重味物理理论方法综述

5th LHCb workshop @ Wuhan, 2025.4.26

于福升

兰州大学

2019第一届LHCb会

Photon Polarization of b->sgamma: Theory (I)

Fu-Sheng Yu Lanzhou University

聖守 意斗

LHCb workshop @ PKU, 2019.12.15

FSY, Kou, C.D.Lu, JHEP (1305.3173) Akar, Ben-Haim, Hebinger, Kou, FSY, JHEP (1802.09433)W.Wang, **FSY**, Z.X.Zhao, 1909.13083

2023第三届LHCb研讨会

Baryon CP Violation by T-odd and T-even correlations

于福升 兰州大学

Based on [J.P.Wang, Q.Qin, FSY, arXiv:2211.07332] LHCb workshop, 2023.4.15

Complementary: $\cos \delta_s vs \sin \delta_s$

- Precise prediction on strong phases is far beyond control currently
- Complimentary CPV observables proportional to $\sin \delta$ or $\cos \delta$ cover all the $(0, 2\pi)$ region
- Whatever the strong phase is, either $|\sin \delta|$ or $|\cos \delta|$ would be larger than 0.7 which is large enough for measurements
- It might reduce the sensitivity of CPV on the strong phase, avoid the theoretical uncertainties on strong phases, and then increase the possibility of observation of baryon CPV

8

2024第四届LHCb研讨会

Everything of baryon CPV

Why? What? When?

于福升

兰州大学

4th LHCb workshop @ Yantai, 2024.7.30

Global CPV from $N\pi$ scatterings

$N\pi$ scatterings	decay processes	global CPV	CPV of $\cos \theta < 0$	CPV of co
$N\pi ightarrow \Delta^{++}\pi^{-}$	$\Lambda_b^0 \to (\Delta^{++}\pi^-)K^-$	5.9%	8.0%	3.6%
$m_{N\pi} \in [1.2, 1.9] \text{GeV}$	$\Lambda_b^0 \to (\Delta^{++}\pi^-)\pi^-$	-4.1%	-5.4%	-2.42
$N\pi o p\pi^0$	$\Lambda_b^0 o (p\pi^0) K^-$	5.8%	8.2%	2.7%
$m_{N\pi} \in [1.1, 2.5] \text{GeV}$	$\Lambda_b^0 o (p\pi^0)\pi^-$	-3.9%	-3.9%	-3.79

21

2019第一届LHCb会

Photon Polarization of b->sgamma: Theory (I)

Fu-Sheng Yu Lanzhou University

聖守 意斗

LHCb workshop @ PKU, 2019.12.15

FSY, Kou, C.D.Lu, JHEP (1305.3173) Akar, Ben-Haim, Hebinger, Kou, FSY, JHEP (1802.09433)W.Wang, **FSY**, Z.X.Zhao, 1909.13083

2023第三届LHCb研讨会

Baryon CP Violation by T-odd and T-even correlations

于福升 兰州大学

Based on [J.P.Wang, Q.Qin, FSY, arXiv:2211.07332] LHCb workshop, 2023.4.15

Complementary: $\cos \delta_s vs \sin \delta_s$

- Precise prediction on strong phases is far beyond control currently
- Complimentary CPV observables proportional to $\sin \delta$ or $\cos \delta$ cover all the $(0, 2\pi)$ region
- Whatever the strong phase is, either $|\sin \delta|$ or $|\cos \delta|$ would be larger than 0.7 which is large enough for measurements
- It might reduce the sensitivity of CPV on the strong phase, avoid the theoretical uncertainties on strong phases, and then increase the possibility of observation of baryon CPV

8

2024第四届LHCb研讨会

Everything of baryon CPV

Why? What? When?

于福升

兰州大学

4th LHCb workshop @ Yantai, 2024.7.30

Global CPV from $N\pi$ scatterings

$N\pi$ scatterings	deer processes	gioun. CPV	CPV of $\cos \theta < 0$	CPV of co
$N\pi \rightarrow \Delta^{++}\pi^-$	$\Lambda_b^0 ightarrow (\Delta^{++}\pi^-) K^-$	5.9%	8.0%	3.6%
$m_{N\pi} \in [1.2, 1.9] \text{GeV}$	$\Lambda_b^0 \to (\Delta^{-} , -) , -$	-4.1%	-5.4%	-2.49
$N\pi o p\pi^0$	$\Lambda_b^0 o (p\pi^0) K^-$	5.8%	8.2%	2.7%
$m_{N\pi} \in [1.1, 2.5] \text{GeV}$	$\Lambda_b^0 o (p\pi^0)\pi^-$	-3.9%	-3.9%	-3.7

