist-4	$1.1 imes 10^{-7}$	$2.0 imes 10^{-7}$	$1.6 imes 10^{-7}$
$\bar{B}^0_s \to \Lambda^+_c \bar{\Lambda}^c$			
Twist-2	$3.2 imes 10^{-9}$	0	$1.5 imes 10^{-7}$
Twist-3	0	1.5×10^{-7}	0
Twist-4	$5.8 imes10^{-8}$	0	$1.5 imes 10^{-8}$
$\bar{B}^0\to\Lambda_c^+\bar{\Lambda}_c^-$			
Twist-2	$5.0 imes10^{-9}$	$2.6 imes 10^{-8}$	4.1×10^{-8}
Twist-3	$2.1 imes 10^{-8}$	$5.0 imes10^{-8}$	$1.5 imes 10^{-8}$
Twist-4	$2.4 imes 10^{-8}$	$3.0 imes 10^{-8}$	$2.4 imes 10^{-8}$

The contributions of the twist-4-twist-4 combination are less than the dominant twist-• 3-twist-3 combination, indicating the reliability of twist expansion of the baryon LCDAs. 2025/4/25

Branching ratios $\mathcal{B} = \frac{P_c \tau_B}{8\pi M^2} |\mathcal{M}|^2 = \frac{P_c \tau_B}{8\pi M^2} (|H_S|^2 Q_+ + |H_P|^2 Q_-), \quad Q_{\pm} = M^2 - (m \pm \bar{m})^2$

Mode	PQCD	SU(3)	Data
$B^-\to \Xi^0_c \overline{\Lambda^c}$	$9.5^{+3.0+2.6+1.7+1.2}_{-2.3-3.5-1.4-1.1} \times 10^{-4}$	$7.8^{+2.3}_{-2.0} \times 10^{-4}$	$(9.5 \pm 2.3) \times 10^{-4}$
$\overline{B^0}\to \Xi_c^+\overline{\Lambda_c^-}$	$8.8^{+2.7+2.6+1.5+1.1}_{-2.1-3.1-1.2-1.0} \times 10^{-4}$	$7.2^{+2.1}_{-1.9} \times 10^{-4}$	$(12 \pm 8) \times 10^{-4}$
$\bar{B}^0_s\to\Lambda^+_c\overline{\Lambda^c}$	$4.0^{+0.7+0.2+0.9+1.0}_{-0.3-0.1-0.7-0.8} \times 10^{-5}$	$8.1^{+1.7}_{-1.5} \times 10^{-5}$	$< 9.9 \times 10^{-5}$
$\overline{B^0}\to\Lambda_c^+\overline{\Lambda_c^-}$	$8.8^{+4.4+3.5+1.1+1.0}_{-2.8-3.6-0.9-0.6} \times 10^{-6}$	$2.1^{+1.0}_{-0.8} \times 10^{-5}$	$< 1.6 \times 10^{-5}$

- Theoretical uncertainties: B meson LCDAs, charmed baryon LCDAs, the scale dependence, and the Sudakov resummation.
- The branching ratios suffer large theoretical uncertainties from the nonperturbative hadronic parameters.
- The PQCD predictions for the first two modes agree with the SU(3) and PDG data, while those of the last two modes reach half of the measured upper limits.

Asymmetry parameters $\alpha = \frac{|H_+|^2 - |H_-|^2}{|H_+|^2 + |H_-|^2}, \quad \beta = \frac{2Re(H_+H_-^*)}{|H_+|^2 + |H_-|^2}, \quad \gamma = \frac{2Im(H_+H_-^*)}{|H_+|^2 + |H_-|^2}$

