回到未来2022

LHCb是如何与重子产生过程的CP破坏失之交臂的

张振华 南华大学

email: zhenhua_zhang@163.com In collaboration with 郭新恒 杨健宇

LHCb Physics 2025 2025.04.25-28 湖北 武汉

Full analysis of 4-body CPA

2 通过完全角关联的分析研究四体级联衰变中的CPA

3 LHCb是如何与重子对产生过程的CP破坏失之交臂的

Full analysis of 4-body CPA

・ロト ・四ト ・ヨト ・ヨト

э

LHCbP2025

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

Ξ.

Decay-Angular-Distribution correlated CP violation in heavy baryon decays

张振华 email: zhenhua_zhang@163.com Based on 2403.05011 In collaboration with Yu-Jie Zhao and Xin-Heng Guo

University of South China (南华大学)

第三届强子与重味物理理论与实验联合研讨会 04/05/2024-04/09/2024 武汉

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

Decay-Angular-Distribution correlated CP violation in heavy baryon decays

email: zher Summary and Outlook Basec In collaboration with

University of

第三届强子与重味 04/05/202

- CPV hasn't observed in the baryon sector,
- interfer. of intermediate resonances plays important role for CP violation in three-body decays of bottom meson,
- decay-angular-distribution correlated CPV is also worth searching in bottom or charmed baryon decays,
- Outlook: More CPV observables in four-body decays.

Summary and Outlook

Thank you for your attentions!

CP 破坏在底重子4体衰变中被LHCb发现

$$\begin{array}{rcl} A_{CP}(pK^{-}\pi^{+}\pi^{-}) &=& (2.45\pm0.46\pm0.10)\%\\ A_{CP}(R(p\pi^{+}\pi^{-})K^{-}) &=& (5.4\pm0.9\pm0.1)\%\\ A_{CP}(R(pK^{-})R(\pi^{+}\pi^{-})) &=& (5.3\pm1.3\pm0.2)\% \end{array}$$

LHCbP2025

イロン イ理 とく ヨン イ ヨン

5/37

2

CPV history

- pure mesonic processes: CPV has been observed in K, B, and D meson sectors
- baryonic decays: CPV observed in $\Lambda_b \rightarrow pK^-\pi^+\pi^-$.
- baryon-anti-baryon production processes: No CPV was confirmed.

CPV history

- pure mesonic processes: CPV has been observed in K, B, and D meson sectors
- baryonic decays: CPV observed in $\Lambda_b \rightarrow pK^-\pi^+\pi^-$.
- baryon-anti-baryon production processes: No CPV was confirmed.

Z.-H. Zhang

Full analysis of 4-body CPA

LHCbP2025

6/37

- I. regional CPA (localized CPA)
- II. CPAs corresponding in decay angular correlations
- III. complementary CPA observables in resonances interferences

I. regional CPA (localized CPA)

Interference of $\rho^0(770)$ and $f_0(500)$: non-trivial dependence of CPA on $m_{\pi\pi,\text{high}}^2$ or $m_{K^+\pi^-}^2$ $B_{a}^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$ $n_{\pi^+\pi^- \mathrm{high}}^2$ [GeV²/c⁴] **⊽**В' 40 (a) LHCb **▲**B^{*} 300 30 240 25 δ₁ (degree) 20 180 -0.2 15 120 10 LHCb, PRL112, 011801 (2014)0.4 ZHZ, X.-H. Guo, and Y.-D. Yang, [PRD87, 076007 (2013)] -0.6 5 10 04 d $m_{\pi^+\pi^- \, \text{low}}^2 \, [\text{GeV}^2/c^4]$ 0.8 $a_{\varsigma} + a_P c_{\theta}$ $a_{S(P)}^{\text{tree}} + a_{S(P)}^{\text{penguin}}$ $a_{S(P)}$ $\propto \quad \frac{1}{3}A^{P}_{CP}\cos^{2}\theta + \frac{|\langle a_{S}\rangle|^{2} + |\langle \bar{a}_{S}\rangle|^{2}}{|\langle a_{D}\rangle|^{2} + |\langle \bar{a}_{D}\rangle|^{2}}A^{S}_{CP} + \frac{\Re(\langle a_{P}a^{*}_{S}\rangle - \langle \bar{a}_{P}\bar{a}^{*}_{S}\rangle)}{|\langle a_{P}\rangle|^{2} + |\langle \bar{a}_{P}\rangle|^{2}}\cos\theta,$ ACP LHCbP2025 8/37

Z.-H. Zhang

Full analysis of 4-body CPA

II. CPAs corresponding in decay angular correlations

Forward-Backward Asymmetry (FBA) induced CPA (FB-CPA)

$$A_{B^-}^{FB} = \frac{N_{B^-}^{\Omega^+} - N_{B^-}^{\Omega^-}}{N_{B^-}^{\Omega^+} + N_{B^-}^{\Omega^-}} = \frac{\Re(\langle a_5^* a_P e^{i\delta} \rangle)}{|\langle a_P \rangle|^2/3 + |\langle a_S \rangle|^2}.$$

Z.-H. Zhang Full analysis of 4-body CPA LHCbP2025 9

7U7 DI DOOD 126527

Full analysis of 4-body CPA

9/37

2-fold FB-CPA in 4-body decay

Applications to $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$: N(1440) - N(1520) and $f_0(500) - \rho(770)$ $\Lambda_b^0 \to N(\to p\pi^-)f/\rho(\to \pi^+\pi^-)$: c_{θ_a} and c_{θ_b} are correlated.

