第5届LHCb前沿物理研讨会 2025年4月25-28日

Charmed Baryon

Xian-Hui Zhong (钟显辉)

Hunan Normal University

The simple picture

Two light quarks: Permutation symmetry

No genuine diquark structure!!! A complex three body problem.

Classification (flavor)

味道反3重态(反对称)

$$\phi_{\bar{\mathbf{3}}}^c = \begin{cases} \frac{1}{\sqrt{2}}(ud - du)c & \text{for } \Lambda_c^+, \\ \frac{1}{\sqrt{2}}(us - su)c & \text{for } \Xi_c^+, \\ \frac{1}{\sqrt{2}}(ds - sd)c & \text{for } \Xi_c^0; \end{cases}$$

味道6重态(对称)

$$\phi_{6}^{c} = \begin{cases} uuc & \text{for } \Sigma_{c}^{++}, \\ \frac{1}{\sqrt{2}}(ud + du)c & \text{for } \Sigma_{c}^{+}, \\ ddc & \text{for } \Sigma_{c}^{0}, \\ \frac{1}{\sqrt{2}}(us + su)c & \text{for } \Xi_{c}^{\prime+}, \\ \frac{1}{\sqrt{2}}(ds + sd)c & \text{for } \Xi_{c}^{\prime0}, \\ ssc & \text{for } \Omega_{c}^{0}; \end{cases}$$

Part I Antisymmetric antitriplet

$\underline{\mathbf{3}}_{\mathbf{F}}$ states

Λ_{c} states

		Λ_c								
State	RQM [21]	NQM [27]	NQM [33]	PDG [24]						
$1^2 S_2^{1+}$	2286	2285	2286	2286						
$1^2 P_{\lambda 2}^{-1-}$	2598	2628	2614	2592						
$1^2 P_{\lambda 2}^{\frac{3}{2}}$	2627	2630	2639	2628						
$1^2 D_{\lambda\lambda}^{3+}$	2874	2920	2843	2860?						
$1^2 D_{\lambda\lambda 2}^{5+}$	2880	2922	2851	2880?						

How to establish the high-lying states?

YX Yao, KL Wang, XH, PRD98,076015(2018)

Evidence of D-wave Λ_c states

$$\Lambda_{c}(2860)^{+}$$

$$I(J^P) = 0(\frac{3}{2}^+)$$

M =2856 MeV, Γ =68 MeV

Only seen in D⁰p channel

JHEP 1705 030 R. Aaij et al.

PDG, PRD110, 030001(2004)

$$\Lambda_{c}(2880)^{+}$$

$$I(J^P) = 0(\frac{5}{2}^+)$$

M =2882 MeV, Γ =5.6 MeV

Decay modes: $\Gamma_1 \quad \Lambda_c^+ \pi^+ \pi^ \Gamma_2 \quad \Sigma_c (2455)^{0,++} \pi^{\pm}$ $\Gamma_3 \quad \Sigma_c (2520)^{0,++} \pi^{\pm}$ $\Gamma_4 \quad p D^0$

Our explaination

	$ \Lambda_c^2 D_{\lambda\lambda_2^{3+}}\rangle$ (2856)	$ \Lambda_c^2 D_{\lambda\lambda_2}^{5+}\rangle$ (2881)
Decay mode	Γ_i (MeV)	Γ_i (MeV)
$\Sigma_c \pi$	$4.57^{+1.09}_{-1.20}$	$1.33_{+0.50}^{-0.35}$
$\Sigma_c^* \pi$	$0.95_{+0.09}^{-0.03}$	$4.38_{-0.74}^{+0.67}$
Sum	$5.52^{+1.06}_{-1.11}$	$5.71^{+0.32}_{-0.24}$

• Λ_c (2860) and Λ_c (2880) most likely corresponds to the two D-wave Λ_c states.

• To confirm the Λ_c (2860), look for the $\Sigma_c \pi$ mode.

• $M[\Lambda_c (2880)5/2^+)] > M[\Lambda_c (2860)3/2^+]$

YX Yao, KL Wang, XH, PRD98,076015(2018)

Higher Λ_c state, 2940

 $\Lambda_{c}(2940)^{+}$

 $I(J^{P}) = 0(\frac{3}{2}^{-})$ Status: ***

A narrow peak seen in pD^0 and in $\Lambda_c^+ \pi^+ \pi^-$. It is not seen in pD^+ , and therefore it is a Λ_c^+ and not a Σ_c . $J^P = 3/2^-$ is favored, but not certain.

TABLE VIII: The partial decay widths of $\Lambda_c(2940)^+$ assigned as the two 2*P*-wave λ -mode Λ_c states $\Lambda_{c1}|J^P = 1/2^-, 1\rangle_{\lambda}$ and $\Lambda_{c1}|J^P = 3/2^-, 1\rangle_{\lambda}$, respectively.

Decay width	$\Lambda_{c1} J^P=1/2^-,1\rangle$	$\Lambda_{c1} J^P=3/2^-,1\rangle_{\lambda}$	
	M=2940	$\Lambda_{c}(2940)^{+}$	A
$\Gamma[\Sigma_c \pi]$	0.68	2.28	Car,
$\Gamma[\Sigma_c^*\pi]$	3.18	1.61 jim	
$\Gamma[pD^0]$	5.72	10.21	
$\Gamma[nD^+]$	6.89	9.55	
Γ_{Total}	16.47	23.65	
Expt.	2	0^{+6}_{-5}	

 Λ_c (2940) may be the 2P state with JP=3/2-.

Li-Ye Xiao and XH Zhong, to be published

 $\Lambda_c(2910)^+$

$$I(J^{P}) = ?(?^{?})$$
 Status: *

M=2913.8(9.4) MeV, Γ=51.8(38.8) MeV

Y. B. Li, C.P. Shen et al (Belle Collab.), PRL130,031901

TABLE VIII: The partial decay widths of $\Lambda_c(2940)^+$ assigned as the two 2*P*-wave λ -mode Λ_c states $\Lambda_{c1}|J^P = 1/2^-, 1\rangle_{\lambda}$ and $\Lambda_{c1}|J^P = 3/2^-, 1\rangle_{\lambda}$, respectively.

	Deav width	$\Lambda_{c1} J^P = 1/2^-, 1\rangle_{\lambda}$	$\Lambda_{c1} J^P=3/2^-,1\rangle_{\lambda}$
	Cleary width	M=2940	$\Lambda_c(2940)^+$
~(O))	$\Gamma[\Sigma_c \pi]$	0.68	2.28
<u> </u>	$\Gamma[\Sigma_c^*\pi]$	3.18	1.61
	$\Gamma[pD^0]$	5.72	10.21
	$\Gamma[nD^+]$	6.89	9.55
	Γ_{Total}	16.47	23.65
	Expt.	2	0^{+6}_{-5}

If Λ_c (2910) assigned as a 2P state, it should be a narrow state.

