Quantum thermodynamics of adiabatic processes

Annual Meeting 2025

School of Physics and Zhejiang Institute of Modern Physics Zhejiang University

Chayan Purkait

Supervised by: Prof. Gentaro Watanabe

Outline

\Box Quantum thermodynamics

 \Box Adiabatic processes in classical thermodynamics and quantum thermodynamics

 \Box Non-isolated adiabatic processes in quantum thermodynamics

 \Box Set-up for non-isolated adiabatic processes

 \Box Comparison with the conventional adiabatic processes

 \Box Future outlook

Quantum Thermodynamics (QT)

Quantum thermodynamics is the study of Thermodynamics for Quantum Systems.

In the quantum regime \rightarrow the concepts of heat, work, and temperature \rightarrow laws of thermodynamics are derived

 \triangleright The central goal is to extend standard thermodynamics to include small system sizes and quantum effects.

small system sizes \rightarrow Fluctuations of heat and work quantum effects \rightarrow quantum superposition, quantum correlation (quantum information)

 Quantum thermodynamic processes → Quantum Isothermal, **Quantum Adiabatic**, Quantum Isochoric

Adiabatic Processes in Classical Thermodynamics

No heat exchange between system and surrounding Insulator Surrounding System ChemistryLearner.com

Adiabatic Process

In adiabatic processes, **the system does not exchange energy with the environment in the form of heat.**

In adiabatic processes, the **entropy of the system can change**.

Adiabatic processes here are different from mechanical adiabaticity.

Adiabatic processes commonly mean processes in **isolated systems** given by unitary evolution by a time-dependent Hamiltonian.

 $\hat{\rho}_S(t) = \widehat{U}(t) \hat{\rho}_S(0) \widehat{U}^\dagger(t)$ where $\widehat{U}(t) = \vec{\mathcal{T}} e^{-i \int_0^t dt' \hat{H}_S(t)}$

The system's von Neumann **entropy remains conserved** in the isolated processes.

Common wisdom: **"Adiabatic processes" = "Isolated Processes"**

Adiabatic processes are not necessarily

the processes in the isolated systems: **Adiabatic processes** ≠ **Isolated Processes**

For quantum systems, **Isolation is a sufficient condition** for the adiabatic processes, but **it is not a necessary condition**.

There exist adiabatic processes which are not isolated ones for the quantum case.

Set-Up for Non-isolated Adiabatic Processes

Hamiltonian:

Heat in Non-isolated Adiabatic Processes

Heat is defined by the energy change in the bath.

Heat $Q = 0$ deterministically without fluctuation.

Time Evolution of the System in Non-isolated Adiabatic Processes

The map $\mathcal{E}\colon\; \mathcal{E}\big(\widehat{\rho}_{S}(0)\big)=\sum_{i}\widehat{M}_{i}(t)\,\widehat{\rho}_{S}(0)\widehat{M}_{i}$ $\hat{p}_s(t)$ makes $\hat{p}_s(0) \rightarrow \hat{p}_s(t)$.

> ${\cal E}$ unital map: $\,{\cal E}\big(\hat{\mathbb{I}}_{S}\big) = \sum_{i} \widehat{M}_{i}(t) \, \hat{\mathbb{I}}_{S} \widehat{M}_{i}^{\top}$ $\hat{\mathbb{I}}_i^{\dagger}(t) = \hat{\mathbb{I}}_S$ ${\cal E}$ trace preserving map: $Tr_{S}\big (\widehat{\rho}_{S}({\rm t})\big)=Tr_{S}\big (\widehat{\rho}_{S}({\rm 0})\big)$

 $\mathcal E$ is a trace – preserving and unital Kraus map.

Demonstration with the Specific Model

$$
\hat{\rho}_S(t) = \sum_{j=0}^{\infty} p_{B,j}^{(N)}(0) \{ p_{S,ee}(0) | e \rangle \langle e | + p_{S,gg}(0) | g \rangle \langle g | \n+ e^{i[\bar{\omega}_S(t) + (\bar{g}_e(t) - \bar{g}_g(t))j]t} p_{S,ge}(0) | g \rangle \langle e | \n+ e^{-i[\bar{\omega}_S(t) + (\bar{g}_e(t) - \bar{g}_g(t))j]t} p_{S,eg}(0) | e \rangle \langle g | \}
$$
\n
$$
\bar{\omega}_S(t) = \frac{1}{t} \int_0^t dt' \omega_S(t') \qquad \bar{g}_m(t) = \frac{1}{t} \int_0^t dt' g_m(t') \quad (m = e, g)
$$