21

1. CP violation and non-leptonic decays

- 2. Topological diagrammatic approach
- 3. Generalized factorization, QCDF, PQCD
- 4. Final-state interaction, rescatterings

Outline

Introduction on CP violation

Definition:
$$A_{CP} = \frac{\Gamma(i \to f) - \Gamma(\bar{i} \to \bar{f})}{\Gamma(i \to f) + \Gamma(\bar{i} \to \bar{f})} = \frac{|A_j|}{|A_j|}$$

$$A_{f} = |a_{1}|e^{i(\delta_{1}+\phi_{1})} + |a_{2}|e^{i(\delta_{2}+\phi_{2})}$$
$$\overline{A}_{\overline{f}} = |a_{1}|e^{i(\delta_{1}-\phi_{1})} + |a_{2}|e^{i(\delta_{2}-\phi_{2})}$$

$$A_{CP} = -\frac{2|a_1a_2|\sin(\delta_2 - \delta_1)\sin(\phi_2 - \phi_1)}{|a_1|^2 + |a_2|^2 + 2|a_1a_2|\cos(\delta_2 - \delta_1)\cos(\phi_2 - \phi_1)}$$

- CPV conditions: 1. At least two amplitudes
 - 2. with different weak phases
 - 3. with different strong phases

 $\frac{4_{f}|^{2} - |\bar{A}_{\bar{f}}|^{2}}{4_{f}|^{2} + |\bar{A}_{\bar{f}}|^{2}}$

- $V_{\rm CKM} \leftrightarrow V^*_{\rm CKM}$
- $\phi_{1,2}$: weak phases, flip signs under $A_f \leftrightarrow \overline{A}_{\overline{f}}$ $\delta_{1,2}$: strong phases, keep signs under $A_f \leftrightarrow \overline{A}_{\overline{f}}$

 M_2

SU(3) irreducible representation approach

- Zeppendfeld, 1981 First SU(3) relations for B decays • with reduced amplitudes
- Savage and Wise, 1989
 First tensor contraction formulae • SU(3) irreducible representation

$b(c) \rightarrow q_1 \bar{q}_2 q_3, \quad q_i = u, d, s$

$$\mathcal{A}_{t}^{\text{IRA}} = A_{3}^{T} B_{i} (H_{\bar{3}})^{i} (M)_{k}^{j} (M)_{j}^{k} + C_{3}^{T} B_{i} (M)_{j}^{i} (M)_{j}^{i} (M)_{j}^{k} + C_{3}^{T} B_{i} (M)_{j}^{i} (M)_{k}^{k} + C_{6}^{T} B_{i} (M)_{j}^{k} (M)_{j}^{k} + C_{6}^{T} B_{i} (M)_{j}^{k} + C_{6}^{T} B_{i} (M)_{j}^{k} + C_{15}^{T} B_{i} (M)_{j}^{k} (M)_{j}^{k} + C_{15}^{T} B_{i} (M)_{j} (M)_{j}^{k} + C_{15}^{T} B_$$

 Recent applications in singly charmed baryons by Chao-Qiang Geng's group and in doubly heavy-flavor baryons in Wei Wang's group

$$3\otimes\overline{3}\otimes3=3_p\oplus3_t\oplus\overline{6}\oplus15$$

 $(M)_{k}^{j}(H_{\bar{3}})^{k} + B_{3}^{T}B_{i}(H_{3})^{i}(M)_{k}^{k}(M)_{j}^{j} + D_{3}^{T}B_{i}(M)_{i}^{i}(H_{\bar{3}})^{j}(M)_{k}^{k}$ $(I_{i})_{i}^{i}(H_{6})_{k}^{jl}(M)_{l}^{k} + B_{6}^{T}B_{i}(H_{6})_{k}^{ij}(M)_{i}^{k}(M)_{l}^{l}$ $M_{i}^{i}(H_{\overline{15}})_{l}^{jk}(M)_{k}^{l} + B_{15}^{T}B_{i}(H_{\overline{15}})_{k}^{ij}(M)_{i}^{k}(M)_{l}^{l}.$

See Xin-Qiang Li's talk

Topological Diagrams

- Decaying amplitudes are classified according to the weak flavour flows
- All the strong interaction effects are included. Therefore, non-perturbative contributions are all considered.

