Bottom quark hadronization in proton-proton collisions

Based on MH & R. Rapp, PRL131, 012301 (2023) Y. Dai & MH, PRC110, 034905 (2024)

Min He (何敏)

Nanjing Univ. of Sci. & Tech., Nanjing, China

Heavy quarks & heavy hadrons

• Heavy quark $m_c \sim 1.5$, $m_b \sim 4.5$ GeV >> Λ_{QCD}

 \rightarrow produced in early hard process $\tau \sim 1/2m_Q$

Bottomonium vs open bottom hadrons

Heavy quark hadronization in pp collisions

 Hadronization: heavy quark conservation f_u + f_d + f_s + f_{baryon} = 1 hadro-chemistry: universal? → non-universal!

	Z decays e^+e^-	Tevatron p-pbar
X	0.1259 ± 0.0042	0.147±0.011
$f_u = f_d$	0.407 ± 0.007	► 0.344± 0.021
fs	0.101±0.008	→ 0.115±0.013
<i>f</i> baryon	0.085± 0.011	▶ 0.198±0.046
	$\overline{\chi}$ $f_u = f_d$ f_s f_{baryon}	$\overline{\chi}$ 0.1259 ± 0.0042 $f_u = f_d$ 0.407 ± 0.007 f_s 0.101 ± 0.008 f_{baryon} 0.085 ± 0.011

Bottom hadro-chemistry in minimum bias pp collisions

Grand-canonical Ensemble Statistical Hadronization Model

Statistical Hadronization Model (SHM)

- QCD hadronic population from partons: born into equilibrium = maximum entropy state
 Hadron yields governed by partition function of a free hadron resonance gas (HRG)
- Grand-canonical SHM for light hadrons in Pb-Pb

$$Z^{GC}(T,V,\mu_Q)=Tr[e^{-eta(H-\sum_i \mu_{Q_i}Q_i)}]\,.$$

 $0 < N_i > = rac{g_i VT}{2\pi^2} \sum_n^\infty rac{(\pm 1)^{n+1}}{n} \lambda_i^n m_i^2 K_2(rac{nm_i}{T}) \, .$

- High-energy pp collisions = light-quark-rich environment
 stochastic/statistical coalescence of c/b with surrounding q
- SHM for heavy-hadrons in pp

Heavy hadrons 'thermal' production at 'universal' T_H~ 170 MeV

 \sim *Relative* chemical equilibrium \rightarrow primary yields N_i \propto thermal densities n_i

P.B.-Munzinger et al., Nature, 561 (2018) 321

4 N/dy/(2J +

Grand-canonical SHM for b-hadrons

Grand-canonical ensemble → thermal density for primary b-hadrons

$$n_i^{\text{primary}} = \frac{d_i}{2\pi^2} \gamma_s^{N_s^i} m_i^2 T_H K_2 \left(\frac{m_i}{T_H}\right).$$

 γ_s =0.6 -- strangeness suppression factor

 T_{H} =170 MeV -- hadronization temperature

• PDG: 5 B, 4 B_s, $5 \Lambda_{\rm b}, 2 \Sigma_{\rm b}, 4 \Xi_{\rm b}, 1 \Omega_{\rm b}$

$$\Lambda_b^0$$

 $I(J^{P}) = 0(\frac{1}{2}^{+})$

 $J^{P} = \frac{1}{2}$

 $J^{P} = \frac{3}{2}^{-}$

 $J^{P} = \frac{3}{2}^{+}$

 $J^{P} = \frac{5}{2}^{+}$

 $I(J^P)$ not yet measured; $O(\frac{1}{2}^+)$ is the quark model prediction. Mass m = 5619.60 ± 0.17 MeV $m_{A^0} - m_{B^0} = 339.2 \pm 1.4 \text{ MeV}$ $m_{A^0} - m_{B^+} = 339.72 \pm 0.28 \text{ MeV}$ Mean life $\tau = (1.471 \pm 0.009) \times 10^{-12}$ s $c\tau = 441.0 \,\mu m$

```
Mass m = 5912.20 ± 0.21 MeV
Full width \Gamma < 0.66 MeV, CL = 90%
```