0

0

Unitary Evolution Versus Non-isolated Processes

$$
\hat{\rho}_S(t) = \hat{U}(t)\hat{\rho}_S(t)\hat{U}^{\dagger}(t) \qquad \text{where} \quad \hat{U}(t) = \vec{\mathcal{T}}e^{-i\int_0^t dt'\hat{H}_S(t')}
$$

$$
\hat{\rho}_S(t) = p_{S,ee}(0)|e\rangle\langle e| + p_{S,gg}(0)|g\rangle\langle g| + e^{-i\,\overline{\omega}_S(t)t} p_{S,eg}(0)|e\rangle\langle g|
$$

+ $e^{i\,\overline{\omega}_S(t)t} p_{S,ge}(0)|g\rangle\langle e|$

If $\hat{\rho}_S(0)$ is diagonal in the \widehat{H}_S basis: $p_{S,eg}(0) = p_{S,ge}(0) = 0$

$$
\hat{\rho}_S(t) = p_{S,ee}(0)|e\rangle\langle e| + p_{S,gg}(0)|g\rangle\langle g|
$$

The state $\widehat{\rho}_S(t)$ is the same for the non-isolated process and the unitary evolution case.

The time evolved state $\widehat{\rho}_S(t)$ will be different for two cases if the initial $\widehat{\rho}_S(0)$ is non-diagonal in the \widehat{H}_{S} basis.

Entropy Change of the System

Von Neumann entropy :

$$
S(\hat{\rho}_S(t)) = -Tr(\hat{\rho}_S(t) \ln(\hat{\rho}_S(t))) = -(\lambda_+ ln \lambda_+ + \lambda_- ln \lambda_-)
$$

Eigen values:

$$
\lambda_{\pm} = \frac{1}{2} \Big(1 \pm \sqrt{(1 - 2p_e)^2 + 4|a|^2} \Big)
$$

$$
|a|^2 = |p_{S,eg}(0)|^2 \widehat{\zeta}
$$

Unitary evolution case: $\zeta = 1 \rightarrow |a|^2 = |p_{S,eg}(0)|^2$

The factor ζ characterizes the difference between non-isolated adiabatic processes and unitary evolution case.

Future Outlook

Average work and fluctuation of work under a non-isolated setup

The effect of the coherence will be suppressed and the system will be close to the quasi-static state under the non-isolated setup.

Thank you

Questions?

Set-Up for Non-isolated Adiabatic Processes

Hamiltonian:

$$
\widehat{H}(t) = \widehat{H}_S(t) + \widehat{H}_B + \widehat{H}_{SB}(t)
$$

$$
\widehat{H}_S(t) = \sum_n \varepsilon_n(t) \widehat{\Pi}_n^S(t)
$$

$$
\widehat{H}_B = \sum_i E_i \widehat{\Pi}_i^B
$$

Condition:
$$
\boxed{[\hat{H}_B, \hat{V}_m] = 0 \text{ for } \forall \text{ m}, \text{ (m = e, g)}} \quad \text{Labe basis}
$$

$$
\boxed{[\hat{H}_{SB}(t), \hat{H}(t)] = 0}
$$

$$
\widehat{H}_{SB}(t) = \sum_{m} g_m(t) \widehat{\Pi}_m^S(t) \widehat{\mathbb{Q}(\widehat{l}_m)}
$$

\nLabel of sys.

Initial state:
$$
\hat{\rho}(0) = \hat{\rho}_S(0) \otimes \hat{\rho}_B(0)
$$

Diagonal in $\hat{H}_B(0)$ basis
Non-diagonal in $\hat{H}_S(0)$ basis

Heat in Non-isolated Adiabatic Processes

Heat: It is defined by the energy change in the bath measured by 2-point energy measurement.