$$H_{\pm} = \frac{1}{\sqrt{2}} \left(\sqrt{Q_+} H_S \mp \sqrt{Q_-} H_P \right)$$

Mode	α	β	γ
$B^- \to \Xi^0_c \bar{\Lambda}^c$	$-0.01^{+0.10+0.12+0.05+0.01}_{-0.10-0.29-0.14-0.01}$	$-0.99\substack{+0.01+0.09+0.00+0.00\\-0.00-0.01-0.00-0.00}$	$-0.07^{+0.07+0.38+0.04+0.07}_{-0.06-0.13-0.05-0.08}$
$\bar{B}^0_s \to \Lambda^+_c \bar{\Lambda}^c$	$-0.03^{+0.05+0.03+0.05+0.01}_{-0.04-0.04-0.03-0.00}$	$-0.57^{+0.02+0.02+0.00+0.05}_{-0.03-0.02-0.02-0.05}$	$-0.82^{+0.03+0.02+0.01+0.04}_{-0.01-0.01-0.00-0.03}$
$\bar{B}^0 \to \Lambda_c^+ \bar{\Lambda}_c^-$	$0.17_{-0.08-0.05-0.18-0.01}^{+0.08+0.08+0.03+0.02}$	$-0.97^{+0.04+0.06+0.02+0.02}_{-0.03-0.00-0.02-0.01}$	$-0.15^{+0.17+0.54+0.14+0.09}_{-0.14-0.16-0.11-0.11}$

The most important source of the theoretical errors is the charmed baryon LCDAs.

- ► FSIs gives $\gamma(\overline{B}_s^0 \to \Lambda_c^+ \overline{\Lambda_c^-}) > 0.8$ by considering the LD contributions.(arXiv:2409.11374)
- Future experiments will tell us whether this process is dominated by the SD or LD contributions.

First full QCD analysis of b-baryon decays and two-body doubly charmed baryonic B decays

Find cancellation of partial wave CPVs

Half-integer spin of baryon, different partial wave amplitudes, different dynamics

Small direct CPVs of $\Lambda_b \rightarrow p\pi$, *pK* are well explained

Our PQCD calculation have No conflict with known measurements

Large CPV observables are proposed and predicted

Thank you!

Backup

$\Lambda_b \to p K^-$	S	$\delta^S(^\circ)$	$\operatorname{Real}(S)$	$\operatorname{Imag}(S)$	P	$\delta^P(^\circ)$	$\operatorname{Real}(P)$	Imag(P)
T^{f}	865.44	0.00	865.44	0.00	1230.64	0.00	1230.64	0.00
T^{nf}	53.41	-102.81	-11.84	-52.08	343.23	-96.76	-40.43	-340.84
$T^f + T^{nf}$	855.18	-3.49	853.60	-52.08	1238.05	-15.98	1190.21	-340.84
E_2	89.06	-138.10	-66.28	-59.48	94.13	122.31	-50.31	79.56
Tree	795.18	-8.06	787.31	-111.55	1169.46	-12.91	1139.90	-261.28
PC_1^f	76.43	0.00	76.43	0.00	3.30	180.00	-3.30	0.00
PC_1^{nf}	1.14	-134.10	-0.79	-0.82	13.85	-94.36	-1.05	-13.81
$PC_1^f + PC_1^{nf}$	75.64	-0.62	75.64	-0.82	14.48	-107.50	-4.35	-13.81
PE_1^u	11.80	-89.53	0.10	-11.80	11.02	115.62	-4.76	9.93
PE_1^d	7.53	-101.53	-1.50	-7.38	2.67	51.53	1.66	2.09
Penguin	76.88	-15.08	74.23	-20.00	7.66	-166.53	-7.45	-1.79

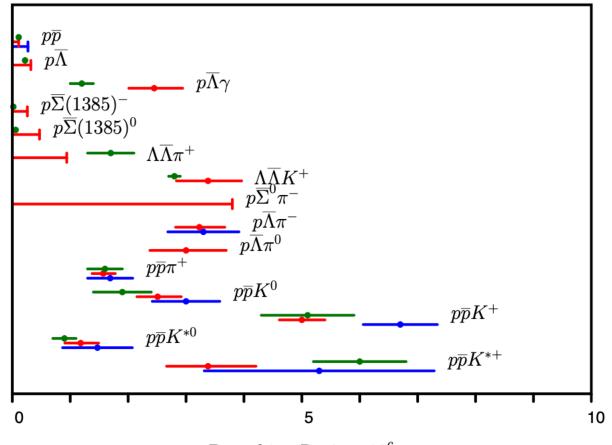
$$\begin{split} S(P_f^{C_1}) &= -\frac{G_F}{\sqrt{2}} f_h V_{tb} V_{td}^* \left(\frac{C_3}{3} + C_4 + \frac{C_9}{3} + C_{10} + R_1^{\pi} (\frac{C_5}{3} + C_6 + \frac{C_7}{3} + C_8) \right) \\ & \left[F_1(m_h^2) (M_{\Lambda_b} - M_p) + F_3(m_h^2) m_h^2 \right] & \text{chiral factors } R_1 \approx R_2 \\ P(P_f^{C_1}) &= -\frac{G_F}{\sqrt{2}} f_h V_{tb} V_{td}^* \left(\frac{C_3}{3} + C_4 + \frac{C_9}{3} + C_{10} - R_2^{\pi} (\frac{C_5}{3} + C_6 + \frac{C_7}{3} + C_8) \right) \\ & \left[G_1(m_h^2) (M_{\Lambda_b} + M_p) - G_3(m_h^2) m_h^2 \right] \end{split}$$

