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O Set-up for non-isolated adiabatic processes
[ Comparison with the conventional adiabatic processes

J Future outlook



» Quantum thermodynamics is the study of Thermodynamics for Quantum Systems.

In the quantum regime - the concepts of heat, work, and temperature
— laws of thermodynamics are derived

» The central goal is to extend standard thermodynamics to include small system sizes and
guantum effects.

small system sizes — Fluctuations of heat and work
quantum effects — quantum superposition,
guantum correlation (quantum information)

> IQuarr:tu_m thermodynamic processes - Quantum Isothermal, Quantum Adiabatic, Quantum
sochoric



Adiabatic Process

No heat exchange between system and surrounding

In adiabatic processes, the system does not
exchange energy with the environment in the
form of heat.

Insulator

Surrounding System
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In adiabatic processes, the entropy of the system can change.

Adiabatic processes here are different from mechanical adiabaticity.
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Adiabatic processes commonly mean processes in isolated systems given by unitary
evolution by a time-dependent Hamiltonian.

= ~ ~ .ot A
ps(t) = U(t)ﬁg(O)UT(t) where U(t) = Te_"fo dt'Hs(tr)

The system’s von Neumann entropy remains conserved in the isolated processes.

Common wisdom: “Adiabatic processes” = “Isolated Processes”




Non-isolated Adiabatic Processes in Quantum Thermodynamics

Adiabatic processes are not necessarily

the processes in the isolated systems: Adiabatic processes + Isolated Processes

For quantum systems, Isolation is a sufficient condition for the adiabatic processes,

but it is not a necessary condition.

There exist adiabatic processes which are not isolated ones for the quantum case.

Examples: “Decoherence” or “Dephasing”

¢

Non-isolated adiabatic processes

diabatic Processes

Isolated
Processes



© Set-Upfor Non-isolated Adiabatic Processes

Hamiltonian:

H(t) = Hs(t) + Hp + Hgp(t)

Condition:

[ﬁB: vm] =0

Hsp(t)

Asp(®) = ) gn(® T
/

Label of sys.

basis
(m=e,g)

[Hsp(t), H()] =0

i)
g

Bath opt.
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Heat is defined by the energy change in the bath.

Initial state: p(0) = ps(0) ® pg(0)
s
Non-diagonal in Hs(0) Diagonal in Hg(0)

basis basis

Using  [Hg Hep(H)]=0 C——» P(Q)=46(Q)

Heat Q = 0 deterministically without fluctuation.




Ilme !volutlon o! tHe !ystem In Hon-lsoIateH ﬁlagatlc !rocesses

At = U®PO)TT () where  U(t) = Te~ido at'H(t")
System'’s state: ps(t) = Trg[p()]

N\

Using (A Asp(©)] = 0 ﬁs<t)=ZMi(t>ﬁs(o>Mﬁ<t)

The map €: €(ps(0)) = X; My(£) ps(0)M] () makes ps(0) = ps(D.

€ trace preserving map: Trs(ﬁs(t)) = Trs(ﬁS(O))
€ unital map: 8(ﬁs) =Y. M;(t) ﬁSM;L(t) = I

€ is a trace — preserving and unital Kraus map.




Bemong!rallon Wll” l”e !pec:lllc HO!EI
(‘)S(t) 6_

= —_ P -I-/\
=6, Hpg —Zw”au a,
U

Under the condition: [Hsg(t),H(t)] =10 U
From the Kraus map: U

ps®) = ) PSP (O) (Psee@ledel + psge(®lg)el
j=0

+ ell@s@ +(@e(D=Fg@NI 1t 5 (0)]g)el
4 o~ i@s(®) + (Ge(©)-gg ()] 1t Ds eg(0)|e)(g| Y

A two level system in a HO bath Hq(t) =

t

1 1 (¢
ws(t) = m J dt' wg(t") Jm(t) = . j dt'g,,(t") (m=e,g)
0 0
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Unitary Evolution Versus Non-isolated Processes
ps(®) = T(0)ps(TT (D) where  T(t) = Te~i Jo at'As(t)

ps(t) = psee(0)leNel + ps,gg(0)g)gl + e~ 5O pg o (0)]e)g]
+ el BsOtpe . (0)|g)e|
If ps(0) is diagonal in the Hg basis: Ds,eq(0) = psg(0) =0

Ps(t) = Dsee(0)|e)e| + psgq(0)g)Xsgl

The state ps(t) is the same for the non-isolated process and the unitary evolution
case.