GI term corresponding to $\cos \theta_a \cos \theta_b$

two-fold FBA (TFFBA): j = 1 = l

$$\tilde{A}^{11} = \frac{(N_I - N_{II} + N_{III} - N_{IV})}{N}$$

TFFBA-CPA

$$A_{CP}^{11} = \frac{1}{2} (\tilde{A}^{11} - \overline{\tilde{A}^{11}})$$

Z.-H. Zhang

LHCbP2025

-1

2 Dim Phase Space $\uparrow_{\cos \theta_h}$

 $1 \cos \theta_{a}$

II. CPAs corresponding in decay angular correlations

Partial-Wave CPAs

$$\overline{|\mathcal{M}|^2} = \sum_j P_j(c_{\theta_1'}) w^{(j)}$$

$$\begin{split} \mathbf{w}^{(j)} &= \sum_{ii'} \left\langle \begin{array}{l} S^{(j)}_{ii'} \mathcal{W}^{(j)}_{ii'} \\ \overline{\mathcal{L}}_{R_i} \overline{\mathcal{L}}_{R_{i'}} \end{array} \right\rangle, \\ \mathcal{W}^{(j)}_{ii'} &= \sum_{\sigma \lambda_3} (-)^{\sigma-s} \langle \mathbf{s}_{R_i} - \sigma \mathbf{s}_{R_{i'}} \sigma | \mathbf{s}_{R_i} \mathbf{s}_{R_{i'}} \mathbf{j} \mathbf{0} \rangle \mathcal{F}^J_{R_i, \sigma \lambda_3} \mathcal{F}^{J*}_{R_{i'}, \sigma \lambda_3}, \end{split}$$

$$S_{ii'}^{(j)} = \sum_{\lambda_1'\lambda_2'} (-)^{s-\lambda'} \langle s_{R_i} - \lambda' s_{R_{i'}} \lambda' | s_{R_i} s_{R_{i'}} j_0 \rangle \mathcal{F}_{\lambda_1'\lambda_2'}^{R_i, s_{R_i}} \mathcal{F}_{\lambda_1'\lambda_2'}^{R_{i'}, s_{R_{i'}}} \mathcal{F}_{\lambda_1'\lambda_2'}^{R_{i'}, s_{R_$$

$$A^{j}_{CP} = rac{w^{j} - \overline{w}^{j}}{w^{j} + \overline{w}^{j}}$$

ZHZ, X.-H. Guo, JHEP07(2021)177

Figure 1. The FWCPA $A_{12}^{(0)}$ (add oursy line) for $A_{1}^{(0)} \rightarrow p\pi^{-1}\pi^{-1}\pi^{-1}$ most the reconstore $\Delta^{(0)}(123)$ as a function of the targe phase 5. The regond $C^{(0)}$ sequence $A_{10}^{(0)}$ (add straight line), $A_{12}^{(0)}$ (dashed line), $A_{12}^{(0)}$ and $A_{12}^{(0)}$ (dashed line) are also shown for comparison. The difference between $A_{12}^{(0)}$ and $A_{12}^{(0)}$ (large line) are the PMCPA $A_{12}^{(0)}$ and $A_{12}^{(0)}$ are observed for $(m_{1} - \Gamma_{12})^{2}$ (one) $m_{1} + \Gamma_{12}^{(1)}$.

< □ > < □ > < □ > < □ > < □ > < □ >

Full analysis of 4-body CPA

LHCbP2025

11/37

III. complementary CPA observables in resonance-interf.

The interfering term

$$\Re\left(\frac{\mathcal{A}_{r}\mathcal{B}^{*}}{s_{r}}\right) = \frac{\Re\left(\mathcal{A}_{r}\mathcal{B}^{*}\right)\left(s-m_{r}^{2}\right)+\Im\left(\mathcal{A}_{r}\mathcal{B}^{*}\right)m_{r}\Gamma_{r}}{\left|s_{r}\right|^{2}}.$$

a pair of complementary CPV observables

$$A_{CP} \equiv \frac{\int_{m_{r}^{2}-\Delta_{-}}^{m_{r}^{2}+\Delta_{+}} \left(\overline{|\mathcal{M}|^{2}}-\overline{|\mathcal{M}|^{2}}\right) ds}{\int_{m_{r}^{2}-\Delta_{-}}^{m_{r}^{2}+\Delta_{+}} \left(\overline{|\mathcal{M}|^{2}}+\overline{|\mathcal{M}|^{2}}\right) ds} \sim \sin \delta \sin \phi \quad \text{mainly from } \Im \left(\mathcal{A}_{r}\mathcal{B}^{*}\right)$$

$$\tilde{\mathcal{A}}_{CP} \equiv \frac{\int_{m_{r}^{2}-\Delta_{-}}^{m_{r}^{2}+\Delta_{+}} \left(\overline{|\mathcal{M}|^{2}}-\overline{|\mathcal{M}|^{2}}\right) \operatorname{sgn}\left(s-m_{2}^{\prime 2}\right) ds}{\int_{m_{r}^{2}-\Delta_{-}}^{m_{r}^{\prime}+\Delta_{+}} \left(\overline{|\mathcal{M}|^{2}}+\overline{|\mathcal{M}|^{2}}\right) ds} \sim \cos \delta \sin \phi \quad \text{mainly } \Re \left(\mathcal{A}_{r}\mathcal{B}^{*}\right)$$

$$A_{CP}^{2} + \tilde{\mathcal{A}}_{CP}^{2} - \sin^{2} \phi$$

Z.-H. Zhang

LHCbP2025

< □ > < □ > < □ > < □ > < □ > < □ >

12/37

III. complementary CPA observables in resonance-interf.

Figure 12: Raw difference in the number of B^- and B^+ candidates in the low m_{torr} region, for (a) positive, and (b) negative cosine of the helicity angle. The pull distribution is shown below each fit projection.