2025/4/2

$\Lambda_b \to p\pi^-$	S	$\delta^S(^\circ)$	$\operatorname{Real}(S)$	$\operatorname{Imag}(S)$	P	$\delta^P(^\circ)$	Real(P)	Imag(P)
T_{f}	707.17	0.00	707.17	0.00	1004.44	0.00	1004.44	0.00
T_{nf}	51.72	-96.64	-5.98	-51.38	267.72	-97.92	-36.90	-265.17
$T_f + T_{nf}$	703.07	-4.19	701.19	-51.38	1003.22	-15.33	967.54	-265.17
C_2	29.37	154.96	-26.61	12.43	41.51	179.80	-41.51	0.14
E_2	66.94	-145.26	-55.01	-38.14	72.58	119.94	-36.23	62.89
B	10.40	112.64	-4.00	9.60	23.65	-122.56	-12.73	-19.93
Tree	619.26	-6.26	615.57	-67.49	904.75	-14.21	877.08	-222.06
$P_f^{C_1}$	58.44	0.00	58.44	0.00	2.90	0.00	2.90	0.00
$P_{nf}^{C_1}$	1.24	-115.38	-0.53	-1.12	11.16	-95.25	-1.02	-11.11
$P_f^{C_1} + P_{nf}^{C_1}$	57.91	-1.11	57.90	-1.12	11.27	-80.38	1.88	-11.11
P^{C_2}	13.36	-116.10	-5.88	-12.00	14.93	71.96	4.62	14.20
$P^{E_1^u}$	9.48	-87.62	0.39	-9.47	8.83	114.44	-3.65	8.04
P^B	1.36	-51.30	0.85	-1.06	1.55	-159.86	-1.46	-0.53
$P^{E_1^d} + P^{E_2}$	3.87	-98.18	-0.55	-3.83	1.41	-12.55	1.37	-0.31
Penguin	59.45	-27.54	52.71	-27.49	10.65	74.93	2.77	10.28

Signs between S- and P-wave hard kernels

"+" means S- and P-wave have same signs


"-" means S- and P-wave have opposite signs

Pion twist2	proton							
	twist3	twist4	twist5	twist6				
Λ_b twist2	+	-	+	-				
Λ_b twist3	-	+	-	+				
Λ_b twist4	+	-	+	-				

Pion twist3	proton							
	twist3	twist4	twist5	twist6				
Λ_b twist2	-	+	-	+				
Λ_b twist3	+	-	+	-				
Λ_b twist4	-	+	-	+				

$\Lambda_b \to p K^-$	S	$\delta^S(^\circ)$	$\operatorname{Real}(S)$	$\operatorname{Imag}(S)$	P	$\delta^P(^\circ)$	$\operatorname{Real}(P)$	Imag(P)
T^{f}	865.44	0.00	865.44	0.00	1230.64	0.00	1230.64	0.00
T^{nf}	53.41	-102.81	-11.84	-52.08	343.23	-96.76	-40.43	-340.84
$T^f + T^{nf}$	855.18	-3.49	853.60	-52.08	1238.05	-15.98	1190.21	-340.84
E_2	89.06	-138.10	-66.28	-59.48	94.13	122.31	-50.31	79.56
Tree	795.18	-8.06	787.31	-111.55	1169.46	-12.91	1139.90	-261.28
PC_1^f	76.43	0.00	76.43	0.00	3.30	180.00	-3.30	0.00
PC_1^{nf}	1.14	-134.10	-0.79	-0.82	13.85	-94.36	-1.05	-13.81
$PC_1^f + PC_1^{nf}$	75.64	-0.62	75.64	-0.82	14.48	-107.50	-4.35	-13.81
PE_1^u	11.80	-89.53	0.10	-11.80	11.02	115.62	-4.76	9.93
PE_1^d	7.53	-101.53	-1.50	-7.38	2.67	51.53	1.66	2.09
Penguin	76.88	-15.08	74.23	-20.00	7.66	-166.53	-7.45	-1.79