The time evolved state ps(t) will be different for two cases if the initial ps(0) is
non-diagonal in the Hy basis.
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!ntropy !Hange o! tHe !ystem

von Neumann S(ps(®)) = = Tr(ps(©) In(ps(D)) = — Aslndy + 2_InA)
entropy :
Eigen values: Ay = %(1 + \/(1 — 2pe)? + 4|Cl|2)

la|? = |ps,eg<o>|2@

Unitary evolutioncase: (=1 _, |g|?2 = |pSeg(O)|2

The factor { characterizes the difference between non-isolated adiabatic
processes and unitary evolution case.
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O Average work and fluctuation of work under a non-isolated setup

=

The effect of the coherence will be suppressed and the system will
be close to the quasi-static state under the non-isolated setup.
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Thank you

Questions?
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Hamiltonian:
H(t) = Hs(t) + Hg + Hgp(t) @
¥ = A
Hs(t) = Ynen(OIR(1)

Hsp(t)

fio = ) B Agu(®) = ng(w nmt)@@

Bath opt.
Condition: | [Hg, V,,] =0 [for¥m, (m=e,g) L‘)ZI:S of sys.
Initial state: ﬁ(O) — .55(0) R ﬁB(O)
4/ I Diagonal in Hg(0) basis

Non-diagonal in Hs(0) basis
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Heat in Non-isolated Adiabatic Processes

Heat: It is defined by the energy change in the bath measured by 2-point energy measurement.

Joint probability of the bath’s state i — |

~p = _: (b g1 YVAB armaB S i (Pdt'H(t) &
pp(if) = pppsji = TrllIP Te =t o W HIELTE f(0)AD)Te o 4'H(Y) [1B)

Heat distribution function: P(Q) = zijé‘ (Q — (Ej — E)) p;i;j(B)

Characteristic function: 0 (u) = f dQ eiuQP(Q)
Using  [Hp 7,]=0 C—»> 0@ =1

P(Q) = 5[, dQ e ™0 u) =
5(Q)

Heat Q = 0 deterministically without fluctuation.
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‘lme evolutlon o! tHe systemin Hon-lsoIateH ﬁlagatlc !rocesses

ps(®) = Trg[Te ™o M p(0) Tt o ae/H(E)

\* pt) = ZMi(t) ﬁs(O)MiT(t)

Using [HB, Vm] =0

Kraus op. Ml-(t) — ’pB :(0) g_"’e—ifot dt'Hs(t")+Zm gm () Vi, i

\. zﬁi(t) i) = 1
The map &: E(ps(0)) = X; M; () ps(0)M] (t) makes pg(0) — ps(t).

€ trace preserving map: Trg(ps(t)) = Trs(ps(0))
£ unital map: E(ES) =Y. M;(t) ﬁsﬂj(t) = I

€ is a trace — preserving and unital Kraus map.
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A two level system in a HO bath H(t) = wsz(t) o Hp = Z wuauTau

Z

Hs(t) = (ge()le)el + gg<t)|g><g|)2fuau o

Under the condition: [Hep(t),H(t) =0 v

From the Karaus map:

ps(t) = ZP(N)(O) {Psee(0) |e)ssle] + ps,g4(0) |g)ss{gl

+ et@s(®) + (ge(t)=gg())j 1t pS,ge(O) |9)ssel
+ e U@s) + (Ge()=Fg (I ]t 4 eg(0) |€)ss{g| }
t

1 1 (¢
ws(t) =7 J dt' wg(t") Jm (1) =7 j dt'g,,(t") (m=e,g)
0

0
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