Joint probability of the bath's state $i \rightarrow j$

$$
p_B(ij) = p_{B,i}p_{B,ji} = Tr[\widehat{\Pi}_j^B \overrightarrow{f}e^{-i\int_0^t dt' H(t')} \widehat{\Pi}_i^B \widehat{\rho}(0)\widehat{\Pi}_i^B \overleftarrow{f}e^{i\int_0^t dt' H(t')} \widehat{\Pi}_j^B]
$$

Heat distribution function: F

$$
P(Q) = \sum_{ij} \delta(Q - (E_j - E_i)) p_{ij}(B)
$$

Characteristic function: Θ

$$
(u) = \int_{-\infty}^{\infty} dQ \, e^{iuQ} P(Q)
$$

Using $[\widehat{H}_B, \widehat{V}_m] = 0$ \longrightarrow $\Theta(u) = 1$

$$
P(Q) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dQ \, e^{-iuQ} \Theta(u) = \delta(Q)
$$

Heat $Q = 0$ deterministically without fluctuation.

Time evolution of the system in Non-isolated Adiabatic Processes

$$
\hat{\rho}_S(t) = Tr_B[\vec{\mathcal{T}}e^{-i\int_0^t dt'H(t')}\hat{\rho}(0) \,\vec{\mathcal{T}}e^{i\int_0^t dt'H(t')}\hat{I})
$$

Using
$$
[\hat{H}_B, \hat{V}_m] = 0 \qquad \hat{\rho}(t) = \sum_i \hat{M}_i(t) \,\hat{\rho}_S(0) \hat{M}_i^{\dagger}(t)
$$

Kraus op.
$$
\widehat{M}_i(t) = \sqrt{p_{B,i}(0)} \overrightarrow{\mathcal{T}} e^{-i \int_0^t dt' H_S(t') + \sum_m g_m(t) v_{m,i} \widehat{\Pi}_m^S}
$$

$$
\sum_i \widehat{M}_i(t) \widehat{M}_i^{\dagger}(t) = \widehat{\mathbb{I}}_S
$$

The map $\mathcal{E}\colon\; \mathcal{E}\big(\widehat{\rho}_{S}(0)\big)=\sum_{i}\widehat{M}_{i}(t)\,\widehat{\rho}_{S}(0)\widehat{M}_{i}$ $\hat{p}_s(t)$ makes $\hat{p}_s(0) \rightarrow \hat{p}_s(t)$.

> $\mathcal E$ unital map: $\ \mathcal E\bigl(\widehat{\mathbb I}_S\bigr)=\sum_i \widehat M_i(t)\,\widehat{\mathbb I}_S\widehat M_i^{\widehat{}}$ $i^{\dagger}(t) = \hat{\mathbb{I}}_{S}$ $\mathcal E$ trace preserving map: $Tr_{S}\big(\widehat{\rho}_{S}(\mathrm{t})\big)=Tr_{S}\big(\widehat{\rho}_{S}(\mathrm{0}% _{S})\big)\,.$

 $\mathcal E$ is a trace – preserving and unital Kraus map.

Demonstration with the specific model

A two level system in a HO bath t) = $\frac{\omega_S(t)}{2}$ $\frac{\partial^2}{\partial z^2} \hat{\sigma}_z$ $\widehat{H}_B = \sum$ μ $\omega_\mu {\hat{a}_\mu}^\dagger \hat{a}_\mu$ $\widehat{H}_{SB}(t) = (g_e(t)|e\rangle\langle e| + g_g(t)|g\rangle\langle g|)$ μ $f_{\mu}\widehat{a}_{\mu}^{\ \ \dag}\widehat{a}_{\mu}$ Under the condition: $[\hat{H}_{SB}(t),\hat{H}(t)]=0$

From the Karaus map:

0

$$
\hat{\rho}_S(t) = \sum_{j=0}^{\infty} p_{B,j}^{(N)}(0) \{ p_{S,ee}(0) | e \}_{SS} \langle e| + p_{S,gg}(0) | g \}_{SS} \langle g| \n+ e^{i[\bar{\omega}_S(t) + (\bar{g}_e(t) - \bar{g}_g(t))j]t} p_{S,ge}(0) | g \}_{SS} \langle e| \n+ e^{-i[\bar{\omega}_S(t) + (\bar{g}_e(t) - \bar{g}_g(t))j]t} p_{S,eg}(0) | e \}_{SS} \langle g| \}
$$
\n
$$
\bar{\omega}_S(t) = \frac{1}{t} \int_0^t dt' \omega_S(t') \qquad \bar{g}_m(t) = \frac{1}{t} \int_0^t dt' g_m(t') \quad (m = e, g)
$$

0