A_b(5920)⁰

Mass m = 5919.92 ± 0.19 MeV (S = 1.1) Full width Γ < 0.63 MeV, CL = 90%

 $\Lambda_b(6)$

Mass $m = 6146.2 \pm 0.4$ MeV Full width $\Gamma = 2.9 \pm 1.3$ MeV Full width $\Gamma = 526.55 \pm 0.34$ MeV

A_b(6152)⁰

Mass $m = 6152.5 \pm 0.4$ MeV Full width $\Gamma = 2.1 \pm 0.9$ MeV Full width $\Gamma = 532.89 \pm 0.28$ MeV Full width $\Gamma = 6.34 \pm 0.32$ MeV

• RQM: 25 B, 20 B_s, Ebert et al., PRD 84 (2011) 014025 $30 \Lambda_{\rm h}, 46 \Sigma_{\rm h}, 75 \Xi_{\rm h}, 42 \Omega_{\rm h}$

			Q = c		b = b			Q = c	(Q = b
$I(J^P)$	Qd state	М	M ^{exp} [1]	М	$\frac{M^{\exp}[1]}{I(J^P)}$	Qd state	М	M^{\exp} [1]	М	M^{\exp} [1
$(\frac{1}{2}^{+})$	15	2286	2286.46(14)	5620	$5620.2(1.6)$ $1(\frac{1}{2}^+)$	15	2443	2453.76(18)	5808	5807.8(2
$(\frac{1}{2}^{+})$	25	2769	2766.6(2.4)?	6089	$1(\frac{1}{2}^{+})$	2S	2901		6213	
1 +)	35	3130		6455	$1(\frac{1}{2}^+)$	35	3271		6575	
2 + j	45	3437		6756	$1(\frac{1}{2}^{+})$	45	3581		6869	
+)	55	3715		7015	$1(\frac{1}{2}^{+})$	55	3861	2518 0(5)	7124	5900.0/
+)	60	2072		7015	$1(\frac{5}{2}^{+})$	15	2519	2018.0(5)	5834	5829.0(3
-)	100	3913	2505 4(6)	7230 5020	$1(\frac{1}{2})$	23	3203	2939.3(1.5)1	6583	
	112	2398	2595.4(6)	5930	$1(\frac{3}{2})$	45	3598		6876	
)	2P	2983	2939.3(1.5)?	6326	$1(\frac{3}{2}^{+})$	55	3873		7129	
-)	3P	3303		6645	$1(\frac{1}{2})$	1 P	2799	$2802(^{4}_{-})$	6101	
-)	4P	3588		6917	$1(\frac{1}{2})$	2 <i>P</i>	3172		6440	
-)	5P	3852		7157	$1(\frac{1}{2})$	3P	3488		6756	
-)	1 P	2627	2628.1(6)	5942	$1(\frac{1}{2})$	4P	3770		7024	
-)	2 P	3005		6333	$1(\frac{1}{2}^{-})$	1 P	2713		6095	
-)	3 <i>P</i>	3322		6651	$1(\frac{1}{2})$	2P	3125		6430	
-)	4P	3606		6922	$1(\frac{1}{2})$	3P	3455		6742	
-	5 P	3869		7171	$1(\frac{1}{2})$	4P	3743		7008	
+)	10	2874		6100	$1(\frac{3}{2})$	1 P	2798	$2802(\frac{4}{7})$	6096	
+)	20	21.90		6526	$1(\frac{2}{2})$	2P	3172		6430	
+)	20	2480		6911	$1(\frac{2}{2})$	3P	3486		6742	
)	5D	3480		0811	$1(\frac{1}{2})$	4P	3/08	2766 6(2,4)2	7009	
- ")	4D	3747		7060	$1(\frac{6}{2})$ $1(\frac{3}{2})$	1P 2P	3151	2/00.0(2.4)?	6423	
+)	1D	2880	2881.53(35)	6196	$1(\frac{1}{2})$	21 3P	3469		6736	
+)	2D	3209		6531	$1(\frac{3}{2})$	4P	3753		7003	
.)	3D	3500		6814	$1(2^{-})$	1 P	2780		6084	

Strong decay of excited states: Branching ratios

- ${}^{3}P_{0}$ model: A \rightarrow B + C via creating a q-qbar pair of J^{PC}=0⁺⁺
 - → Branching Ratio ∝ # of possible diagrams once a decay channel opens up