Chau,'86; Chau,Cheng,'87

Topological Diagrams

方法一:直接用实验数据抽取,或者估计。包含非微扰效应,在粲物理中应用很成功

成功预言双粲重子发现道

$|\mathbf{C}/\mathbf{T}| \sim |\mathbf{C}'/\mathbf{T}| \sim |\mathbf{E}/\mathbf{T}| \sim O(\Lambda_{\text{QCD}}/m_c) \sim 1$

My talk at LHCb China group in 2016.12

方法二:用因子化等方法直接计算。画出对应的费曼图做微扰论计算,适用于底强子衰变

拓扑图: 没有费曼规则,无法直接计算

费曼图: 有传播子、顶点等费曼规则, 可以直接计算

如PQCD、QCDF、SCET方法

$< P_1 P_2 |\mathcal{H}_{eff}|B > = Z_1 < P_1 |j^{\mu}|0 > < P_2 |j_{\mu}|B >$ + $Z_2 < P_2 |j'^{\mu}| 0 > < P_1 |j'_{\mu}| B >$

因子化假设 Bauer, Stech, Wirbel, 1987 (1900 citations)

$$\langle P_1 P_2 | \mathcal{H}_{eff} | B \rangle = i \frac{G_F}{\sqrt{2}} V_{qb} V_{qq'}^* \left(\frac{1}{N_c} C_i + C_j \right) f_{P_2} (m_B^2 - m_1^2) F_0^{B \to P_1} (m_2^2) + (1 \leftrightarrow 2)$$

色透明机制 [Bjorken, 1988]

$< P_1 P_2 |\mathcal{H}_{eff}|B > = Z_1 < P_1 |j^{\mu}|0 > < P_2 |j_{\mu}|B >$ + $Z_2 < P_2 |j'^{\mu}|_0 > < P_1 |j'_{\mu}|_B >$

色透明机制 [Bjorken, 1988] 因子化假设 Bauer, Stech, Wirbel, 1987 (1900 citations)

$$\langle P_1 P_2 | \mathcal{H}_{eff} | B \rangle = i \frac{G_F}{\sqrt{2}} V_{qb} V_{qq'}^* \left(\frac{1}{N_c} C_i + C_j \right) f_{P_2} (m_B^2 - m_1^2) F_0^{B \to P_1} (m_2^2) + (1 \leftrightarrow 2)$$

问题1: 实数,无强相位,无CPV 问题2: 能标依赖

问题3:不能计算"不可因子化图"

Generalized Factorization

$$\langle sq'\bar{q}'|\mathcal{H}_{eff}|b\rangle = \sum_{i,j} C_i^{eff}($$

$$C_t = -\sum_{q'=u,c} \frac{V_{q'b} V_{q'q}^*}{V_{tb} V_{tq}^*} \left[\frac{2}{3} + \frac{2}{3} \log \frac{m_{q'}^2}{\mu^2} - \Delta F_1 \left(\frac{k^2}{m_{q'}^2} \right) \right] C_1$$

$$\Delta F_1(z) = -4 \int_0^1 dx \, x(1-x) \, \log\left[1 - z \, x(1-x) - i\epsilon\right] \qquad \frac{m_b^2}{4}$$

1. 夸克圈, BSS机制, 有强相位和CPV

应用广泛: 重子衰变[C.Q.Geng, Y.K.Hsiao, C.W.Liu, et al], 末态相互作用[FSY, et al]

 $(\mu)\langle sq'\bar{q}'|O_j|b\rangle^{\text{tree}}$

Ali, Kramer, C.D.Lu, hep-ph/9804363 (600 citations)

$$(C_g) + \frac{\alpha_s}{4\pi} \left(r_V^T + \gamma_V^T \log \frac{m_b}{\mu} \right)_{3i} C_j + \cdots,$$

2. 强子矩阵元的辐射修正, 标度依赖性降低

 $\frac{p_b^2}{2} \stackrel{<}{_\sim} k^2 \stackrel{<}{_\sim} \frac{m_b^2}{2}$

问题:外夸克在壳时有红外发散

QCD Factorization

$\langle M_1 M_2 | O_i | B \rangle = F^{B \to M_1}(0) \int dx \Phi_{M_2}(x) T^I(x) + (M_1 \leftrightarrow M_2)$ $+\int d\xi dx dy \Phi_B(\xi) \Phi_{M_2}(x) \Phi_{M_1}(y) T^{II}(\xi, x, y),$