More studies are needed!

Li-Ye Xiao and XH Zhong, to be published

Can we find rho mode 1P states @2.7-2.9 GeV?

How to establish the missing D-wave states?

Candidates of the D-wave Ξ_{c} states

$$\Xi_{c}(3055)$$

$$\Xi_{c}(3080)$$

M =3056 MeV, Γ =7.8 MeV M =3077 MeV, Γ =3.6 MeV

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Our explaination with 1D states

		$ \Xi_c^2 D_{\lambda\lambda_2^2}\rangle(3055)$	$ \Xi_c^2 D_{\lambda\lambda} \frac{5}{2}^+\rangle$ (3080)
Decay mode	M_f	Γ_i (MeV)	Γ_i (MeV)
$\Xi_c'\pi$	2575	$1.93^{+0.57}_{-0.61}$	$0.75_{\pm 0.27}^{-0.18}$
$\Xi_c^{\prime*}\pi$	2645	$0.60_{+0.07}^{-0.04}$	$2.08^{+0.38}_{-0.40}$
$\Sigma_c K$	2455	$2.49_{-0.29}^{+0.38}$	$0.22^{<-0.01}_{+0.10}$
$\Sigma_c^* K$	2520	$0.14^{<-0.01}_{<+0.01}$	$1.68^{+0.11}_{-0.14}$
$ \Xi_c' 1^4 P_{\lambda 2}^{1-}\rangle \pi$	2854	< 0.01	$1.42_{-0.34}^{+0.39}$
$ \Xi_c' 1^4 P_{\lambda 2}^{3-}\rangle \pi$	2912	0.04	$0.20^{+0.04}_{-0.03}$
$ \Xi_c' 1^4 P_{\lambda 2}^{5-}\rangle \pi$	2929		$0.54^{+0.10}_{-0.10}$
Sum		$5.20^{+0.91}_{-0.83}$	$6.90_{-0.64}^{+0.84}$

The predicted decay widths and main decay modes are consistent with the observations.
 To be further confirmed, for some main decay modes are still missing.

Lei-Hua Liu, Li-Ye Xiao, XH, PRD86,034024(2012) YX Yao, KL Wang, XH, PRD98,076015(2018)

LHCb observation

Theoretical interpretations of $\mathcal{Z}_c(3055)$

From Guanyue Wan's report

References	Theoretical model	J^{P} of $E_{c}(3055)$		
Eur. Phys. J. A 37 (2008) 217–225	Faddeev method	5/2 ⁺ (1D)		
Phys. Rev. D 78 (2008) 056005	Regge phenomenology	5/2 ⁺ (1D)		
Phys. Rev. D 84 (2011) 014025	QCD-motivated relativistic quark model	3/2 ⁺ (1D)		
<u>Phys. Rev. D 86 (2012) 034024</u>	Chiral quark model	3/2 ⁺ (1D)		
Eur. Phys. J. A 82 (2015) 51	Relativistic flux tube model	3/2 ⁺ (1D)		
Phys. Rev. D 94 (2016) 114016	QCD sum rules within HQET	3/2 ⁺ (1D)		
Phys. Rev. D 96 (2017) 114003	3P0 model	$1/2^+(\bar{3}_F), 3/2^+(6_F)$ (2S)		
<u>Eur. Phys. J. C 79 (2019)167</u>	Hadron molecular state	1/2 ⁻ , 3/2 ⁻ (molecular)		

Looking for higher 2P Ξ_c states @ 3.1GeV

1D 3/2+: Λ_{c} (2860) Ξ_{c} (3055) 1D 5/2+: Λ_{c} (2880) Ξ_{c} (3080)? **2P 3/2-:** Λ_c (2940) Ξ_{c} (3140)?? **2P 1/2-:** Λ_c (2910)? Ξ_{c} (3110)??

Looking for rho mode 1P Ξ_c states @ 3.0GeV

Several main decay channels are suggested to be observed in future experiments.

Wen-Jia Wang, Li-Ye Xiao, XH, PRD106,074020 (2022)

_	$\Xi_c J^P = rac{1}{2}, 0 angle_ ho$	$\Xi_c J^P = rac{1}{2}, 1 angle_ ho$	$\Xi_c J^P = rac{3}{2}, 1 angle_ ho$	$\Xi_c J^P=rac{3^-}{2},2 angle_ ho$	$\Xi_c J^P=rac{5^-}{2},2 angle_ ho$
Decay width	M = 2951	M = 2980	M = 2987	M = 3016	M = 3076
$\Gamma[\Xi_c \pi]$	48.6	0.0	10.7	10.8	37.1
$\Gamma[\Lambda_c K]$	64.2	0.0	5.1	5.5	20.7
$\Gamma[\Xi_c'\pi]$	0.0	33.5	0.3	10.2	5.5
$\Gamma[\Sigma_c K]$	0.0	102.9	0.0	1.9	2.9
$\Gamma[\Xi_c^*\pi]$	0.0	1.9	16.1	17.9	3.5
$\Gamma[\Sigma_c^*K]$				11.5	0.6
$\Gamma[\Xi_c(2790)\pi]$	0.0	0.0	0.0	0.0	0.1
$\Gamma[\Xi_c(2815)\pi]$	0.0	0.0	0.0	0.0	0.1
Γ_{Total}	112.8	138.3	32.2	57.8	70.5

Summary for $\underline{3}_{\mathbf{F}}$ states

Some predicted masses are taken from Ebert et al., arXiv:1105.0583.

Part II Symmetric sextet

6_F states

LHCb and Belle provide good oppertunities.

LHCb observed five excited Ω_c states!