$$A_{CP,k}^{FB} = \frac{(N_{B^-} - N_{B^+})_{\cos\theta_{hel} > 0,k} - (N_{B^-} - N_{B^+})_{\cos\theta_{hel} < 0,k}}{(N_{B^-} + N_{B^+})_{\cos\theta_{hel} > 0,k} + (N_{B^-} + N_{B^+})_{\cos\theta_{hel} < 0,k}}$$

PRD 110 (2024) L111301 [2407.20586]

$$\int_{CP}^{FB, G} = \sum_{k=8}^{(\sum_{k=12}^{15} - \sum_{k=8}^{11})} \left[(N_B - N_B +)_{\cos \theta_{hel} > 0, k} - (N_B - N_B +)_{\cos \theta_{hel} < 0, k} \right] \\
= (13.2 \pm 1.0)\%$$

Z-H. Zhang
Full analysis of 4-body CPA
LHCbP2025
13/37

Z.-H. Zhang

Full analysis of 4-body CPA

LHCbP2025

2 通过完全角关联的分析研究四体级联衰变中的CPA

イロト イヨト イヨト

э

4体级联衰变运动学

Figure: Illustration of the five angles defined in the main text for the decay $H_Q \rightarrow a(\rightarrow 12)b(\rightarrow 34)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

4体级联衰变的振幅模方

The decay amplitude squared (DAS) for $H_Q
ightarrow a_k (
ightarrow 12) b_m (
ightarrow 34)$

$$\overline{|\mathcal{A}|^2} \propto \sum_{\sigma_a \sigma_{a'} \sigma_b \sigma_{b'}} \sum_{j_a} \sum_{j_b} \gamma_{\sigma_a \sigma_b \sigma_{a'} \sigma_b'}^{j_a j_b} \Omega_{\sigma_a \sigma_b \sigma_{a'} \sigma_b'}^{j_a j_b},$$

The kinematical factors

$$\Omega^{j_{a}j_{b}}_{\sigma_{a}\sigma_{b}\sigma_{a'}\sigma_{b'}} \equiv \mathcal{P}_{\sigma_{ab},\sigma_{a'b'}}(\theta_{H_Q}) d^{j_{a}}_{\sigma_{a'a},0}(\theta_{a}) d^{j_{b}}_{\sigma_{b'b},0}(\theta_{b}) e^{i(\bar{\sigma}\varphi + \hat{\sigma}\phi)},$$

イロト イヨト イヨト ・

ja和 jb 的限制条件

The first one is the triangular inequality

$$|s_{a_k}-s_{a_{k'}}|\leqslant j_a\leqslant s_{a_k}+s_{a_{k'}}.$$

that j_a must satisfied for a given pair of a_k and $a_{k'}$. Parity symmetry in the strong decay $a \rightarrow 12$

$$(-)^{j_a} = \Pi_{a_k} \Pi_{a_{k'}},$$

If let a_k and $a_{k'}$ run over all the allowed possibilities, we obtain all the allowed values of j_a .

- 4 回 ト 4 三 ト 4 三 ト

非极化H_Q的角关联

For unpolarized H_Q

$$\overline{\left|\mathcal{A}
ight|^2} \propto \sum_{j_a,j_b,\sigma} \left[\Re(\gamma^{j_aj_b}_{\sigma}) \Psi^{j_aj_b}_{\sigma} - \Im(\gamma^{j_aj_b}_{\sigma}) \Phi^{j_aj_b}_{\sigma}
ight],$$

The kinematical factors merge into

$$\Omega^{j_a j_b}_{\sigma} = d^{j_a}_{\sigma,0}(heta_a) d^{j_b}_{\sigma,0}(heta_b) e^{i\sigma arphi}.$$

Entanglement between kinematical angles!

イロト 不得 ト イヨト イヨト

Denote the kinematic factors as

$$\begin{split} \Phi^{j_a j_b}_{\sigma} &= d^{j_a}_{\sigma,0}(\theta_a) d^{j_b}_{\sigma,0}(\theta_b) \sin \sigma \varphi, \\ \Psi^{j_a j_b}_{\sigma} &= d^{j_a}_{\sigma,0}(\theta_a) d^{j_b}_{\sigma,0}(\theta_b) \cos \sigma \varphi, \end{split}$$