- •基于共线因子化。
- •因子化定理:有基于QCD的严格证明,形式漂亮。所有费曼图的红外发散,要么互相 抵消,要么可以被非微扰的物理矩阵元吸收掉。
- •问题1:有端点奇异性,传播子 ~ $1/x_1x_2Q^2 \to \infty$ when $x_{1,2} \to 0,1$.
- •问题2:强相位来自辐射修正,CP破坏小。需参数化湮灭图并调节参数。唯象学受限。

See Yue-Long Shen's talk Beneke, Buchalla, Neubert, Sachrajda, 1999 (1400 citations)

See Xin-Qiang Li's talk

PQCD approach

- PQCD approach (based on k_T factorization): retain transverse momentum of parton k_T ,
 - propagator ~ $1/(x_1x_2Q^2 + k_T^2)$
- •基于横动量因子化,部分贡 献证明了因子化定理。
- •解决端点奇异性问题!
- •所有拓扑图都能计算!!

- 直接CP破坏(%) $B \rightarrow \pi^+\pi^ B \rightarrow K^+\pi^-$
- •CPV唯象学非常成功!!!

Keum, H.n.Li, Sanda, hep-ph/0004173 (800 citations); hep-ph/0004004 (700 citations) C.D.Lu, Ukai, M.Z.Yang, hep-ph/0004213 (600 citations)

 $+10 \pm 3$

 -17 ± 5

 $+5 \pm 9$

•

J.X,Yu, J.J.Han, Y.Li, H.n.Li, J.P.Wang, Z.J.Xiao, FSY, 2409.02821

• 描述长程非微扰贡献的物理图像

 f_0

 $-\Lambda^0$

L. Wolfenstein, Phys. Rev. D 43, 151 (1991).

•应用广泛: Λ_c^+ and Λ_b^0 CPV

C.P.Jia, H.Y.Jiang, J.P.Wang, FSY, JHEP2024 Z.D.Duan, J.P.Wang, R.H.Li, C.D.Lu, **FSY**, 2412.20458 T.L.Feng, Q.Qin, H.Q.Shang, **FSY**, to appear

 $\Lambda_{b}^{0} \to \Lambda(1520) f_{0}(980) \to (pK^{-})(\pi^{+}\pi^{-})$

See Qin Qin's talk

CPV via $N\pi$ rescatterings

•Tree:

•Penguin:

- •Short-distance •Long-distance weak decays
- •weak phases strong phases

$\mathcal{A} = \mathcal{S}^{1/2} \mathcal{A}_0$

- Different chirality
- different helicity
- different partial waves
- ➡ PWA interference
- difference of strong phases
- **CPV**

J.P.Wang, **FSY**, 2407.04110

 $N\pi \rightarrow N\pi, N\pi\pi$

$N\pi$ scatterings

- • N^* usually from $N\pi$ scatterings
- Data from SAID program

https://gwdac.phys.gwu.edu/

Institute for Nuclear Studies THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

INS DAC Home INS DAC [SAID] **INS Home Pi-N** Newsletters Obituary R.A. Arndt

Partial-Wave Analyses at GW [See Instructions] **Pion-Nucleon Pi-Pi-N** Kaon(+)-Nucleon **Nucleon-Nucleon Pion Photoproduction Pion Electroproduction Kaon Photoproduction Eta Photoproduction Eta-Prime Photoproduction Pion-Deuteron (elastic) Pion-Deuteron to Proton+Proton**

INS DAC Services [SAID Program]

- The SAID Partial-Wave Analysis Facility is based
- New features are being added and will first appear always welcome.

Instructions for Using the Partial-Wave Analyses

The programs accessible with the left-hand side navigation t available through the SAID program. Contact a member of c If you enter choices which are unphysical, you may still get garbage out' rule). Please report unexpected garbage-out to t

Note: These programs use HTML forms to run the SAID co setup first. The output is an (edited) echo of an interactive se SSH version. If the default example fails to clarify the specif mail message).