$$\begin{aligned} \frac{|T^f(pK)|}{|T^f(p\pi)|} &= 1.22, \quad \frac{|T^{nf}(pK)|}{|T^{nf}(p\pi)|} = 1.03, \quad \frac{|E_2(pK)|}{|E_2(p\pi)|} = 1.33 \text{ (S wave)}, \\ \frac{|T^f(pK)|}{|T^f(p\pi)|} &= 1.23, \quad \frac{|T^{nf}(pK)|}{|T^{nf}(p\pi)|} = 1.28, \quad \frac{|E_2(pK)|}{|E_2(p\pi)|} = 1.29 \text{ (P wave)}. \end{aligned}$$

Branching Ratio $\times 10^6$

Figure 10: Experimental results for decays with baryons from BABAR (blue) (141, 142, 143, 144) and Belle (red) (145, 146, 147, 148, 149, 150) and theoretical predictions (green) (151, 152).

$\Lambda_b \rightarrow p$ form factors

 Λ_b

$$\begin{split} (Y_{\Lambda_b})_{\alpha\beta\gamma}(x_i,\mu) &\equiv \frac{1}{2\sqrt{2}N_c} \int \prod_{l=2}^3 \frac{dz_l^- dz_l}{(2\pi)^3} e^{ik_l \cdot z_l} \epsilon^{ijk} \langle 0|T[b_{\alpha}^i(0)u_{\beta}^j(z_2)d_{\gamma}^k(z_3)]|\Lambda_b \rangle \\ &= \frac{1}{8\sqrt{2}N_c} \Big\{ f_{\Lambda_b}^{(1)}(\mu) [M_1(x_2,x_3)\gamma_5 C^T]_{\gamma\beta} + f_{\Lambda_b}^{(2)}(\mu) [M_2(x_2,x_3)\gamma_5 C^T]_{\gamma\beta} \Big\} [\Lambda_b]_{\alpha}, \\ M_1(x_2,x_3) &= \frac{\#}{4} \psi_3^{+-}(x_2,x_3) + \frac{\#}{4} \psi_3^{-+}(x_2,x_3), \\ M_2(x_2,x_3) &= \frac{\#}{\sqrt{2}} \psi_2(x_2,x_3) + \frac{\#}{\sqrt{2}} \psi_4(x_2,x_3), \\ \psi_2(x_2,x_3) &= \frac{x_2 x_3}{\omega_0^4} m_{\Lambda_b}^4 e^{-(x_2+x_3)m_{\Lambda_b}/\omega_0}, \\ \psi_3^{-+}(x_2,x_3) &= \frac{2x_2}{\omega_0^3} m_{\Lambda_b}^3 e^{-(x_2+x_3)m_{\Lambda_b}/\omega_0}, \\ \psi_4(x_2,x_3) &= \frac{1}{\omega_0^2} m_{\Lambda_b}^2 e^{-(x_2+x_3)m_{\Lambda_b}/\omega_0}, \end{split}$$

[P.Ball, V.M.Braun, E.Gardi, 2008][G.Bell, T.Feldmann, Y.M.Wang, M.W.Y.Yip, 2013][Y.M.Wang, Y.L.Shen, 2016]