j _b j _a	0	1	2
0	$\Psi_0^{00}=1$ trivial	$\Psi^{01}_0 c_{ heta_b}$	$\Psi_0^{02} = rac{1}{2}(c_{ heta_b}^2 - 1)$
1	$\Psi_0^{10}=c_{ heta_s}$	$egin{aligned} \Psi_{1}^{11} &= c_{ heta_{eta}}c_{ heta_{b}} \ \Psi_{1}^{11} &= s_{ heta_{eta}}s_{ heta_{b}}c_{arphi} \ \Phi_{1}^{11} &= s_{ heta_{eta}}s_{ heta_{b}}s_{arphi} \end{aligned}$	$\Psi_0^{12}=rac{1}{2}c_{ heta_s}(3c^2_{ heta_b}-1) onumber \ \Psi_1^{12}=s_{ heta_s}s_{ heta_b}c_{ heta_b}c_{arphi} onumber \ \Phi_1^{12}=s_{ heta_s}s_{ heta_b}c_{ heta_b}s_{arphi}$
2	$\Psi_0^{20} = rac{1}{2}(3c_{ heta_a}^2 - 1)$	$\begin{split} \Psi_{0}^{21} &= \frac{1}{2} (3c_{\theta_{a}}^{2} - 1)c_{\theta_{b}} \\ \Psi_{1}^{21} &= s_{\theta_{a}} c_{\theta_{a}} s_{\theta_{b}} c_{\varphi} \\ \Phi_{1}^{21} &= s_{\theta_{a}} c_{\theta_{a}} s_{\theta_{b}} s_{\varphi} \end{split}$	$\begin{split} \Psi_{0}^{22} &= \frac{1}{4} (3c_{\theta_{a}}^{2} - 1)(3c_{\theta_{b}}^{2} - 1) \\ \Psi_{1}^{22} &= s_{\theta_{a}}c_{\theta_{a}}s_{\theta_{b}}c_{\theta_{b}}c_{\varphi} \\ \Phi_{1}^{22} &= s_{\theta_{a}}c_{\theta_{a}}s_{\theta_{b}}c_{\theta_{b}}s_{\varphi} \\ \Psi_{2}^{22} &= \frac{3}{8}s_{\theta_{a}}^{2}s_{\theta_{b}}^{2}c_{2\varphi} \\ \Phi_{2}^{22} &= \frac{3}{8}s_{\theta_{a}}^{2}s_{\theta_{b}}^{2}s_{2\varphi} \end{split}$

Table: The first few angular correlations.

Z.-H. Zhang

Full analysis of 4-body CPA

LHCbP2025

イロト イポト イヨト イヨト

19/37

э

CPV observables

$$A_{CP}^{\mathcal{Y}_{\sigma}^{jaj_{b}}} \equiv \frac{1}{2} \big(A^{\mathcal{Y}_{\sigma}^{jaj_{b}}} - \overline{A}^{\mathcal{Y}_{\sigma}^{jaj_{b}}} \big),$$

Decay angular correlation asymmetries

$$\begin{split} \mathcal{A}^{\mathcal{Y}^{j_a j_b}_{\sigma}} &\equiv \frac{1}{N} \big(\mathcal{N}_{\mathcal{Y}^{j_a j_b} > 0} - \mathcal{N}_{\mathcal{Y}^{j_a j_b} < 0} \big), \\ \overline{\mathcal{A}}^{\mathcal{Y}^{j_a j_b}_{\sigma}} &\equiv \frac{1}{\overline{N}} \big(\overline{\mathcal{N}}_{\overline{\mathcal{Y}}^{j_a j_b} > 0} - \overline{\mathcal{N}}_{\overline{\mathcal{Y}}^{j_a j_b} < 0} \big) \end{split}$$

CPV observables

$$\tilde{A}_{CP}^{\mathcal{Y}_{\sigma}^{jaj_{b}}} \equiv \frac{1}{2} \big(A^{\mathcal{Y}_{\sigma}^{jaj_{b}}} - \overline{A}^{\mathcal{Y}_{\sigma}^{jaj_{b}}} \big),$$

Decay angular correlation asymmetries

$$\begin{split} \tilde{A}^{\mathcal{Y}^{jaj_b}_{\sigma}} &\equiv \frac{1}{N} \big(N_{\mathrm{sgn} \cdot \mathcal{Y}^{jaj_b}_{\sigma} > 0} - N_{\mathrm{sgn} \cdot \mathcal{Y}^{jaj_b}_{\sigma} < 0} \big), \\ \overline{\tilde{A}}^{\mathcal{Y}^{jaj_b}_{\sigma}} &\equiv \frac{1}{\overline{N}} \big(\overline{N}_{\mathrm{sgn} \cdot \overline{\mathcal{Y}}^{jaj_b}_{\sigma} > 0} - \overline{N}_{\mathrm{sgn} \cdot \overline{\mathcal{Y}}^{jaj_b}_{\sigma} < 0} \big) \end{split}$$

< (T) >

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

21/37

A type of decay involving baryon $B^0 o p \bar{p} K^+ \pi^-$

arxiv > hep-ex > arXiv:2205.08973

High Energy Physics - Experiment

[Submitted on 18 May 2022 (v1), last revised 16 Aug 2023 (this version, v2)]

Search for CP violation using \hat{T} -odd correlations in $B^0 o p ar{p} K^+ \pi^-$ decays

LHCb collaboration

A search for CP and P violation in charmless four-body $B^0 \rightarrow p\bar{p}K^+\pi^-$ decays is performed using triple-product asymmetry observables. It is based on proton-proton collision data collected by the LHC0 experiment at contre-of-mass energies of 7, 8 and 13 TeV, corresponding to a total integrated luminosity of 8.4 fm⁻¹. The CP- and P-violating asymmetries are measured both in the integrated phase space and in specific regions. No evidence is seen for CP violator. P-party violation is determined to the significance of 5.8 standard deviations

Commens: All figures and tables, along with any supplementary material and additional information, are available at this https URL (LHCb public pages)
Subjects: HGb Energy Physics - Experiment (here, the physics - Experime

From: Matteo Bartolini [view email] [v1] Wed, 18 May 2022 14:54:32 UTC (517 KB) [v2] Wed, 16 Aug 2023 12:23:37 UTC (739 KB)

No evidence of CPV (corresponding to T-odd correlation) in $B^0 \rightarrow p\bar{p}K^+\pi^-$. CP破坏就在那里! 在其它角关联里!