All programs expect energies in MeV units. All of the soluti Some are unstable beyond their upper energy limits. Extrapc Increments: The programs will not allow an arbitrary numb

 Partial-wave amplitudes with strong phases! •Data driven, model independent. Skip resonances, more precise strong phases.

	decay processes	Scenarios
$N\pi \to \Delta^{++}\pi^-$		$\mathbf{S1}$
$m_{N\pi} \in [1.2, 1.9] \text{GeV}$	$\Lambda_b^0 ightarrow (\Delta^{++}\pi^-) K^-$	S2
		$\mathbf{S3}$

•LHCb: 2503.16954 aligns with the measurement in this work.

Phys. C48 (2024) 101002, arXiv:2407.04110.

CPV with $N\pi$ scatterings

- a model-independent investigation of angular distributions [36] or utilising scattering data to extract the hadronic amplitude [28]. Applying this method using $\pi^+ n \to p \pi^+ \pi^$ scattering data [37], an estimate of the CP asymmetry in $\Lambda_b^0 \to R(p\pi^+\pi^-)K^-$ decays
 - [28] J.-P. Wang and F.-S. Yu, CP violation of baryon decays with $N\pi$ rescatterings, Chin.

- · 不同的理论方法各有优缺点,在不同的衰变道研究中适用不同的理论方法 ・ Λ_b^0 (准)两体非轻衰变(重子基态): PQCD方法
- - ・ Λ_b^0 准两体非轻衰变(一两个重子激发态): 未态相互作用三角图方法
 - ・ Λ^0_b 多体非轻衰变(多个重子激发态):未态重散射数据方法 See Qin Qin's talk
- ・理论与实验紧密结合,共同推进重味物理发展

总结

Thank you !

Theoretical methods for hadronic weak decays

Theoretical approaches	Advantages	Disadvantages
QCD-inspired : QCDF, PQCD, SCET	(Almost) first-principle for dynamics, very predictive for B decays	Difficult for non-perturbative contributions, thus difficult for charm
Final-state interaction	Dynamics for non-perturbations	Suffer very large theoretical uncertainties
SU(3) irreducible representation	Based on approximate flavor symmetry, no additional assumptions	No link to dynamics
Topological diagrams	Include non-perturbations, successful for charm phenomenology	Mathematical foundation is not clear

Topological diagrams = Irreducible representations

- The Equivalence was firstly pointed out by [X.G.He, W.Wang, 2018]
- The invariant tensors are the bridge between the two approaches.
- One topological diagram is found independent.

Tree diagrams are determined by data of branching fractions Understand the dynamics at 1GeV

Relate the penguins to the trees, with the known dynamics at 1GeV

Then reliably predict charm CPV

Branching Fractions: topological diagrams

- Hierarchy of topological diagrams in heavy quark expansion
 - SCET: $IC/TI \sim IC'/TI \sim IE/TI \sim O(\Lambda_{OCD}/m_O)$ Leibovich, Ligeti, Stewart, Wise, 2004
 - charm decay: $|C/T| \sim |C'/T| \sim |E/T| \sim O(\Lambda_{OCD}/m_c) \sim 1$
- BESIII measurements on Λ_c^+ decays are important

BESIII, 2016

Effective Hamiltonian and Four-fermion operators

Current–Current:

$$Q_1 = (\bar{c}_{\alpha} b_{\beta})_{V-A} (\bar{s}_{\beta} c_{\alpha})_{V-A} \qquad Q_2 = (\bar{c} b)_{V-A} (\bar{s} c)_{V-A}$$

QCD–Penguins :

$$Q_3 = (\bar{s}b)_{V-A} \sum_{q=u,d,s,c,b} (\bar{q}q)_{V-A} \qquad Q_4 = (\bar{s}_{\alpha}b_{\beta})_{V-A} \sum_{q=u,d,s,c,b} (\bar{q}_{\beta}q_{\alpha})_{V-A}$$

$$Q_5 = (\bar{s}b)_{V-A} \sum_{q=u,d,s,c,b} (\bar{q}q)_{V+A} \qquad Q_6 = (\bar{s}_{\alpha}b_{\beta})_{V-A} \sum_{q=u,d,s,c,b} (\bar{q}_{\beta}q_{\alpha})_{V+A}$$