Four states were confirmed by Belle

C	3000	3100	3200
		$m(\Xi^+_{a}K)$) [MeV]
Resonance	Mass (MeV)		Γ (MeV)
$\Omega_c(3000)^0$	$3000.4 \pm 0.2 \pm 0.1$	+0.3	$4.5\pm0.6\pm0.3$
$\Omega_c(3050)^0$	$3050.2 \pm 0.1 \pm 0.1$	+0.3	$0.8\pm0.2\pm0.1$
			<1.2 MeV, 95% C.L.
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3$	+0.3 -0.5	$3.5\pm0.4\pm0.2$
$\Omega_c(3090)^0$	$3090.2 \pm 0.3 \pm 0.5$	+0.3 -0.5	$8.7\pm1.0\pm0.8$
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9$	+0.3	$1.1\pm0.8\pm0.4$

Our explaination

φ ((d	leg	re	e)
Τ.	<i>(</i>	- 6	,	-,

State	Mass	$\Gamma(\Xi_c \bar{K})$	$\Gamma(\Xi_c'\bar{K})$	$\Gamma[\Omega_c(2695)\gamma]$	$\Gamma[\Omega_c(2770)\gamma]$	$\Gamma^{\rm th}_{\rm total}$	Γ^{exp}_{total}	Possible assignment
$ 1P_{\lambda^{\frac{1}{2}}}\rangle_1$	3000	4.0		0.36/0.20	0.02/0.08	4.38/4.28	4.5 ± 0.9	$\Omega_c(3000)$
$ 1^4 P_{\lambda 2}^{3-}\rangle$	3050	0.61		1.12×10^{-3}	0.33	0.94	0.8 ± 0.3	$\Omega_c(3050)$
$ 1^2 P_{\lambda 2} \overline{3^-}\rangle$	3066	4.61		0.35	$5.68 imes10^{-4}$	4.96	3.5 ± 0.4	$\Omega_c(3066)$
$ 1^4P_{\lambda 2} \tilde{5}^-\rangle$	3090	9.32	0.03	$1.00 imes 10^{-4}$	0.18	9.53	8.7 ± 1.8	$\Omega_c(3090)$

Ω_c (3000,3050,3066,3090) may be 1P-wave states with very narrow width.

• Ω_c(3119) may be a 2S state or other assignment.

A broad 1P wave state is waiting to be found!

Radiative decay is worth observing.

Looking for D-wave Ω_c states @ 3.3 GeV

		$ \Omega_c^2 D_{\lambda\lambda}^{3+}\rangle$	(3282)	$ \Omega_c^2 D_{\lambda\lambda} \frac{5}{2}^+$	(3286)	$ \Omega_c {}^4D_{\lambda\lambda2}^{++}$	(3287)	$ \Omega_c {}^4D_{\lambda\lambda}{}^{3+}_2$	(3298)	$ \Omega_c {}^4D_{\lambda\lambda}\frac{5}{2}^+$	(3297)	$ \Omega_c {}^4D_{\lambda\lambda2}^{7+}$	(3283)
Decay mod	M_f	Γ_i	$\mathcal{B}_i \ (\%)$	Γ_i	$\mathcal{B}_i \ (\%)$	Γ_i	$\mathcal{B}_i\ (\%)$	Г	$\mathcal{B}_i\ (\%)$	Γ_i	$\mathcal{B}_i \ (\%)$	Γ_i	$\mathcal{B}_i (\%)$
$\Xi_c K$	2470	$7.97^{+3.85}_{-3.61}$	44.7	$5.16^{-1.13}_{+1.42}$	57.3	$15.9^{+7.8}_{-7.2}$	71.4	$7.90^{+4.08}_{-3.73}$	48.2	$1.65_{+0.44}^{-0.35}$	19.8	$6.43^{-1.43}_{+1.77}$	81.7
$\Xi_c' K$	2575	$9.26^{+2.34}_{-2.55}$	51.9	$1.77_{+0.64}^{-0.45}$	19.7	$4.71^{+1.22}_{-1.34}$	20.8	$2.44_{-0.73}^{+0.68}$	14.8	$0.15_{+0.05}^{-0.04}$	1.79	$0.54_{\pm 0.20}^{-0.14}$	6.73
$\Xi_c^{\prime *} K$	2645	$0.50_{\pm 0.02}^{-0.01}$	2.8	$2.05^{+0.28}_{-0.32}$	22.8	$1.65^{+0.25}_{-0.31}$	7.4	$5.97^{+0.90}_{-1.03}$	36.4	$6.61_{+0.64}^{-0.60}$	79.2	$0.88^{+0.11}_{-0.12}$	11.2
$ \Omega_c 1^2 P_{\lambda 2}^{1-}\rangle$	/ 3000	$91.8^{-14.5}_{+18.8}$	0.51	$9.79^{-1.60}_{+2.12}$	0.11	0.03	< 0.01	$0.49_{+0.06}^{-0.05}$	< 0.01	$0.19_{+0.02}^{-0.02}$	< 0.01	≃0.0	< 0.01
$ \Omega_c 1^2 P_{\lambda 2}^{\overline{3}-}\rangle$	/ 3066	$18.4_{+4.0}^{-3.1}$	0.10	$39.7_{+8.9}^{-6.7}$	0.44	0.04	< 0.01	0.02	< 0.01	$0.17_{+0.02}^{-0.02}$	< 0.01	$0.13_{+0.02}^{-0.02}$	< 0.01
$ \Omega_c 1^4 P_{\lambda 2}^{\overline{1}}\rangle$	/ 3050	$0.13_{+0.01}^{-0.02}$	< 0.01	0.008	< 0.01	$70.3^{-11.3}_{+14.8}$	0.32	$34.7^{-5.6}_{+7.3}$	0.21	$5.56_{+1.20}^{-0.91}$	0.07	$1.07_{\pm 0.30}^{-0.21}$	0.01
$ \Omega_c 1^4 P_{\lambda 2}^{\overline{3}-}\rangle$	/ 3050	$0.2^{+0.03}_{+0.03}$	< 0.01	0.09	< 0.01	$27.5_{+5.9}^{-4.5}$	0.12	$54.1_{+11.4}^{-8.8}$	0.33	$39.8_{+8.6}^{-6.6}$	0.47	$5.62_{\pm 1.23}^{-0.94}$	0.07
$ \Omega_c 1^4 P_{\lambda 2}^{5-}\rangle$	/ 3090	0.03	< 0.01	$0.14_{+0.03}^{-0.02}$	< 0.01	$2.44_{+0.62}^{-0.45}$	< 0.10	$7.95^{-1.36}_{+1.82}$	0.05	$19.6^{-3.3}_{+4.3}$	0.24	$23.1^{-3.9}_{+5.3}$	0.29
Sum		$17.84^{+6.16}_{-6.16}$		$9.03^{-1.30}_{+1.73}$		22.33 ^{+9.25} -8.83		$16.21^{+5.64}_{-5.47}$		$8.34_{+1.11}^{-0.98}$		$7.82^{-1.46}_{+1.85}$	

Decay widths are relatively narrow (about 10-20 MeV).