LHCbP2025

イロト 不得 トイヨト イヨト 二日

22 / 37

Search

LHCbP2025

LHCbP2025

25 / 37

angular correlations

j _b j _a	0	1	2
0	$\Psi_0^{00}=1$ trivial	$\Psi^{01}_0 c_{ heta_b}$	$\Psi_0^{02} = rac{1}{2}(c_{ heta_b}^2 - 1)$
1	$\Psi_0^{10}=c_{ heta_s}$	$egin{aligned} \Psi_0^{11} &= c_{ extsf{ heta}_a}c_{ heta_b} \ \Psi_1^{11} &= s_{ heta_a}s_{ heta_b}c_arphi \ \Phi_1^{11} &= s_{ heta_a}s_{ heta_b}s_arphi \end{aligned}$	$\Psi_0^{12}=rac{1}{2}ar{c}_{ heta_a}(3ar{c}_{ heta_b}^2-1) \ \Psi_1^{12}=s_{ heta_a}s_{ heta_b}c_{ heta_b}c_{arphi} \ \Phi_1^{12}=s_{ heta_a}s_{ heta_b}c_{ heta_b}s_{arphi}$
2	$\Psi_0^{20} = rac{1}{2}(3c_{ heta_s}^2 - 1)$	$ \begin{array}{l} \Psi_0^{21} = \frac{1}{2} (3c_{\theta_a}^2 - 1) c_{\theta_b} \\ \Psi_1^{21} = s_{\theta_a} c_{\theta_a} s_{\theta_b} c_{\varphi} \\ \Phi_1^{21} = s_{\theta_a} c_{\theta_a} s_{\theta_b} s_{\varphi} \end{array} $	$ \begin{array}{l} \Psi_{0}^{22}=\frac{1}{4}(3c_{\theta_{a}}^{2}-1)(3c_{\theta_{b}}^{2}-1)\\ \Psi_{1}^{22}=s_{\theta_{a}}c_{\theta_{a}}s_{\theta_{b}}c_{\theta_{b}}c_{\varphi}\\ \Phi_{1}^{22}=s_{\theta_{a}}c_{\theta_{a}}s_{\theta_{b}}c_{\theta_{b}}s_{\varphi}\\ \Psi_{2}^{22}=\frac{3}{8}s_{\theta_{a}}^{2}s_{\theta_{a}}^{2}s_{\theta_{c}}^{2}c_{2\varphi}\\ \Phi_{2}^{22}=\frac{3}{8}s_{\theta_{a}}^{2}s_{\theta_{a}}^{2}s_{\theta_{c}}^{2}s_{2\varphi} \end{array} $

イロン イ理 とく ヨン イ ヨン

3

B ⁰	Scheme A				Scheme B					
sign of	reg	A o	sign	vie		$m_{K\pi}^2 - m_{K^*}^2 < 0$			$m_{K\pi}^2 - m_{K^*}^2 > 0$	
$c_{\theta_a}c_{\theta_b}c_{\varphi}$	I ICE.	· · T	s_{φ}	yic.	reg.	A _î	yie.	reg.	A _î	yie.
	0	-165 ± 101	+	41	0	-26.7 ± 17.8	12	8	-5.1 ± 12.8	29
+	U U	-10.5 ± 10.1	-	57	Π	-20.7 ± 11.0	20	Ů	-5.1 ± 12.0	32
	1	61 ± 92	+	63	1	54 ± 158	21	a	6.6 ± 11.6	40
	1	0.1 ± 5.2	-	55	1	5.4 <u>1</u> 15.0	19]		35
-++	2	-12 + 70	+	101	2	-73 ± 111	38	10	07+90	62
		112 ± 110	-	103	-	110 1 1111	44			61
_ + _	3	253 ± 72	+	121	3	154 ± 128	35	11	30 9 + 8 7	86
· · · · ·	Ŭ,	2010 ± 112	-	72	Ŭ Ŭ	1011 1 1210	26		0015 ± 011	46
+ - +	4	78 + 111	+	44	4	-21.9 ± 13.9	20	12	38 4 + 16 8	25
	1 · · ·	110 ± 1111	-	37	<u> </u>	21.0 ± 10.0	32		30.4 ± 10.0	11
+	5	2.9 ± 8.3	+	75	5	-13.4 ± 13.9	22	13	11.6 ± 10.2	54
	Ŭ Ŭ	210 ± 010	-	70	Ŭ Ŭ	5 15.4 ± 15.5	29		11.0 ± 10.2	42
+++	6	-22.8 ± 7.4	+	70	6	-19.3 ± 10.4	37	14	-24.1 ± 10.5	34
	Ŭ,	2210 ± 111	-	112	Ŭ,	1010 ± 1011	55		2.117 ± 1010	56
++-	7	-104 ± 68	+	97	7	0.7 ± 10.9	42	15	-188 ± 86	55
		-10.4 ± 0.8	-	119	1	0.7 10.9	42	15	-18.8 ± 8.0	80

Table: The TPAs in different regions from the data of LHCb, and the corresponding event yields extracted from the TPAs data for $B^0 \rightarrow p\bar{p}K^+\pi^-$. In the table, c_{θ_a} , c_{θ_b} , c_{φ} and s_{φ} are abbreviations for $\cos \theta_a$, $\cos \theta_b$, $\cos \varphi$, and $\sin \varphi$, respectively.