Electroweak-penguin:

$$Q_{7} = \frac{3}{2} (\bar{s}b)_{V-A} \sum_{q=u,d,s,c,b} e_{q} (\bar{q}q)_{V+A} \qquad \qquad Q_{9} = \frac{3}{2} (\bar{s}b)_{V-A} \sum_{q=u,d,s,c,b} e_{q} (\bar{q}q)_{V-A}$$

$$Q_8 = rac{3}{2} \; (ar{s}_lpha b_eta)_{V-A} \sum_{q=u,d,s,c,b} e_q (ar{q}_eta q_lpha)_{V+A} \qquad Q_{10} = rac{3}{2} \; (ar{s}_lpha b_eta)_{V-A} \sum_{q=u,d,s,c,b} e_q \; (ar{q}_eta q_lpha)_{V-A}$$

Buras, hep-ph/9806471 (900 citations) Buchalla, Buras, Lautenbacher, Rev.Mod.Phys 1996 (3000 citations)

See Xin-Qiang Li's talk

Theoretical approach for dynamics

- •The above crude argument needs to be justified by comprehensive QCD calculations
- •There are more non-factorizable topological diagrams, such as PC2 and the exchange diagrams PE1, PE2
- They can be calculated by PQCD based on the k_T factorization

topological diagrams

- only the leading twist of LCDAs [C.D.Lu, Y.M.Wang, et al, 2009]
- In 2022, considering high-twist LCDAs, results are consistent with Lattice QCD [J.J.Han, Y.Li, H.n.Li, Y.L.Shen, Z.J.Xiao, FSY, 2022]. Consistent with power counting by SCET.

	twist-3	twist-4	twist-5	twist-6	total
exponential					
twist-2	0.0007	-0.00007	-0.0005	-0.000003	0.0001
$twist-3^{+-}$	-0.0001	0.002	0.0004	-0.000004	0.002
$twist-3^{-+}$	-0.0002	0.0060	0.000004	0.00007	0.006
twist-4	0.01	0.00009	0.25	0.0000007	0.26
total	0.01	0.008	0.25	0.00007	$0.27 \pm 0.09 \pm 0.07$

$\Lambda_b \rightarrow p$ form factors in PQCD

In 2009, form factors are two orders smaller than LatticeQCD/experiments, considering

e/exp	PQCD(2009)	PQCD(2022)
0.08	0.002 ± 0.001	0.27 ± 0.12

Direct CPV

 $\mathscr{M} = \bar{u}_p(S + P\gamma_5)u_{\Lambda_h}$

 $S = |S_t|e^{i\delta_{s,t}}e^{i\phi_t} + |S_p|e^{i\delta_{s,p}}e^{i\phi_p}$ $P = |P_t|e^{i\delta_{p,t}}e^{i\phi_t} + |P_p|e^{i\delta_{p,p}}e^{i\phi_p}$ $\bar{S} = -\left\{ |S_t| e^{i\delta_{s,t}} e^{-i\phi_t} + |S_p| e^{i\delta_{s,p}} e^{-i\phi_p} \right\}$ $\bar{P} = |P_t|e^{i\delta_{p,t}}e^{-i\phi_t} + |P_p|e^{i\delta_{p,p}}e^{-i\phi_p}$

 $\Gamma = \frac{|\vec{p}|}{8\pi M^2} \left(|S|^2 + |P|^2 \right), \quad \bar{\Gamma} = \frac{|\vec{p}|}{8\pi M^2} \left(|\bar{S}|^2 + |\bar{P}|^2 \right)$

- •Four strong phases
- Two terms of CPV

Direct CPV

$$\mathcal{M} = \bar{u}_p(S + P\gamma_5)u_{\Lambda_b} \qquad \Gamma = \frac{|\vec{p}|}{8\pi M^2} \left(|S|^2 + |P|^2\right), \quad \bar{\Gamma} = \frac{|\vec{p}|}{8\pi M^2} \left(|\bar{S}|^2 + |\bar{P}|^2\right)$$

$$\begin{split} S &= |S_t| e^{i\delta_{s,t}} e^{i\phi_t} + |S_p| e^{i\delta_{s,p}} e^{i\phi_p} \\ P &= |P_t| e^{i\delta_{p,t}} e^{i\phi_t} + |P_p| e^{i\delta_{p,p}} e^{i\phi_p} \\ \bar{S} &= -\left\{ |S_t| e^{i\delta_{s,t}} e^{-i\phi_t} + |S_p| e^{i\delta_{s,p}} e^{-i\phi_p} \right. \\ \bar{P} &= |P_t| e^{i\delta_{p,t}} e^{-i\phi_t} + |P_p| e^{i\delta_{p,p}} e^{-i\phi_p} \end{split}$$