BR(B^{-*} \rightarrow B⁻+ π^{0})=1/(1+1+1/3)=43%; BR(B^{-*} \rightarrow B⁰_s+ π ⁰)=1/3/(1+1+1/3)=14%; $BR(B_s^* \rightarrow B^- + K) = 1/(1 + 1 + 1/3) = 43\%$

BR($\Lambda_b^{0^*} \rightarrow \Lambda_b^{0} + 2\pi$)=3/(3+2+2*1/3+1/3)=54% BR($\Lambda_b^{0^*} \rightarrow B^- + p$) =1/(3+2+1/3+2*1/3)=16% BR($\Lambda_b^{0^*} \rightarrow \Xi_b + K$) =2/3/(3+2+1/3+2*1/3)=11% BR($\Lambda_b^{0^*} \rightarrow B^0_s + \Lambda$) =1/3/(3+2+1/3+2*1/3)=6%

Ground-state b-hadron densities/ratios

• total density & production fractions of ground state b-hadrons @ T_{H} =170 MeV

Fragmentation & p_T-spectra

FONLL b-quark p_t-spectrum + fragmentation into all primary states + decay simulations • \rightarrow ground-state b-hadrons p_T-spectra: z= p_T/p_t

 $D_{b \to H_b}(z) \propto z^{\alpha}(1-z), \begin{cases} \text{weight} \propto \text{primary density} (relative chemical equilibrium)} \\ \alpha_{\text{B}} = 45, \ \alpha_{\text{Bs}} = 25, \ \alpha_{\text{baryon}} = 8 \text{ to tune the slope of spectra} \end{cases}$

Fitting meson spectra \rightarrow predicting baryon & total d $\sigma^{bbar}/dy=39.3 \ \mu b$ for 5.02 TeV mid-y based on SHM chemistry -> baseline for b-hadron production in Pb-Pb collisions

System size $(dN_{ch}/d\eta)$ dependence of bottom hadro-chemistry in pp collisions

Canonical Ensemble Statistical Hadronization Model

Canonical ensemble (CE) SHM

• Canonical ensemble partition function: strict conservation of quantum charges (electric charge, baryon-number, strangeness, charm-, bottom-number)

• Primary hadron yield: CE vs GCE

$$\begin{split} \langle N_j \rangle^{CE} &= \gamma_s^{N_{sj}} \gamma_c^{N_{cj}} \gamma_b^{N_{bj}} z_j \frac{Z(\vec{Q} - \vec{q}_j)}{Z(\vec{Q})} \\ &= \langle N_j \rangle^{GCE} \underbrace{Z(\vec{Q} - \vec{q}_j)}_{Z(\vec{Q})} \cdot \underbrace{Z(\vec{Q})}_{Z(\vec{Q})} \cdot \\ \end{split}$$
 chemical factor <1: canonical suppression for charged hadron with $\vec{q}_j \neq c$

E.g. exact baryon-number conservation requires: simultaneous creation of a pair of baryon and antibaryon → energy-expensive exp(-2m_N/T_H)
 → canonical suppression for baryon production

Canonical suppression: chemical factors

CF	$V_C = 5 \text{ fm}^3$	10	20	30	50	100	200
\bar{B}^0	0.0097194	0.023927	0.058660	0.094845	0.16493	0.32591	0.56988
B^-	0.0078259	0.021863	0.056893	0.093168	0.16331	0.32438	0.56858
\bar{B}_s^0	0.0039920	0.013624	0.045935	0.082725	0.15364	0.31546	0.56101
Λ_b^0	0.0049325	0.014844	0.047305	0.084415	0.15574	0.31768	0.56300
Ξ_b^{0-}	0.0021863	0.0089128	0.037336	0.073498	0.14477	0.30720	0.55402
Ω_b^-	0.0004649	0.0030092	0.019475	0.047296	0.11221	0.27231	0.52265
\bar{B}^0_s/\bar{B}^0	0.41072	0.56939	0.78307	0.87221	0.93155	0.96793	0.98443
Λ_b^0/\bar{B}^0	0.50749	0.62039	0.80643	0.89003	0.94427	0.97474	0.98793
Ξ_b^{0-}/\bar{B}^0	0.22494	0.37250	0.63648	0.77493	0.87776	0.94259	0.97217

At a small volume/system size,

- CF of $B_s & \Lambda_b < B$, canonical strangeness & baryon suppression
- CF of $\Omega_b < \Xi_b < \Lambda_b$, increasing strangeness content despite common baryon