Decay modes $\Xi_c K$, $\Xi'_c K$, $\Xi'_c * K$ are worth observing!

YX Yao, KL Wang, XH, PRD98,076015(2018)

New Ω_c states observed at LHCb

Our new explaination: Ω_{c} (3120) arXiv:2502.13741

May be a rho mode 1P state with JP=3/2, slightly mixed with the lambda mode.

As the 2S states, the predicted width is too broad.

TABLE VI: The partial decay widths (MeV) of the excited states of Ω_c . Γ_{sum}^{th} stands for the sum of partial widths.

State	Mass	$\Gamma[\Xi_c K]$	$\Gamma[\Xi_c'K]$	$\Gamma[\Xi_c^{\prime *}K]$	$\Gamma[\Omega_c \eta]$	$\Gamma[\Omega_c(2770)\eta]$	$\Gamma[\Xi_c(2790)K]$	$\Gamma[\Xi_c(2815)K]$	Γ^{th}_{sum}
$ J^P = 1/2^-, 0\rangle_{1P_{\lambda}}$	3021	97.25	-	-	-	-	-	-	97.25
$ J^P = 1/2^-, 1\rangle_{1P_\lambda}$	3008	~ 0	-	-	-	-	-	-	~ 0
$ J^P=3/2^-,1\rangle_{1P_\lambda}$	3062	~ 0	-	-	-	-	-	-	~ 0
$ J^P=3/2^-,2\rangle_{1P_\lambda}$	3061	6.39	-	-	-	-	-	-	6.39
$ J^P=5/2^-,2\rangle_{1P_\lambda}$	3091	12.21	0.04	-	-	-	-	-	12.25
$ J^P = 1/2^-, 1\rangle_{1P_{\rho}}$	3085	~ 0	42.35	-	-	-	-	-	42.35
$ J^P=3/2^-,1\rangle_{1P_\rho}$	3115	~ 0	1.07	-	-	-	-	-	1.07
$ J^P = 1/2^+, 1\rangle_{2_1S}$	3127	71.21	25.39	-	-	-	-	-	96.60
$ J^P=1/2^+,1\rangle_{2_2S}$	3307	21.27	23.92	8.97	0.33	-	8.52	-	63.01
$ J^P=3/2^+,1\rangle_{2_1S}$	3177	40.17	7.34	10.08	-	-	-	-	57.59
$ J^P=3/2^+,1\rangle_{2_2S}$	3325	23.96	7.45	30.15	0.30	0.03	0.04	~ 0	61.93

Our explaination: Ω_c (3185)

The observed mass, width, and decay mode are consistent with the assignment of 2S state with JP=3/2+.

Ω _c (3185) ⁰ MASS								
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT				
$3185 \pm 1.7^{+7.4}_{-0.9} \pm 0.2$	12k	¹ AAIJ	23AS LHCB	<i>pp</i> at 7, 8, 13 TeV				
1 The third uncertainty is due to the uncertainty in the Ξ_c^+ mass, taken to be the PDG 22 fit result 2467.71 \pm 0.23 MeV.								
Ω _c (3185) ⁰ WIDTH								
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT				
$50\pm7^{+10}_{-20}$	12k	AAIJ	23AS LHCB	<i>pp</i> at 7, 8, 13 TeV				

Predictions: Mass: 3177 MeV, Width: 58 MeV

Our explaination: Ω_c (3327)

This state may favor the assignment of 1D state with JP=5/2+ or 7/2+.

TABLE VII: The strong decay widths (MeV) of $|J^P = 3/2^+, 1\rangle_{1D_{\lambda}}$, $|J^P = 5/2^+, 3\rangle_{1D_{\lambda}}, |J^P = 7/2^+, 3\rangle_{1D_{\lambda}}$, and $|J^P = 1/2^+, 1\rangle_{1D_{\rho}}$ as the candidates of $\Omega_c(3327)$. Γ_{lps}^{th} stands for the sum of the partial widths for the *K* and η emitting channels.

States	Γ^{th}_{lps}	$\Gamma[\Xi D]$	$\Gamma[\Xi D^*]$	Γ^{th}	Γ^{exp} [78]
$ J^P = 3/2^+, 1\rangle_{1D_\lambda}$	70.8	5.6	0.24	76.6	20^{+14}_{-5}
$ J^P = 5/2^+, 3\rangle_{1D_\lambda}$	11.8	0.14	0.02	12.0	
$ J^P=7/2^+,3\rangle_{1D_\lambda}$	10.1	5.1	~ 0	15.2	
$ J^P = 1/2^+, 1\rangle_{1D_o}$	8.9	-	-	8.9	

The DE channel is worth observing!

Only the ground states are established!

Decay properties of the P-wave Σ_c states

-0								JLUI		
28+11 IP	Σ states	Channal	E (MaV)	p	S	tate	$ J^P,j\rangle$	Channel	Γ_i	\mathcal{B}_i
$ L_{\lambda}J^{T}\rangle$	Σ_c states	Channel	I_i (wiev)	\mathcal{D}_i	$\Sigma_c(2)$	2746)	$ J^P=1/2^-,1\rangle$	$\Lambda_c\pi$		
$ ^2P_{\lambda 2}^{1-}\rangle$	$\Sigma_{c}(2713)$	$\Lambda_c \pi$	6.49	28.65%				$\Sigma_c \pi$	28.06	98.00%
		$\Sigma_c \pi$	16.08	70.99%				$\Sigma_c^*\pi$	0.47	2.00%
		$\Sigma_c^*\pi$	0.08	0.35%				total	28.53	
		total	22.65		$\Sigma_c(2)$	2755)	$ J^{P} = 1/2^{-}, 0\rangle$	$\Lambda_c \pi$	15.23	100.00%
$ ^{2}P_{\lambda 2}^{3-}\rangle$	$\Sigma_c(2798)$	$\Lambda_c \pi$	22.53	61.73%			1 / / /	$\Sigma_c \pi$		
		$\Sigma_c \pi$	8.84	24.22%				$\Sigma^*\pi$		
		$\Sigma_c^*\pi$	5.13	14.05%				total	15.22	
		total	36.5				D	iotai	15.25	
$ ^4P_{\lambda}\frac{1}{2}^-\rangle$	$\Sigma_{c}(2799)$	$\Lambda_c \pi$	6.66	37.78%	$\Sigma_c(2)$	2796)	$ J^P = 3/2^-, 1\rangle$	$\Lambda_c\pi$		
		$\Sigma_c \pi$	10.30	58.42%				$\Sigma_c \pi$	3.21	10.43%
		$\Sigma_c^* \pi$	0.67	3.80%				$\Sigma_c^*\pi$	27.57	89.57%
		total	17.63					total	30.78	
$ ^{4}P_{\lambda}\frac{3}{2}^{-}\rangle$	$\Sigma_{c}(2773)$	$\Lambda_c \pi$	3.62	14.66%	$\Sigma_c(2)$	2813)	$ J^P=3/2^-,2\rangle$	$\Lambda_c \pi$	30.59	75.42%
		$\Sigma_c \pi$	0.29	1.17%				$\Sigma_c \pi$	7.53	18.57%
		$\Sigma_c^* \pi$	20.78	84.16%				$\Sigma_c^*\pi$	2.44	6.01%
		total	24.69					total	40.56	
$ ^{4}P_{\lambda}\frac{5}{2}-\rangle$	$\Sigma_{c}(2789)$	$\Lambda_c \pi$	25.03	75.35%	Σ(2840)	$ I^{p} - 5/2^{-} 2\rangle$	$\Lambda \pi$	37.63	73.96%
		$\Sigma_c \pi$	2.29	6.89%	Δ_c	2040)	$ J^{*} = 5/2 , 2\rangle$	$\Lambda_c \pi$	57.05	75.9070
		$\Sigma^*_{\circ}\pi$	5.90	17.76%				$\Sigma_c \pi$	4.90	9.63%
		total	33.22					$\Sigma_c^*\pi$	8.35	16.41%
								total	50.88	