$$\begin{aligned} a_{CP}^{dir} &= \frac{\Gamma - \bar{\Gamma}}{\Gamma + \bar{\Gamma}} = \frac{|S|^2 + |P|^2 - |\bar{S}|^2 - |\bar{P}|^2}{|S|^2 + |P|^2 + |\bar{S}|^2 + |\bar{P}|^2} \\ &= -\frac{\sin(\delta_{s,t} - \delta_{s,p}) + r\sin(\delta_{p,t} - \delta_{p,p})}{K + [\cos(\delta_{s,t} - \delta_{s,p}) + r\cos(\delta_{p,t} - \delta_{p,p})]\cos\Delta\phi} \sin\Delta\phi \end{aligned}$$

J.P.Wang, Q.Qin, **FSY**, 2411.18323

•Four strong phases Two terms of CPV

Direct and partial-wave CPVs

$$\mathcal{A}(\Lambda_b \to ph)$$

$$A_{CP}^{\text{dir}}(\Lambda_b \to ph) \equiv \frac{\Gamma(\Lambda_b \to ph) - \bar{\Gamma}(\bar{\Lambda}_b \to \bar{p}\bar{h})}{\Gamma(\Lambda_b \to ph) + \bar{\Gamma}(\bar{\Lambda}_b \to \bar{p}\bar{h})} \qquad \qquad \Gamma \propto |S|^2 + \kappa |P|^2 \qquad \qquad \kappa \approx 0.5$$

$$A_{CP}^{S\text{-wave}} \equiv \frac{|S|^2 - |\bar{S}|^2}{|S|^2 + |\bar{S}|^2}, \quad A_{CP}^{P\text{-wave}} \equiv$$

 $A_{CP}^{\text{dir}} \approx \kappa_S A_{CP}^{S\text{-wave}} + \kappa_P A_{CP}^{P\text{-wave}}$

 $=i\bar{u}_p(S+P\gamma_5)u_{\Lambda_b}$

$$\frac{|P|^2 - |\bar{P}|^2}{|P|^2 + |\bar{P}|^2}.$$

$$\kappa_{S} = \frac{|S|^{2}}{|S|^{2} + \kappa |P|^{2}} \qquad \kappa_{P} = \frac{\kappa |P|^{2}}{|S|^{2} + \kappa |P|^{2}}$$

Final-state interaction = Topological diagrams

FSI = Long-distance contributions of topological diagrams [D.Wang, 2021]

FSI = QCD = Topological diagrams = SU(3) irreducible representations

CPV can be easily obtained within the rescattering mechanism

strong phase from on-shell intermediate state

C.P.Jia, H.Y.Jiang, J.P.Wang, FSY, JHEP2024 Z.D.Duan, J.P.Wang, R.H.Li, C.D.Lu, FSY, 2412.20458

Dependence on η

$$A = \frac{\left|H_{1,\frac{1}{2}}\right|^{2} - \left|H_{-1,-\frac{1}{2}}\right|^{2}}{\left|H_{1,\frac{1}{2}}\right|^{2} + \left|H_{-1,-\frac{1}{2}}\right|^{2}} \qquad A_{CP} = \frac{\Gamma - \bar{\Gamma}}{\Gamma + \bar{\Gamma}}$$

C.P.Jia, H.Y.Jiang, J.P.Wang, FSY, JHEP2024

 $\mathcal{A} = \bar{u}_{N\pi,1/2^+} (A + B\gamma_5) u_{\Lambda_b} P_{11}$

 $+ \bar{u}_{N\pi,1/2^-} (\tilde{A} + \tilde{B}\gamma_5) u_{\Lambda_b} S_{11}$

 $m_{\pm} = m_{\Lambda_b} \pm m_{N\pi}$

CPV from $N\pi$ scatterings

$$\mathcal{A}(\Lambda_{b} \to (\mathcal{B}M)h^{-})$$
• Tree = $\lambda_{u}f_{h}\bar{u}_{N\pi}\left[a_{1}\left(P_{11}f_{1}^{1/2^{+}}-S_{11}f_{1}^{1/2^{-}}+\cdots\right)m_{-}+a_{1}\left(P_{11}g_{1}^{1/2^{+}}-S_{11}g_{1}^{1/2^{-}}+\cdots\right)m_{+}\gamma_{5}\right]u_{\Lambda_{b}}$
• Penguin + $\lambda_{i}f_{h}\bar{u}_{N\pi}\left[a_{46+}P_{11}f_{1}^{1/2^{+}}-a_{46-}S_{11}f_{1}^{1/2^{-}}+\cdots\right)m_{-}+\left(a_{46-}P_{11}g_{1}^{1/2^{+}}-a_{46+}S_{11}g_{1}^{1/2^{-}}+\cdots\right)m_{+}\gamma_{5}\right]u_{\Lambda_{b}}$