Canonical suppression: chemical factors

CF	$V_C = 5 \text{ fm}^3$	10	20	30	50	100	200
\bar{B}^0	0.0097194	0.023927	0.058660	0.094845	0.16493	0.32591	0.56988
B^-	0.0078259	0.021863	0.056893	0.093168	0.16331	0.32438	0.56858
\bar{B}^0_s	0.0039920	0.013624	0.045935	0.082725	0.15364	0.31546	0.56101
Λ_b^0	0.0049325	0.014844	0.047305	0.084415	0.15574	0.31768	0.56300
Ξ_b^{0-}	0.0021863	0.0089128	0.037336	0.073498	0.14477	0.30720	0.55402
Ω_b^-	0.0004649	0.0030092	0.019475	0.047296	0.11221	0.27231	0.52265
\bar{B}^0_s/\bar{B}^0	0.41072	0.56939	0.78307	0.87221	0.93155	0.96793	0.98443
Λ_b^0/\bar{B}^0	0.50749	0.62039	0.80643	0.89003	0.94427	0.97474	0.98793
Ξ_b^{0-}/\bar{B}^0	0.22494	0.37250	0.63648	0.77493	0.87776	0.94259	0.97217

As volume/system size increases,

- canonical strangeness & baryon suppression attenuates
- same residual CF at large V: common canonical bottom number suppression

Ground-state b-hadron densities with feeddowns

$n_{\alpha}(\cdot 10^{-5} \text{ fm}^{-3})$	$V_C = 5 \text{ fm}^3$	10	20	30	50	100	200	GCE
\bar{B}^0	1.1220	2.7920	6.9508	11.313	19.759	39.148	68.534	120.41
B^-	0.96934	2.6261	6.8105	11.181	19.635	39.038	68.452	120.45
\bar{B}_s^0	0.14641	0.47267	1.5299	2.7242	5.0273	10.285	18.263	32.513
Λ_b^0	0.29886	0.90201	2.8845	5.1551	9.5210	19.435	34.453	61.702
Ξ_{b}^{0-}	0.043883	0.17479	0.72393	1.4247	2.8132	5.9882	10.818	19.548
Ω_b^-	0.00028060	0.0018164	0.011755	0.028549	0.067730	0.16437	0.31548	0.63204
$ar{B}^0_s/ar{B}^0$	0.13049	0.16929	0.22010	0.24080	0.25443	0.26273	0.26648	0.27002
Λ_b^0/\bar{B}^0	0.26635	0.32307	0.41499	0.45568	0.48186	0.49644	0.50271	0.51243
Ξ_b^{0-}/\bar{B}^0	0.039110	0.062602	0.10415	0.12594	0.14238	0.15296	0.15785	0.16235

- As volume/system size reduces, B_s/B , Λ_b/B suppressed by a factor 2; Ξ_b/B suppression stronger, two-fold role of baryon + strangeness
- All ratios tend to the corresponding GCE-SHM values at large system size

Ground-state b-hadron ratios vs Volume

• As volume/system size reduces, B_s/B , Λ_b/B suppressed by a factor 2; Ξ_b/B suppression stronger, two-fold role of baryon + strangeness

M.He@NUST

• All ratios tend to the corresponding GCE-SHM values at large system size

- $B_{s}^{0}/B vs dN_{ch}/d\eta$ increasing from small multiplicity to saturation at large size
- RQM a bit smaller than PDG

$\Lambda_b^0/B vs dN_{ch}/d\eta$

- $\Lambda_b^0/B \ vs \ dN_{ch}/d\eta$ increasing from e⁺e⁻ value with small multiplicity to saturation/GCE limit at large size
- RQM strongly favored by data

M.He@NUST

17

Summary: b-quark hadronization

• Bottom quark hadronization: non-universal, but environment dependent!

→ Λ_b/B : GCE saturation limit (mini.bias pp & PbPb) VS vacuum fragmentation limit (e⁺e⁻)

- Statistical hadronization of b-quarks: grand-canonical → canonical ensemble
 - → exact conservation of quantum charges leading to canonical suppression

- Role of many "missing" heavy-baryons highlighted
 - → awaiting measurement & confirmation

Back-up: $\psi(2S)/J/\psi$ vs $dN_{ch}/d\eta$ in pp collisions