Relativelv narrow states!

KL Wang, YX Yao, XH, QZ, PRD96,116016(2017)

KL Wang, XH, CPC46,023103(2022)

Evidence of the P-wave Σ_c states from Exp.

Γ	$\Sigma_{c}(2800)$		$I(J^P)$	= 1(? [?])	Status: ***
	Seen in th	e $\Lambda_c^+ \pi^+$, $\Lambda_c^+ \pi^0$, a	and $arLambda_{m c}^+\pi^-$ ma	ss spe	ectra.	
Σ _c VAI	(2800)++ WII UE (MeV)	DTH EVTS	DOCUMENT ID		TECN	COMMENT
75	+18+12 -13-11	$2810 {+} {1090 \atop -775}$	MIZUK	05	BELL	$e^+e^- \approx \Upsilon(4S)$
Σ	(2800) ⁺ WID ⁻	ГН				
VAL	UE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
62	+ 37 + 52 - 23 - 38	${}^{1540}_{-1050}^{+1750}_{-1050}$	MIZUK	05	BELL	$e^+ e^- \approx \Upsilon(4S)$
Σα	(2800) ⁰ WIDT	Н	DOCUMENT ID		TECN	COMMENT
72	+22 OUR AVER/		DOCOMENTID			
86	+33+12		AURERT		RARR	$R^- \rightarrow \pi \Lambda^+ \pi^-$
A go	o <mark>d candid</mark>	ate of P way	ve state v	vith	J ^P =	3/2 ⁻ or 5/2 ⁻ !
♦ Look	ting for m	ore P wave	states in	the	$\Sigma_{c}^{(*)}$	$^{0}\pi$ final states

The roles of P-wave Σc states in the $\Lambda c\pi$ invariant mass spectrum

Three states with JP=1/2-,3/2- and 5/2- may highly overlap!

KL Wang, XH, CPC46,023103(2022)

Decay properties of the D-wave Σ_c states

		$ \Sigma_c^2 D_{\lambda\lambda_2^2}\rangle(3043)$	$ \Sigma_c^2 D_{\lambda\lambda} \frac{5+}{2}\rangle$ (3038)	$ \Sigma_c^{4}D_{\lambda\lambda}\frac{1}{2}^+\rangle$ (3041)	$ \Sigma_c^{4}D_{\lambda\lambda}\frac{3+}{2}\rangle(3040)$	$ \Sigma_c^4 D_{\lambda\lambda} \frac{5+}{2}\rangle(3023)$	$ \Sigma_c^4 D_{\lambda\lambda} \overline{2}^{+}\rangle(3013)$
Decay mode	M_{f}	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)
$\Lambda_c \pi$	2286	$1.29^{+2.54}_{-1.22}$	$11.9^{-1.65}_{+1.51}$	$2.62^{+5.09}_{-2.46}$	$1.15^{+2.32}_{-1.09}$	$3.1_{+0.42}^{-0.46}$	$13.1^{-2.06}_{+1.83}$
$\Sigma_c \pi$	2455	$7.06^{+4.66}_{-3.95}$	$8.78^{-1.86}_{+2.25}$	$3.53_{-1.96}^{+2.31}$	$1.77^{+1.14}_{-0.98}$	$0.54_{\pm 0.14}^{-0.11}$	$2.18_{+0.60}^{-0.48}$
$\Sigma_c^* \pi$	2520	$2.44_{+0.48}^{-0.33}$	$2.91_{-0.61}^{+0.72}$	$1.71^{+0.79}_{-0.76}$	$7.47^{+2.04}_{-1.77}$	$11.6^{+0.80}_{-0.34}$	$1.45_{-0.02}^{+0.13}$
$\Xi_c K$	2470	$1.17_{-0.14}^{+0.12}$	0.03	$2.27_{-0.27}^{+0.22}$	$1.12_{-0.13}^{+0.10}$	< 0.01	0.01
$ \Lambda_c^2 P_{\lambda_2^2}\rangle \pi$	2592	$4.93_{-0.19}^{+0.25}$	$10.3_{+0.68}^{-0.83}$	$52.6_{+2.7}^{-3.2}$	$3.06^{+2.44}_{-1.70}$	$11.2_{+0.9}^{-0.8}$	$11.1_{-3.0}^{+3.5}$
$ \Lambda_c^2 P_{\lambda 2}^{\overline{3}-}\rangle \pi$	2628	$52.8^{+6.76}_{-5.77}$	$10.9^{+2.1}_{-2.4}$	$64.0^{+22.2}_{-18.8}$	$43.1_{-3.7}^{+4.4}$	$1.92^{+0.02}_{<+0.01}$	$24.2^{+0.05}_{-0.04}$
$ \Sigma_c^2 P_{\lambda 2}^{\overline{1}}\rangle \pi$	2713	$4.09^{+0.35}_{-0.29}$	$5.85_{+0.86}^{-0.75}$	$7.56_{+0.89}^{-0.77}$	$2.10^{+0.99}_{-0.82}$	$1.13_{+0.18}^{-0.16}$	$2.83^{+0.76}_{-0.68}$
$ \Sigma_c^2 P_{\lambda 2}^{\overline{3}-}\rangle \pi$	2798	$25.6^{+4.82}_{-4.29}$	$0.76_{\pm 0.18}^{-0.05}$	$15.8^{+4.0}_{-3.6}$	$3.58_{-0.34}^{+0.39}$	0.01	$0.95_{-0.04}^{+0.06}$
$ \Sigma_c^4 P_{\lambda 2}^{\overline{1}-}\rangle \pi$	2799	0.09	$1.30_{-0.33}^{+0.38}$	$0.46_{\pm 0.10}^{-0.07}$	$22.4_{-3.0}^{+3.4}$	$12.1^{+2.1}_{-1.9}$	< 0.01
$ \Sigma_c^4 P_{\lambda 2}^{\overline{3}-}\rangle \pi$	2773	$3.42_{-0.16}^{+0.22}$	$1.26^{+0.11}_{-0.09}$	$4.18^{+0.05}_{+0.02}$	$18.9^{+2.4}_{-2.0}$	$4.54^{+2.16}_{-1.80}$	$1.03_{\pm 0.04}^{-0.03}$
$ \Sigma_c^4 P_{\lambda 2}^{\overline{5}-}\rangle \pi$	2789	$2.20^{+0.06}_{<+0.01}$	$4.51^{+0.57}_{-0.45}$	$6.1^{+1.96}_{-1.72}$	$16.8^{+4.8}_{-4.3}$	$23.0^{+3.3}_{-2.9}$	$1.26_{\pm 0.09}^{-0.05}$
Sum		$105^{+19.5}_{-15.5}$	$58.5^{-1.3}_{+1.6}$	$160.8^{+32.6}_{-25.9}$	$121.5^{+24.4}_{-19.8}$	$69.1_{-5.3}^{+6.9}$	$58.1^{+1.9}_{-1.2}$