2025/4/25

$\Lambda_b \rightarrow p$ form factors

$$\begin{aligned} \text{proton} \qquad (\bar{Y}_{P})_{\alpha\beta\gamma}(x'_{i},\mu) &\equiv \frac{1}{2\sqrt{2}N_{c}} \int \prod_{l=2}^{3} \frac{dz_{l}^{-} dz_{l}}{(2\pi)^{3}} e^{ik_{l}\cdot z_{l}} \epsilon^{i'j'k'} \langle p(p')|T[\bar{u}_{\alpha}^{i'}(0)\bar{u}_{\beta}^{j'}(z_{2})\bar{d}_{\gamma}^{k'}(z_{3})]|0 \rangle \\ &= \frac{-1}{8\sqrt{2}N_{c}} \Big\{ S_{1}m_{p}C_{\beta\alpha}(\bar{N}^{+}\gamma_{5})_{\gamma} + S_{2}m_{p}C_{\beta\alpha}(\bar{N}^{-}\gamma_{5})_{\gamma} + P_{1}m_{p}(C\gamma_{5})_{\beta\alpha}\bar{N}_{\gamma}^{+} \\ &+ P_{2}m_{p}(C\gamma_{5})_{\beta\alpha}\bar{N}_{\gamma}^{-} + V_{1}(CP)_{\beta\alpha}(\bar{N}^{+}\gamma_{5})_{\gamma} + V_{2}(CP)_{\beta\alpha}(\bar{N}^{-}\gamma_{5})_{\gamma} \\ &+ V_{3}\frac{m_{p}}{2}(C\gamma_{\perp})_{\beta\alpha}(\bar{N}^{+}\gamma_{5}\gamma^{\perp})_{\gamma} + V_{4}\frac{m_{p}}{2}(C\gamma_{\perp})_{\beta\alpha}(\bar{N}^{-}\gamma_{5}\gamma^{\perp})_{\gamma} + V_{5}\frac{m_{p}^{2}}{2Pz}(Cp)_{\beta\alpha}(\bar{N}^{+}\gamma_{5})_{\gamma} \\ &+ V_{6}\frac{m_{p}^{2}}{2Pz}(Cp)_{\beta\alpha}(\bar{N}^{-}\gamma_{5})_{\gamma} + A_{1}(C\gamma_{5}P)_{\beta\alpha}(\bar{N}^{+})_{\gamma} + A_{2}(C\gamma_{5}P)_{\beta\alpha}(\bar{N}^{-})_{\gamma} \\ &+ A_{3}\frac{m_{p}}{2}(C\gamma_{5}\gamma_{\perp})_{\beta\alpha}(\bar{N}^{+}\gamma^{\perp})_{\gamma} + A_{4}\frac{m_{p}}{2}(C\gamma_{5}\gamma_{\perp})_{\beta\alpha}(\bar{N}^{-}\gamma^{\perp})_{\gamma} + A_{5}\frac{m_{p}^{2}}{2Pz}(C\gamma_{5}p)_{\beta\alpha}(\bar{N}^{+})_{\gamma} \\ &+ A_{6}\frac{m_{p}^{2}}{2Pz}(C\gamma_{5}p)_{\beta\alpha}(\bar{N}^{-})_{\gamma} - T_{1}(iC\sigma_{\perp P})_{\beta\alpha}(\bar{N}^{+}\gamma_{5}\gamma^{\perp})_{\gamma} - T_{2}(iC\sigma_{\perp z})_{\beta\alpha}(\bar{N}^{+}\gamma_{5}\gamma^{\perp})_{\gamma} \\ &- T_{3}\frac{m_{p}}{Pz}(iC\sigma_{Pz})_{\beta\alpha}(\bar{N}^{-}\gamma_{5}\gamma^{\perp})_{\gamma} + T_{7}\frac{m_{p}}{2}(C\sigma_{\perp \perp'})_{\beta\alpha}(\bar{N}^{+}\gamma_{5}\sigma^{\perp \perp'})_{\gamma} \\ &+ T_{8}\frac{m_{p}}{2}(C\sigma_{\perp \perp'})_{\beta\alpha}(\bar{N}^{-}\gamma_{5}\sigma^{\perp \perp'})_{\gamma} \Big\}, \end{aligned}$$

Twist classification of the distribution amplitudes in Eq. (2.9)

	twist-3	twist-4	twist-5	twist-6
Vector	V_1	V_2, V_3	V_4, V_5	V_6
Pseudo-vector	A_1	A_2, A_3	A_4, A_5	A_6
Tensor	T_1	T_2, T_3, T_7	T_4, T_5, T_8	T_6
Scalar		S_1	S_2	
Pseudo-scalar		P_1	P_2	

[V.Braun, R.J.Fries, N.Mahnke, E.Stein, 2000]

2025/4/25