B ⁰	Scheme A				Scheme B						
sign of	reg	Ā	sign	vie			$m_{K\pi}^2 - m_{K^*}^2 < 0$		1	$m_{K\pi}^2 - m_{K^*}^2 > 0$)
$c_{\bar{\theta}_a}c_{\bar{\theta}_b}c_{\bar{\varphi}}$	TCB.	· · T	$s_{\bar{\varphi}}$	yic.		reg.	A _î	yie.	reg.	A _Î	yie.
	0	-132 ± 95	—	48		0	-21.9 ± 12.9	23	8	-8.0 ± 13.2	26
	U Č	10.2 ± 0.0	+	63		Ŭ	21.5 ± 12.5	37	Ŭ	0.0 ± 13.2	31
	1 1	3.2 ± 9.8	-	54	Ш	1	-1.6 ± 20.7	11	9	4.0 ± 11.2	41
	-	0.2 ± 0.0	+	50	Ш	1 1.0 ± 20.7	12			38	
- + +	2	23.9 + 10.0	-	62	Ш	2	189 + 174	20	10	302 ± 122	44
	-	2010 ± 1010	+	38	Ш		1010 ± 1111	13		0012 <u>1</u> 1212	23
-+-	3	32+78	-	85	Ш	3	5.0 ± 13.7	28	11	02 + 94	57
· · · · ·	Ŭ Ŭ	012 ± 110	+	80		<u> </u>	010 ± 1011	25		012 ± 011	56
+ - +	4	24.3 ± 9.0	—	77	Ш	4	26.1 ± 16.3	24	12	22.7 ± 10.7	54
			+	47				14		22.1 ± 10.1	34
+	5	149+86	-	78	Ш	5	21.9 ± 22.3	12	13	142 ± 88	74
	<u> </u>	1110 ± 010	+	58	Ш			8		1112 1 010	55
+++	6	-49 + 86	-	64	Ш	6	-153 ± 114	33	14	64 + 132	23
	l Č	4.5 ± 0.0	+	71			15.5 ± 11.4	44	14	0.4 ± 10.2	20
++-	7	68+66	—	123		7	28 ± 84	73	15	10.2 ± 0.5	61
	II '	0.0 ± 0.0	+	107	П	1.1	2.0 ± 0.4	69	1 10	10.2 ± 5.5	50

Table: The same as last TABLE but for $\overline{B^0} \to p\bar{p}K^-\pi^+$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

j _b j _a	0	1	2
0	$\Psi_0^{00}=1$ trivial	$\Psi_0^{01}c_{ heta_b}$	$\Psi_0^{02} = rac{1}{2}(c_{ heta_b}^2 - 1) imes$
1	$\Psi_0^{10}=c_{ heta_{s}}$	$egin{aligned} \Psi_{0}^{11} &= c_{ heta_{eta}}c_{ heta_{b}} \ \Psi_{1}^{11} &= s_{ heta_{eta}}s_{ heta_{b}}c_{arphi} \ \Phi_{1}^{11} &= s_{ heta_{eta}}s_{ heta_{b}}s_{arphi} \end{aligned}$	$\Psi_0^{12}=rac{1}{2}c_{ heta_a}(3c_{ heta_b}^2-1) imes onumber \ \Psi_1^{12}=s_{ heta_a}s_{ heta_b}c_{ heta_b}c_{arphi} onumber \ \Phi_1^{12}=s_{ heta_a}s_{ heta_b}c_{ heta_b}s_{arphi}$
2	$\Psi_0^{20} = \frac{1}{2}(3c_{\theta_a}^2 - 1) \times$	$ \begin{array}{l} \Psi_{1}^{21} = \frac{1}{2} (3c_{\theta_{a}}^{2} - 1)c_{\theta_{b}} \times \\ \Psi_{1}^{21} = s_{\theta_{a}}c_{\theta_{a}}s_{\theta_{b}}c_{\varphi} \\ \Phi_{1}^{21} = s_{\theta_{a}}c_{\theta_{a}}s_{\theta_{b}}s_{\varphi} \end{array} $	$ \begin{array}{l} \Psi_{0}^{22} = \frac{1}{4} (3c_{\theta_{a}}^{2} - 1)(3c_{\theta_{b}}^{2} - 1) \times \\ \Psi_{1}^{22} = s_{\theta_{a}}c_{\theta_{a}}s_{\theta_{b}}c_{\theta_{b}}c_{\varphi} \\ \Phi_{1}^{22} = s_{\theta_{a}}c_{\theta_{a}}s_{\theta_{b}}c_{\theta_{b}}s_{\varphi} \\ \Psi_{2}^{22} = \frac{3}{8}s_{\theta_{a}}^{2}s_{\theta_{b}}^{2}c_{2\varphi} \times \\ \Phi_{2}^{22} = \frac{3}{8}s_{\theta_{a}}^{2}s_{\theta_{a}}^{2}s_{\theta_{b}}^{2}s_{2\varphi} \end{array} $

Table: The first few angular correlations.

(日) (四) (日) (日) (日)

э

LHCb是如何与重子对产生过程的CP破坏失之交臂的

$\mathcal{Y}^{j_a j_b}_{\sigma}$	$A^{\mathcal{Y}^{j_{a}j_{b}}_{\sigma}}$	$\overline{A}^{\mathcal{Y}^{j_a j_b}_{\sigma}}$	$A_{CP}^{\mathcal{Y}^{j_a j_b}_{\sigma}}$	$ ilde{\mathcal{A}}^{\mathcal{Y}^{j_{a}j_b}_{\sigma}}$	$\overline{\widetilde{A}}^{\mathcal{Y}^{j_a j_b}_{\sigma}}$	$ ilde{A}_{CP}^{\mathcal{Y}^{j_{a}j_{b}}_{\sigma}}$
Ψ_{0}^{01}	28.5	14.0	7.3	5.5	-16.2	10.8
Ψ_{0}^{10}	0.9	13.1	-6.1	/	/	
Ψ_0^{11}	-0.7	5.0	-2.9	-2.3	-23.4	10.6
Ψ_1^{11}	-8.6	-14.9	-3.1	-12.1	-12.9	0.4
Φ_1^{11}	-1.0	7.0	-4.0	5.0	6.3	-0.6
Ψ_{1}^{12}	4.9	-14.0	9.5	/	/	
Φ_1^{12}	-1.7	-0.1	-0.8	/	/	
Ψ_{1}^{21}	-7.2	-4.4	-1.4	-6.3	2.0	-4.2
Φ_1^{21}	-7.4	3.7	-5.5	-2.4	1.9	-2.1
Ψ_{1}^{22}	-0.1	-1.0	0.5	/	/	
Ψ_{1}^{22}	-10.6	-7.3	-1.6	/	/	
Φ_2^{22}	-7.5	-1.2	-3.2	/	/	/
stat. err.	2.84	3.01	2.07	2.84	3.00	2.05