Broader than the P wave states. The J^P=5/2⁺ and 7/2⁺ states are worth observing!

YX Yao, KL Wang, XH, PRD98,076015(2018)

jj coupling scheme, 3P0 model & ChQM

	$\Sigma_c J^P =$	$=\frac{1}{2}^+,1\rangle_{\lambda\lambda}$	$\Sigma_c J^P =$	$=\frac{3}{2}^+,1\rangle_{\lambda\lambda}$	$\Sigma_c J^P =$	$=\frac{3}{2}^+,2\rangle_{\lambda\lambda}$	$\Sigma_c J^P =$	$=rac{5}{2}^+,2 angle_{\lambda\lambda}$	$\Sigma_c J^P =$	$=\frac{5}{2}^+,3\rangle_{\lambda\lambda}$	$\Sigma_c J^P =$	$=\frac{7}{2}^+,3\rangle_{\lambda\lambda}$
	M =	= 3041	<i>M</i> =	= 3043	<i>M</i> =	= 3040	<i>M</i> =	= 3038	<i>M</i> =	= 3023	<i>M</i> =	= 3013
Decay width	QPC	ChQM	QPC	ChQM	QPC	ChQM	QPC	ChQM	QPC	ChQM	QPC	ChQM
$\Gamma[DN]$	17.1		1.1		9.6		0.3				0.6	
$\Gamma[D^*N]$	3.9		7.5		4.6	•••	6.8		0.1	•••		
$\Gamma[\Sigma_c \pi]$	2.5	3.5	0.7	0.9	5.3	7.9	0.3	4.8	0.3	4.7	0.1	2.4
$\Gamma[\Lambda_c \pi]$	2.8	2.3	2.4	2.2	0.1				0.7	15.5	0.6	14.5
$\Gamma[\Sigma_c^*\pi]$	1.0	1.7	2.8	4.3	3.5	6.0	5.5	10.8	0.2	5.2	0.2	1.5
$\Gamma[\Xi_c K]$	0.9	3.4	0.8	3.6								
$\Gamma[\Lambda_c J^P = \frac{1}{2}, 1 \rangle_{\lambda} \pi]$	37.2	13.8		8.1	0.4	0.2	0.2		1.7	2.2		
$\Gamma[\Lambda_c J^P = \frac{\tilde{3}}{2}, 1 \rangle_{\lambda} \pi]$	0.1	1.4	37.3	10.8	0.3	0.2	0.5	1.9	0.3	1.2	1.0	8.0
$\Gamma[\Sigma_c J^P = \overline{\frac{1}{2}}, 0 \rangle_\lambda \pi]$	4.3	0.3		0.4	0.2	1.3		0.5		0.2	1.0	
$\Gamma[\Sigma_c J^P = \overline{\frac{1}{2}}, 1 \rangle_\lambda \pi]$	27.9	24.9	0.3	0.5	0.5	4.3	0.2	0.1		3.9	0.8	
$\Gamma[\Sigma_c J^P = \overline{\frac{3}{2}}, 1 \rangle_{\lambda} \pi]$		3.4	6.7	0.6	4.0	2.9	2.0	0.1	2.3	•••	2.7	0.1
$\Gamma[\Sigma_c J^P = \overline{\frac{3}{2}}, 2 \rangle_\lambda \pi]$		1.5	4.6	0.3	55.6	22.9	0.5	•••	1.0	0.3	0.5	0.2
$\Gamma[\Sigma_c J^P= frac{5}{2},2 angle_\lambda\pi]$	14.7	0.9	3.3	1.3	5.0	0.9	8.6	7.6	6.9	0.8	1.4	0.4
Γ_{Total}	112.4	57.0	67.5	33.0	89.1	46.6	24.9	25.8	13.5	34.0	8.9	27.1

TABLE IV. The strong decay properties of the λ -mode 1*D*-wave Σ_c states, which masses are taken from the predictions in Ref. [54]. Γ_{Total} stands for the total decay width. The unit of the width and mass is MeV.

The predicted main decay modes are often consistent in two models. The DN channel is suggested to observe!

YH Zhou, WJ Wang, LY Xiao, XH, PRD108,014019 (2023)

PRD107,034031 (2023)

Only the ground states are well established!

