

Recent heavy ion results at LHCb

Xianglei Zhu, 朱相雷 Tsinghua University

2025.4.27

第5届LHCb前沿物理研讨会 武汉,2025.4.25-28

LHCb heavy ion datasets from Run1/Run2

2

Heavy flavor as excellent probes in heavy-ion collisions

陈缮真,朱相雷,科学通报 70 (2025) 70-82

- Produced in hard processes at early stage of collisions, and experience the full evolution of the medium
- Initial state:
 - Nuclear shadowing
 - Gluon saturation
 - Initial-state scatterings
- QGP phase:
 - In-medium energy loss
 - Color screening
 - Collectivity
- Hadronization:
 - Coalescence versus fragmentation
 - Quarkonia regeneration

Cold nuclear matter effects studied in pA collisions

• nPDF; CGC; energy loss; multiple scattering (Cronin effect)

Prompt D meson production in pPb at 5.02 TeV

- One of the strongest constraint on gluon nPDF
- All *D* mesons suppressed at forward rapidity \rightarrow gluon shadowing at small *x*
- *D* meson species dependence at backward rapidity
 → final state effects become important

Prompt D meson production in pPb at 8.16 TeV

- Precise differential measurements in different rapidity regions
 → gluon shadowing at forward rapidity
- D⁰ data at low p_T closer to CGC prediction, or initial state energy loss becomes more important

LHCb, PRD 110 (2024) L031105

Pb

Prompt D meson production in pPb at 8.16 TeV

- All *D* meson data lower than nPDF calculations at high $p_{\rm T}$!
 - → Onset of charm energy loss in cold/hot nuclear matter ?
 - Model comparisons desired
 - → Or charmed baryon enhanced ? More measurements expected

LHCb, PRD 110 (2024) L031105

Heavy flavor hadronization

ALICE, PRC 107 (2023) 064901

- Charm hadronization modified in pp compared to ee/ep collisions ٠
- Indication of coalescence/stat. hadronization, probed with HF hadron yield ratios ٠

 Λ_c^+

OGP

Coalescence

Λ_c^+/D^0 ratio in forward rapidities

- Stays almost unchanged in pPb/Pbp and peripheral PbPb collisions, much larger than ee/ep, charm hadronization changed in forward rapidity as well
- Tension with values at mid-rapidity, since rapidity independence predicted
- More independent measurements are expected

Ξ_c^+/D^0 ratios in *p*Pb at 8.16 TeV

- First measurement of prompt Ξ_c^+ in heavy ion collisions
- Ξ_c^+/Λ_c^+ ratio constant over p_T , consistent between forward and backward
- Ξ_c^+/D^0 ratio generally lower than ALICE pp data at mid-y

Phys. Rev. C 109 (2024) 044901

D_s^+/D^+ ratio in *p*Pb at 5.02 and 8.16 TeV

- \succ No or minor $p_{\rm T}$ dependence
- Consistent with LHCb pp measurements within uncertainties
- Consistent with ALICE measurements (at mid-rapidity) with higher precision
- Consistent with theoretical calculations in forward rapidity at 8.16 TeV.
- Slightly higher at backward rapidity than at forward, multiplicity dependence ?
- ----- uncorrelated systematic uncertainty
- ---- statistic uncertainty
- ---- correlated systematic uncertainty
- EPPS16 Rwgt
- nCTEQ15 Rwgt

Phys. Rev. D 110 (2024) L031105

D_s^+/D^+ ratio vs multiplicity in *p*Pb at 8.16 TeV

- The ratio increases with multiplicity significantly!
- The enhancement is more pronounced at backward rapidity and lower $p_{\rm T}$.
- Modification of charm hadronization/production in high-multiplicity pPb collisions.

Phys. Rev. D 110 (2024) L031105

b hadronization in **pp** at 13 TeV

- Evidence of B_s^0/B^0 enhancement (at low p_T) in high multiplicity events
- A strong baryon enhancement of with multiplicity is observed
 - ▶ Ratio recovers e^+e^- value (QCD-vacuum) at low multiplicity
 - ▶ Ratio consistent with e^+e^- at high p_T

Quarkonia production and dissociation in HIC

- Color screening in QGP and rescatterings with comoving particles dissociate quarkonia production, binding energy dependent
- Probed with production ratios of different quarkonium states

$\psi(2S)$ to J/ ψ ratio vs multiplicity in *pp* at 13 TeV

JHEP 05 (2024) 243

• Decreasing trend vs multipliticity observed for prompt contributions (in particular for low $p_{\rm T}$), consistent with comover interactions

$\psi(2S)$ to J/ ψ ratio in pPb and PbPb collisions

• Stronger suppression in the Pb-going direction, close to PbPb collisions.

$\Upsilon(3S)/\Upsilon(1S)$ and $\Upsilon(2S)/\Upsilon(1S)$ ratios in *pp* at 13 TeV

- Sequential suppression pattern observed in high multiplicity events.
- Suppression is more significant for low p_T regions.
- Qualitatively consistent with comover model predictions.

χ_c production in *p*Pb at 8.16 TeV

- First measurement at LHC of $\chi_{c1} + \chi_{c2} \rightarrow J/\psi\gamma$ feeddown to J/ψ in *p*Pb
- Data compatible with feeddown from *pp* at 7 TeV
- No indication of comover break-up for χ_c

LHCb Upgrade-I installed

- Major upgrade:
 - Replacement of full tracking and RICH1/2 detectors
 - Completely new readout electronics
 - ➢ New DAQ & online system at 40 MHz
- New tracking system allows reconstruction up to $\sim 30\%$ most central PbPb collisions

Early signals from the 2024 PbPb run

LHCb-FIGURE-2025-004

• Clean charm and fully hadronic B decays

Fixed target upgrade – SMOG2

- Dedicated gas storage cell installed
- Greatly increased rates of beam+gas collisions
- Concurrent running with pp collisions
- New gases: H_2 , D_2 and large nuclei (Kr, Xe)
- Energies: $\sqrt{s_{
 m NN}} \in [68.5, 110] \, {
 m GeV}$

arXiv: 2407.14200

LHCb-FIGURE-2024-023

Summary & outlook

- LHCb has a very diverse heavy-ion and fixed target program, which profits of the variety of datasets
- Provides unique access to heavy flavor probes of nuclear matter
 - Unprecedented access to low-x region of nuclei
 - Modification of hadronization of heavy flavor hadrons
 - Final-state effects in heavy quarkonia production in small system collisions
 - Unique access to higher charmonia and exotics at low $\ensuremath{p_T}$
- Started to exploit the Upgrade I detector, i.e. semi-central PbPb collisions and high-statistics pA and PbA datasets at a unique energy scale

backup

Modification of X(3872) in *p*Pb

- LHCb can uniquely reconstruct exotic hadrons at low p_T
- Exotic multiquark states can give new constraints on hadronization models

First measurement of nuclear modification factor of an exotic hadron Different from expectations based on conventional charmonia

$\psi(2S)$ to J/ ψ ratio in *p*Pb at 8.16 TeV

- New $\psi(2S)$ precise result with 20 times larger dataset than Run1 (5.02 TeV)
- Nonprompt: compatible with unity
- Prompt: additional suppression of $\psi(2S)$, compatible with comover break-up model

JHEP 04 (2024) 111

$$R_{\psi(2S)/J/\psi} = \frac{\sigma_{\psi(2S)}/\sigma_{J/\psi}|_{p\text{Pb}}}{\sigma_{\psi(2S)}/\sigma_{J/\psi}|_{pp}}$$