Table: Angular correlation asymmetries and CPAs extracted from the data in LHCb.

LHCbP2025

イロト イポト イヨト イヨト

30 / 37

э

j _b j _a	0	1	2
0	$\Psi_0^{00}=1$ trivial	$\Psi_0^{01}=c_{ heta_b}$	$\Psi_0^{02} = rac{1}{2}(c_{ heta_b}^2 - 1) imes$
1	$\Psi_0^{10}=c_{ heta_{s}}$	$egin{array}{ll} \Psi_{1}^{11} = c_{eta_{eta}}c_{eta_{b}} \ \Psi_{1}^{11} = s_{eta_{eta}}s_{eta_{b}}c_{arphi} \ \Phi_{1}^{11} = s_{eta_{eta}}s_{eta_{b}}s_{arphi} \end{array}$	$ \begin{array}{c} \Psi_0^{12} = \frac{1}{2} c_{\theta_a} (3c_{\theta_b}^2 - 1) \times \\ \Psi_1^{12} = s_{\theta_a} s_{\theta_b} c_{\theta_b} c_{\varphi} \\ \Phi_1^{12} = s_{\theta_a} s_{\theta_b} c_{\theta_b} s_{\varphi} \end{array} $
2	$\Psi_0^{20} = \frac{1}{2}(3c_{\theta_a}^2 - 1) \times$	$ \begin{array}{l} \Psi_{1}^{21} = \frac{1}{2} (3c_{\theta_{a}}^{2} - 1)c_{\theta_{b}} \times \\ \Psi_{1}^{21} = s_{\theta_{a}}c_{\theta_{a}}s_{\theta_{b}}c_{\varphi} \\ \Phi_{1}^{21} = s_{\theta_{a}}c_{\theta_{a}}s_{\theta_{b}}s_{\varphi} \end{array} $	$ \begin{array}{c} \Psi_{0}^{22} = \frac{1}{4} (3c_{\theta_{a}}^{2} - 1)(3c_{\theta_{b}}^{2} - 1) \times \\ \Psi_{1}^{22} = s_{\theta_{a}}c_{\theta_{a}}s_{\theta_{b}}c_{\theta_{b}}c_{\varphi} \\ \Phi_{1}^{22} = s_{\theta_{a}}c_{\theta_{a}}s_{\theta_{b}}c_{\theta_{b}}s_{\varphi} \\ \Psi_{2}^{22} = \frac{3}{8}s_{\theta_{a}}^{2}s_{\theta_{b}}^{2}c_{2\varphi} \times \\ \Phi_{2}^{22} = \frac{3}{8}s_{\theta_{a}}^{2}s_{\theta_{b}}^{2}s_{2\varphi}^{2} \\ \end{array} $

- Ψ_0^{01} : FB-CPA, interf. $K^*(892)$ and a scalar.
- Ψ_0^{11} : two-fold FB-CPA, interf. $K^*(892)$ and a scalar, meanwhile, 0^{\pm} and 1^{\mp} .
- Ψ_1^{12} : Left-Right Asymmetry CPA,