Decay properties of the λ mode P-wave Ξ'_{c} states

$ ^{2S+1}L_{\lambda}J^{P} angle$	State	Channel	Γ_i (MeV)	\mathcal{B}_i
$ ^2P_{\lambda}\frac{1}{2}^-\rangle$	$\Xi_{c}^{\prime}(2936)$	$\Lambda_c K$	7.11	32.81%
		$\Xi_c \pi$	3.90	18.00%
		$\Xi_{c}^{\prime}(2580)\pi$	10.08	46.52%
		$\Xi_{c}^{\prime}(2645)\pi$	0.58	2.68%
		total	21.67	
$ ^2P_{\lambda 2}^{3-}\rangle$	$\Xi_{c}^{\prime}(2935)$	$\Lambda_c K$	3.73	17.86%
		$\Xi_c \pi$	10.85	51.94%
		$\Xi_{c}^{\prime}(2580)\pi$	3.89	18.62%
		$\Xi_{c}^{\prime}(2645)\pi$	2.42	11.58%
		total	20.89	
$ ^{4}P_{\lambda 2}^{1-}\rangle$	$\Xi_{c}^{\prime}(2854)$	$\Lambda_c K$	18.56	50.09%
-		$\Xi_c \pi$	15.02	40.54%
		$\Xi_{c}^{\prime}(2580)\pi$	3.44	9.28%
		$\Xi_{c}^{\prime}(2645)\pi$	0.03	0.07
		total	37.05	
$ ^{4}P_{\lambda 2}^{3-}\rangle$	$\Xi_{c}^{\prime}(2912)$	$\Lambda_c K$	0.50	4.06%
		$\Xi_c \pi$	1.70	13.79%
		$\Xi_{c}^{\prime}(2580)\pi$	0.13	1.05%
		$\Xi_{c}^{\prime}(2645)\pi$	10.00	81.10%
		total	12.33	
$ ^{4}P_{\lambda}\frac{5}{2}^{-}\rangle$	$\Xi_{c}^{\prime}(2929)$	$\Lambda_c K$	4.06	20.10%
		$\Xi_c \pi$	12.24	60.59%
		$\Xi_{c}^{\prime}(2580)\pi$	1.06	5.25%
		$\Xi_{c}^{\prime}(2645)\pi$	2.84	14.06%
		total	20.2	

Relatively narrow states!

KL Wang, YX Yao, XH, QZ, PRD96,116016(2017)

Belle observed P-wave candidates $\Xi_c(2930, 2940)$

Mass: about 2929 MeV Width: about 20 MeV

Mass: about 2942 MeV Width: about 15 MeV

Mass, and decay mode are consistent with **P** wave candidates.

LHCb observed three P-wave candidates $\Xi_c(2923)$, $\Xi_c(2939)$, $\Xi_c(2965)$

Mass, and decay mode are consistent with **P** wave candidates.

Our explaination with P wave \Xi'_{c} states

State	Mass	$\Gamma[\Xi_c \pi]$	$\Gamma[\Xi_c'\pi]$	$\Gamma[\Xi_c^*\pi]$	$\Gamma[\Lambda_c K]$	$\Gamma^{\rm th}_{\rm total}$	Γ^{exp}_{total}	Possible assignment
$ 1P_{\lambda}\frac{1}{2}\rangle_{1}$	2880	0.86	12.9	0.18	1.17	15.1		
$ 1P_{\lambda 2}^{\tilde{1}-}\rangle_2$	2880	21.7	0.51	0.01	29.6	51.8		
$ 1^4 P_{\lambda 2}^{3-}\rangle$	2923	1.74	0.15	10.7	0.48	13.1	$7.1\pm0.8\pm1.8$	$\Xi_c(2923)^0$
$ 1^2 P_{\lambda \overline{2}}^{\overline{3}}\rangle$	2939	10.2	3.80	2.46	3.74	20.2	$10.2\pm0.8\pm1.1$	$\Xi_c(2939)^0$
$ 1^4P_{\lambda \overline{2}}^{\overline{5}-}\rangle$	2965	15.5	1.64	3.57	5.43	26.1	$14.1\pm0.9\pm1.3$	$\Xi_c(2965)^0$

E_c(2923), E_c(2939) may correspond to two J^P=3/2⁻ states.

 $\mathbf{E}_{c}(2965)$ may be the J^P=5/2⁻ state.

To confirm the nature, the other dominant decay modes should be further observed.

Kai-Lei Wang, Li-Ye Xiao, XH, PRD102,034029 (2020)

Evidence a new P-wave state Ξ_c **(2880) at LHCb**

Mass, and decay mode are consistent with a narrow P wave candidate with JP=1/2-.

Can find p mode P-wave states?

		Decay modes					
States	$\Xi_c'\pi$	$\Xi_c^*\pi$	$\Sigma_c \mathbf{K}$	$\Sigma_c^* K$	Total		
$\overline{\Xi_c'} J^P = \frac{1}{2}, 1\rangle_{\rho}(3060)$	16.3	11.7	71.7	1.1	100.8		
$\Xi_c' J^P = \frac{3}{2}, 1\rangle_{\rho}(3096)$	16.4	25.8	10.4	72.8	125.4		

There two ρ mode states with JP=1/2and 3/2-,respectively. The mass is about 3.1 GeV. The decay width is about 100 MeV.

Wen-Jia Wang, Li-Ye Xiao, XH, PRD106,074020 (2022)

Puzzle on $\Xi_c(2970)$

Citation: S. Navas et	al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)	Γ_1	$\Lambda_{c}^{+}\overline{K}\pi$	seen
		Γ2	$\Sigma_c(2455)\overline{K}$	seen
= (0070)	$(P) = 1(1+)$ Status $\Psi \Psi \Psi$	Γ ₃	$\Lambda_c^+ \overline{K}$	not seen
$\pm_{c}(2970)$	$I(J^{*}) = \frac{1}{2}(\frac{1}{2})$ Status: $\wedge \wedge \wedge$	Γ4	$\Lambda_c^+ K^-$	seen
		Γ ₅	$\Xi_c 2\pi$	seen
was $\Xi_{c}(2980)$		Γ ₆	$\Xi_c'\pi$	seen
$J^P=1/2^+$ is fave	ored by MOON 21.	Γ ₇	$\Xi_c(2645)\pi$	seen

As a 2S or 1D state with JP=1/2+,

The mass is hard to understand

The decay properties is hard to understand

 Ξ_c (2965) observed at LHCb may be different from that observed at Belle and Babar.