•weak phase strong phase difference difference

J.P.Wang, **FSY**, CPC48,101002(2024)

Rescatterings: Data driven

• Rescattering mechanism for CPV in $B^- \rightarrow (z)$ Model-independent analysis of $\pi\pi \rightarrow K\bar{K}$ data [Bediaga, Frederico, Lourenco, 2013; H.Y.Cheng, C.K.Chua, 2020; Álvarez Garrote, Cuervo, Magalhães, Peláez, PRL2023

$$\begin{pmatrix} A(B^{-} \to \pi^{+} \pi^{-} P^{-}) \\ A(B^{-} \to K^{+} K^{-} P^{-}) \end{pmatrix}_{\text{S-wave}}^{\text{FSI}} = S^{1/2} \begin{pmatrix} A(B^{-} \to \pi^{+} \pi^{-} P^{-}) \\ A(B^{-} \to K^{+} K^{-} P^{-}) \end{pmatrix}_{\text{S-wave}}$$

• Rescattering mechanism for charm CPV. Model-independent analysis of $\pi\pi \to K\bar{K}$ data [Bediaga, Frederico, Magalhaes, PRL2023; Pich, Solomonidi, Silva, PRD2023].

$$|\Delta A_{CP}^{\text{short-distance}}| < 2 \times 10^{-4}$$
 V.S. $\Delta A_{CP}^{\text{FSI}} = -(6.4 \pm 1.8) \times 10^{-4}$

$$\pi^+\pi^-)K^-, (K^+K^-)K^-.$$

Rescatterings: Hadronic loops

•CP violation can be enhanced by final-state interaction in B meson decays [Suzuki, Wolfenstein, 1999; H.Y.Cheng, C.K,Chua, Soni, 2005] and charmed baryon decays [X.G.He, C.W.Liu, 2024; C.P.Jia, H.Y.Jiang, J.P.Wang, FSY, 2024]

 Rescattering mechanism have been successfully used to predict the discovery channel of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ [FSY, Jiang, Li, Lu, Wang, Zhao, 2017]

Hierarchy to topological diagrams

In the heavy quark expansion,

$$\frac{C}{T} \sim \left| \frac{E}{T} \right| \sim O\left(\frac{\Lambda_{\rm QCD}}{m_Q}\right) \qquad \left| \frac{B}{C} \right| \sim O\left(\frac{M_{\rm QCD}}{m_Q}\right)$$

Leibovich, Ligeti, Stewart, Wise, 2004

 So we only consider the color-favored emitted tree diagram and corresponding penguin diagram.

 Λ_{QCD} m_Q

Tree

Color-commensurate

Exchange

Bow tie

Multi-body decays of Λ_h

- Advantage: more resonances, more chances for large CPV
- •Disadvantage: Too many resonances, and with large uncertainties

N(1650)	$1/2^{-}$	****	$N(1700)$ BREIT-WIGNER MASS $1650 ext{ to } 1800 \ (pprox 1720)$ MeV
N(1675)	$5/2^{-}$	***	$N(1700)$ BREIT-WIGNER WIDTH $100 ext{ to } 300 \ (pprox 200)$ MeV
N(1680)	$5/2^{+}$	****	$N(1710)$ BREIT-WIGNER MASS $1680 ext{ to } 1740 \ (pprox 1710)$ MeV
N(1700)	$3/2^{-}$	•••	N(1710) BREIT-WIGNER WIDTH 80 to 200 ($pprox$ 140) MeV
	1 /o±		
N(1710)	1/2+		$N(1720)$ BREIT-WIGNER MASS $1680 ext{ to } 1750 \ (pprox 1720)$ MeV
N(1720)	$3/2^+$	****	$N(1720)$ BREIT-WIGNER WIDTH $150 ext{ to } 400 \ (pprox 250)$ MeV

•Close to each other, with large decay widths. No clear dominant one.