イロト イヨト イヨト ・

LHCb是如何与重子对产生过程的CP破坏失之交臂的

$\mathcal{Y}^{j_a j_b}_{\sigma}$	\mathcal{F}	\mathcal{F}^*	${\cal Y}^{j_a j_b}_{\sigma}$	\mathcal{F}	\mathcal{F}^*
Ψ_0^{01}	$\begin{array}{ c c c } \mathcal{F}_{0,0}^{(0^{\pm},0^{+})} \\ \mathcal{F}_{0,0}^{(1^{\mp},0^{+})} \\ \mathcal{F}_{0,0}^{(1^{\mp},0^{+})} \end{array}$	$\begin{array}{c c} \mathcal{F}_{0,0}^{(0^{\pm},1^{-})} \\ \mathcal{F}_{0,0}^{(1^{\mp},1^{-})} \end{array}$	Ψ02	$\begin{array}{ c c c } \mathcal{F}_{0,0}^{(0^{\pm},1^{-})} \\ \mathcal{F}_{-1,-1}^{(1^{\mp},1^{-})} \end{array}$	$rac{\mathcal{F}_{0,0}^{(0^{\pm},1^{-})}}{\mathcal{F}_{-1,-1}^{(1^{\mp},1^{-})}}$
Ψ_0^{10}	$\begin{array}{c c} \mathcal{F}_{0,0}^{(0^{\pm},0^{+})} \\ \hline \mathcal{F}_{0,0}^{(0^{\pm},1^{-})} \\ \end{array}$	${{\cal F}_{0,0}^{(1^{\mp},0^{+})}\over {\cal F}_{0,0}^{(1^{\mp},1^{-})}}$		$\begin{array}{c c} \mathcal{F}_{0,0}^{(1^{\mp},1^{-})} \\ \mathcal{F}_{+1,+1}^{(1^{\mp},1^{-})} \end{array}$	$\frac{\mathcal{F}_{0,0}^{(1^{\mp},1^{-})}}{\mathcal{F}_{+1,+1}^{(1^{\mp},1^{-})}}$
Ψ_0^{11}	$\begin{array}{c} \mathcal{F}_{0,0}^{(0^{\pm},0^{+})} \\ \mathcal{F}_{0,0}^{(0^{\pm},1^{-})} \\ \mathcal{F}_{0,0}^{(0^{\pm},1^{-})} \end{array}$	$\frac{\mathcal{F}_{0,0}^{(1^{\mp},1^{-})}}{\mathcal{F}_{0,0}^{(1^{\mp},0^{+})}}$	Ψ ²⁰	$\mathcal{F}_{0,0}^{(1^{\mp},0^{+})}\ \mathcal{F}_{-1,-1}^{(1^{\mp},1^{-})}$	${{\cal F}_{0,0}^{(1^{\mp},0^{+})}\over {\cal F}_{-1,-1}^{(1^{\mp},1^{-})}}$
Ψ_1^{11} , Φ_1^{11}	$\frac{\mathcal{F}_{0,0}^{(0^{\pm},0^{+})}}{\mathcal{F}_{-1,-1}^{(1^{\mp},1^{-})}}$	$\frac{\mathcal{F}_{+1,+1}^{(1^{\mp},1^{-})}}{\mathcal{F}_{0,0}^{(0^{\pm},0^{+})}}$		$\frac{\mathcal{F}_{0,0}^{(1^{\mp},1^{-})}}{\mathcal{F}_{+1,+1}^{(1^{\mp},1^{-})}}$	$\frac{\mathcal{F}_{0,0}^{(1^{\mp},1^{-})}}{\mathcal{F}_{+1,+1}^{(1^{\mp},1^{-})}}$
Ψ_1^{12}, Φ_1^{12}	$\frac{\mathcal{F}_{0,0}^{(0^{\pm},1^{-})}}{\mathcal{F}_{-1,-1}^{(1^{\mp},1^{-})}}$	$\mathcal{F}_{+1,+1}^{(1^{\mp},1^{-})}\ \mathcal{F}_{0,0}^{(0^{\pm},1^{-})}$	$\Psi_0^{12} = \Psi_0^{21}$	$\begin{array}{c} \mathcal{F}_{0,0}^{(0^{\pm},1^{-})} \\ \mathcal{F}_{0,0}^{(1^{\mp},0^{+})} \end{array}$	$\frac{\mathcal{F}_{0,0}^{(1^{+},1^{-})}}{\mathcal{F}_{0,0}^{(1^{+},1^{-})}}$
Ψ_1^{21}, Φ_1^{21}	$\frac{\mathcal{F}_{0,0}^{(1^{\mp},0^{+})}}{\mathcal{F}_{-1,-1}^{(1^{\mp},1^{-})}}$	$\frac{\mathcal{F}_{+1,+1}^{(1^{\mp},1^{-})}}{\mathcal{F}_{0,0}^{(1^{\mp},0^{+})}}$	Ψ_{0}^{22}	$\begin{array}{c} \mathcal{F}_{-1,-1}^{(1^{\mp},1^{-})} \\ \mathcal{F}_{0,0}^{(1^{\mp},1^{-})} \end{array}$	$\frac{\mathcal{F}_{-1,-1}^{(1^{\mp},1^{-})}}{\mathcal{F}_{0,0}^{(1^{\mp},1^{-})}}$
Ψ_1^{22} , Ψ_1^{22}	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c } \mathcal{F}_{+1,+1}^{(1^{\mp},1^{-})} \\ \hline \mathcal{F}_{0,0}^{(1^{\pm},1^{-})} \end{array}$	Ψ22, Φ22	$\begin{array}{ c c c c } \mathcal{F}_{+1,+1}^{(1^{\mp},1^{-})} \\ \mathcal{F}_{-1,-1}^{(1^{\mp},1^{-})} \end{array}$	$\frac{\mathcal{F}_{+1,+1}^{(1^{\mp},1^{-})}}{\mathcal{F}_{+1,+1}^{(1^{\pm},1^{-})}}$

Z.-H. Zhang

Full analysis of 4-body CPA

-2 P LHCbP2025

< E)

-2

< 🗆 🕨

4 总结展望

Z	н	Z	ha	in	g

LHCbP2025

イロト イヨト イヨト イヨト

33 / 37

3

- LHCb本在2022年就有机会发现与重子相关的CP破坏的(非中国 组)。
- 多体衰变过程角分布相关的CP破坏的实验分析对理解CP破坏的动力学非常重要。

LHCbP2025 34 / 37

3

イロト イヨト イヨト ・

In the 1950s, if you discovered a new particle you got a Nobel Prize; in the 1960s, they fined you; by the 1970s, they should have put you in jail!—M. Gell-Mann

LHCbP2025

< □ > < □ > < □ > < □ > < □ > < □ >

35 / 37

In the 1950s, if you discovered a new particle you got a Nobel Prize; in the 1960s, they fined you; by the 1970s, they should have put you in jail!—M. Gell-Mann

LHCbP2025

总结展望

祝贺LHCb中国组在重子相关过程中发现CP破坏现象。预祝LHCb中国组取得越来越多的重要物理成果

LHCbP2025

・ロト ・四ト ・ヨト ・ヨト

э

Thank you for your attentions!

イロト イポト イヨト イヨト

э