Decay properties of the D-wave Ξ'_{c} states

		$ \Xi_c^{\prime \ 2} D_{\lambda \lambda} \frac{3^+}{2} \rangle (3167)$	$ \Xi_c^{\prime2}D_{\lambda\lambda_2^{5+}}\rangle(3166)$	$ \Xi_c^{\prime4}D_{\lambda\lambda_2^{1+}}\rangle(3163)$	$ \Xi_c^{\prime4}D_{\lambda\lambda_2^{3+}}\rangle(3160)$	$ \Xi_c^{\prime4}D_{\lambda\lambda}{}^{5+}_2\rangle(3153)$	$ \Xi_c^{\prime4}D_{\lambda\lambda}{}^{7+}_2\rangle(3147)$
Decay mode	M_{f}	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)
$\Xi_c \pi$	2470	$2.43^{+2.13}_{-1.59}$	$5.13_{+1.05}^{-0.96}$	$4.92_{-3.19}^{+4.18}$	$2.48^{+2.06}_{-1.60}$	$1.32_{+0.29}^{-0.25}$	$5.68^{-1.10}_{+1.24}$
$\Xi_c'\pi$	2578	$3.51^{+1.79}_{-1.66}$	$2.77_{+0.77}^{-0.62}$	$1.75^{+0.88}_{-0.81}$	$0.87^{+0.44}_{-0.40}$	$0.17\substack{+0.03\\+0.05}$	$0.73_{\pm 0.21}^{-0.17}$
$\Xi_c^{\prime*}\pi$	2645	$0.74_{+0.13}^{-0.09}$	$1.18^{+0.27}_{-0.26}$	$0.76^{+0.27}_{-0.28}$	$2.94_{-0.69}^{+0.72}$	$4.28_{-0.24}^{+0.34}$	$0.56_{-0.04}^{+0.06}$
$\Lambda_c K$	2286	$1.23^{+1.13}_{-0.83}$	$1.25_{+0.53}^{-0.43}$	$2.51^{+2.24}_{-1.67}$	$1.27^{+1.12}_{-0.84}$	$0.72_{\pm 0.15}^{-0.13}$	$3.09_{\pm 0.63}^{-0.58}$
$\Sigma_c K$	2455	$6.37^{+1.97}_{-2.07}$	$1.72_{+0.58}^{-0.43}$	$3.16_{-1.0}^{+0.96}$	$1.57^{+0.46}_{-0.49}$	$0.11_{+0.04}^{-0.03}$	$0.40_{\pm 0.14}^{-0.10}$
$\Sigma_c^* K$	2520	$0.47_{+0.04}^{-0.01}$	$1.57^{+0.25}_{-0.28}$	$1.22_{-0.26}^{+0.23}$	$3.97_{-0.70}^{+0.62}$	$4.18_{-0.40}^{+0.37}$	$0.59_{-0.08}^{+0.08}$
$ \Lambda_c^2 P_{\lambda_2^2}\rangle K$	2592	$0.84_{-0.10}^{+0.11}$	$0.55_{-0.06}^{+0.08}$	$3.66_{+0.38}^{-0.30}$	$3.55^{+1.22}_{-1.06}$	$0.65_{\pm 0.07}^{-0.05}$	$10.1^{+2.5}_{-2.3}$
$ \Lambda_c^2 P_{\lambda 2}^{\overline{3}} \rangle K$	2628	$10.9^{+2.4}_{-2.1}$	$0.24^{+0.10}_{-0.05}$	$39.1_{-8.6}^{+9.5}$	$7.25^{+1.53}_{-1.36}$	$0.15_{-0.02}^{+0.02}$	$1.15_{-0.13}^{+0.15}$
$ \Xi_c^2 P_{\lambda 2}^{\overline{1}-}\rangle \pi$	2792	$1.85^{+0.15}_{-0.13}$	$1.83^{+0.15}_{-0.13}$	$14.5^{-1.28}_{+2.11}$	$9.28^{+1.53}_{-1.43}$	$3.37_{+0.36}^{-0.31}$	$14.4_{-3.5}^{+4.0}$
$ \Xi_c^2 P_{\lambda 2}^{\overline{3}-}\rangle \pi$	2815	$47.3^{+7.7}_{-7.3}$	$3.54_{+1.13}^{-0.82}$	$40.2^{+11.9}_{-10.5}$	$11.8^{+1.7}_{-1.4}$	$0.67^{+0.03}_{-0.02}$	$8.81_{-0.04}^{+0.04}$
$ \Xi_c^{\prime 2}P_{\lambda 2}\overline{1}^{-}\rangle\pi$	2936	$0.39_{-0.05}^{+0.05}$	$0.21_{+0.04}^{-0.03}$	$0.26^{-0.03}_{<+0.01}$	$0.51^{+0.15}_{-0.14}$	0.03	$0.92^{+0.21}_{-0.19}$
$ \Xi_c^{\prime 2}P_{\lambda 2}^{\overline{3}-}\rangle\pi$	2935	$8.53^{+1.70}_{-1.50}$	$0.22_{\pm 0.04}^{-0.03}$	$5.50^{+1.33}_{-1.21}$	$1.0^{+0.13}_{-0.11}$	< 0.01	$0.33_{-0.02}^{+0.02}$
$ \Xi_c^{\prime 4}P_{\lambda 2}^{\overline{1}-}\rangle\pi$	2854	$0.23_{\pm 0.10}^{-0.07}$	$1.00^{+0.32}_{-0.30}$	$0.75_{+0.14}^{-0.11}$	$20.5^{+2.9}_{-2.6}$	$13.0^{+2.1}_{-2.0}$	< 0.01
$ \Xi_c^{\prime 4}P_{\lambda 2}^{\overline{3}-}\rangle\pi$	2912	$1.01^{+0.10}_{-0.07}$	$0.41_{-0.04}^{+0.04}$	$1.10^{+0.03}_{-0.02}$	$5.62_{-0.72}^{+0.82}$	$2.85_{-0.94}^{+1.08}$	$0.34^{<-0.01}_{<+0.01}$
$ \Xi_c^{\prime 4}P_{\lambda 2}^{\overline{5}-}\rangle\pi$	2929	$0.59^{+0.04}_{-0.02}$	$1.46^{+0.22}_{-0.18}$	$2.23^{+0.64}_{-0.57}$	$5.75^{+1.51}_{-1.35}$	$7.55^{+1.17}_{-1.05}$	$0.37^{<-0.01}_{+0.01}$
Sum		$86.4^{+19.1}_{-17.2}$	$23.1_{+2.8}^{-1.9}$	$121.6^{+30.4}_{-25.5}$	$78.4^{+16.9}_{-14.9}$	$39.1^{+4.3}_{-3.7}$	$47.5^{+5.1}_{-4.1}$

Broader than the P wave states.

The J^P=5/2⁺ and 7/2⁺ states are worth observing!

YX Yao, KL Wang, XH, PRD98,076015(2018)

Summary for 6_F states

43

LHCb,Belle II为我们研究重味重子谱带 来机遇!

许多夸克模型预言的态值得实验寻找。

