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 Quantum thermodynamics is the study of Thermodynamics for Quantum Systems.

In the quantum regime → the concepts of heat, work, and temperature

→ laws of thermodynamics are derived

 The central goal is to extend standard thermodynamics to include small system sizes and
quantum effects.

small system sizes → Fluctuations of heat and work

quantum effects → quantum superposition, 

quantum correlation (quantum information)

 Quantum thermodynamic processes →  Quantum Isothermal, Quantum Adiabatic, Quantum 
Isochoric 
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Quantum Thermodynamics (QT)
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Adiabatic Processes in Classical Thermodynamics 
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In adiabatic processes, the entropy of the system can change.

In adiabatic processes, the system does not 
exchange energy with the environment in the 
form of heat.

Adiabatic processes here are different from mechanical adiabaticity.
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Adiabatic Processes in Quantum Thermodynamics 
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Adiabatic processes commonly mean processes in isolated systems given by unitary 
evolution by a time-dependent Hamiltonian. 

Common wisdom: “Adiabatic processes” = “Isolated Processes” 

The system’s von Neumann entropy remains conserved in the isolated processes. 

ො𝜌𝑆 t = ෡𝑈 𝑡 ො𝜌𝑆 0 ෡𝑈† 𝑡 ෡𝑈 𝑡 = 𝒯𝑒−𝑖 𝑜׬
𝑡
𝑑𝑡′ ෡𝐻𝑆 𝑡′where
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Non-isolated Adiabatic Processes in Quantum Thermodynamics 
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Adiabatic processes are not necessarily 
the processes in the isolated systems:  Adiabatic processes ≠ Isolated Processes 

There exist adiabatic processes which are not isolated ones for the quantum case.

For quantum systems, Isolation is a sufficient condition for the adiabatic processes, 
but it is not a necessary condition. 

Examples: “Decoherence” or “Dephasing”

Non-isolated adiabatic processes
Adiabatic Processes

Isolated 
Processes
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Set-Up for Non-isolated Adiabatic Processes
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෡𝐻𝑆(𝑡) ෡𝐻𝐵

෡𝐻𝑆𝐵(𝑡)

෡𝐻 𝑡 = ෡𝐻𝑆 𝑡 + ෡𝐻𝐵 + ෡𝐻𝑆𝐵(𝑡)

Hamiltonian:

Bath opt.
Label of sys. 
basis

Condition: [ ෡𝐻𝐵, ෠𝑉𝑚] = 0

(m = e, g) 

[ ෡𝐻𝑆𝐵(𝑡), ෡𝐻 𝑡 ] = 0

෡𝐻𝑆𝐵(𝑡) = ෍

𝑚

𝑔𝑚 𝑡 ෡Π𝑚
𝑆 (𝑡)⨂෠𝑉𝑚
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Heat in Non-isolated Adiabatic Processes
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Heat is defined by the energy change in the bath. 

Using [ ෡𝐻𝐵, ෡𝐻𝑆𝐵(𝑡)] = 0 𝑃 𝑄 = 𝛿(Q)

Heat Q = 0 deterministically without fluctuation.

Initial state: ො𝜌 0 = ො𝜌𝑆 0 ⨂ ො𝜌𝐵 0

Non-diagonal in ෡𝐻𝑆 0
basis 

Diagonal in ෡𝐻𝐵 0
basis 
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Time Evolution of the System in Non-isolated Adiabatic Processes
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ො𝜌𝑆 t = 𝑇𝑟𝐵[ ො𝜌 t ]

ො𝜌𝑆 𝑡 =෍

𝑖

෡𝑀𝑖 𝑡 ො𝜌𝑆 0 ෡𝑀𝑖
†
(𝑡)Using [ ෡𝐻𝐵, ෡𝐻𝑆𝐵(𝑡)] = 0

The map ℰ: ℰ ො𝜌𝑆 0 = σ𝑖
෡𝑀𝑖 𝑡 ො𝜌𝑆 0 ෡𝑀𝑖

†(𝑡) makes   ො𝜌𝑆 0 → ො𝜌𝑆 t .

ℰ is a trace − preserving and unital Kraus map. 

ℰ unital map: ℰ ෠𝕀𝑆 = σ𝑖
෡𝑀𝑖 𝑡 ෠𝕀𝑆 ෡𝑀𝑖

† 𝑡 = ෠𝕀𝑆

ℰ trace preserving map: 𝑇𝑟𝑆 ො𝜌𝑆 t = 𝑇𝑟𝑆 ො𝜌𝑆 0

𝑈 𝑡 = 𝒯𝑒−𝑖 𝑜׬
𝑡
𝑑𝑡′𝐻 𝑡′whereො𝜌 t = 𝑈(𝑡) ො𝜌 0 ෡𝑈† 𝑡

System’s state: 
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Demonstration with the Specific Model
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A two level system in a HO bath ෡𝐻𝑆 𝑡 = 
𝜔𝑆(𝑡)

2
ො𝜎𝑧

෡𝐻𝐵 =෍

𝜇

𝜔𝜇 ො𝑎𝜇
† ො𝑎𝜇

[ ෡𝐻𝑆𝐵 𝑡 , ෡𝐻 𝑡 ] = 0Under the condition:

ො𝜌𝑆 𝑡 =෍

𝑗=0

∞

𝑝𝐵,𝑗
𝑁

0 { 𝑝𝑆,𝑒𝑒 0 ۧ|𝑒 |𝑒ۦ + 𝑝𝑆,𝑔𝑔 0 ۧ|𝑔 |gۦ

+ 𝑒𝑖[ഥ𝜔𝑆 𝑡 + ( ത𝑔𝑒 𝑡 − ത𝑔𝑔 𝑡 )𝑗 ]𝑡 𝑝𝑆,𝑔𝑒 0 ۧ|𝑔 |𝑒ۦ

+ 𝑒−𝑖[ഥ𝜔𝑆 𝑡 + ( ത𝑔𝑒 𝑡 − ത𝑔𝑔 𝑡 )𝑗 ]𝑡 𝑝𝑆,𝑒𝑔 0 ۧ|𝑒 |gۦ }

From the Kraus map:

ഥ𝜔𝑆 𝑡 =
1

𝑡
න
0

𝑡

𝑑𝑡′𝜔𝑆(𝑡′) ҧ𝑔𝑚 𝑡 =
1

𝑡
න
0

𝑡

𝑑𝑡′𝑔𝑚(𝑡′) (m = e, g)
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Unitary Evolution Versus Non-isolated Processes
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ො𝜌𝑆 𝑡 = 𝑝𝑆,𝑒𝑒 0 ۧ|𝑒 |𝑒ۦ + 𝑝𝑆,𝑔𝑔 0 ۧ|𝑔 |gۦ + 𝑒−𝑖 ഥ𝜔𝑆 𝑡 𝑡 𝑝𝑆,𝑒𝑔 0 ۧ|𝑒 |gۦ

+ 𝑒𝑖 ഥ𝜔𝑆 𝑡 𝑡 𝑝𝑆,𝑔𝑒 0 ۧ|𝑔 |𝑒ۦ

ො𝜌𝑆 t = ෡𝑈 𝑡 ො𝜌𝑆 t ෡𝑈† 𝑡

If ො𝜌𝑆 0 is diagonal in the ෡𝐻𝑆 basis: 

ො𝜌𝑆 𝑡 = 𝑝𝑆,𝑒𝑒 0 ۧ|𝑒 |𝑒ۦ + 𝑝𝑆,𝑔𝑔 0 ۧ|𝑔 |gۦ

𝑝𝑆,𝑒𝑔 0 = 𝑝𝑆,𝑔𝑒 0 = 0

The state ො𝜌𝑆 𝑡 is the same for the non-isolated process and the unitary evolution 
case. 

The time evolved state ො𝜌𝑆 𝑡 will be different for two cases if the initial ො𝜌𝑆 0 is 
non-diagonal in the ෡𝐻𝑆 basis. 

෡𝑈 𝑡 = 𝒯𝑒−𝑖 𝑜׬
𝑡
𝑑𝑡′ ෡𝐻𝑆 𝑡′where
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Entropy Change of the System
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Eigen values: 𝜆± =
1

2
1 ± 1 − 2𝑝𝑒

2 + 4 𝑎 2

Unitary evolution case: 𝑎 2 = 𝑝𝑆,𝑒𝑔 0
2

𝑎 2 = 𝑝𝑆,𝑒𝑔 0
2
𝜁

The factor 𝜁 characterizes the difference between non-isolated adiabatic 
processes and unitary evolution case.

𝑆 ො𝜌𝑆 𝑡 = − 𝑇𝑟 ො𝜌𝑆 𝑡 ln ො𝜌𝑆 𝑡 = − (𝜆+𝑙𝑛𝜆+ + 𝜆−𝑙𝑛𝜆−)

0 ≤ 𝜁 ≤ 1

𝜁 = 1 →

Von Neumann 
entropy : 

In general: 
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Future Outlook
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 Average work and fluctuation of work under a non-isolated setup 

The effect of the coherence will be suppressed and the system will 
be close to the quasi-static state under the non-isolated setup.
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Set-Up for Non-isolated Adiabatic Processes
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෡𝐻𝑆(𝑡) ෡𝐻𝐵

෡𝐻𝑆𝐵(𝑡)

෡𝐻 𝑡 = ෡𝐻𝑆 𝑡 + ෡𝐻𝐵 + ෡𝐻𝑆𝐵(𝑡)

෡𝐻𝑆 𝑡 = σ𝑛 𝜀𝑛(𝑡)෡Π𝑛
𝑆(t)

෡𝐻𝐵 = ෍

𝑖

𝐸𝑖෡Π𝑖
𝐵

Hamiltonian:

Bath opt.
Label of sys. 
basis

Condition: [ ෡𝐻𝐵, ෠𝑉𝑚] = 0 for Ɐ m ,   (m = e, g) 

Initial state: 

[ ෡𝐻𝑆𝐵(𝑡), ෡𝐻 𝑡 ] = 0

ො𝜌 0 = ො𝜌𝑆 0 ⨂ ො𝜌𝐵 0

Diagonal in ෡𝐻𝐵 0 basis 
Non-diagonal in ෡𝐻𝑆 0 basis 

෡𝐻𝑆𝐵(𝑡) = ෍

𝑚

𝑔𝑚 𝑡 ෡Π𝑚
𝑆 (𝑡)⨂෠𝑉𝑚
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Heat in Non-isolated Adiabatic Processes
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Heat: It is defined by the energy change in the bath measured by 2-point energy measurement. 

Joint probability of the bath’s state  i → j  

Heat distribution function: 𝑃 𝑄 = ෍
𝑖𝑗
𝛿 (𝑄 − 𝐸𝑗 − 𝐸𝑖) 𝑝𝑖𝑗 𝐵

Characteristic function: Θ 𝑢 = න
−∞

∞

𝑑𝑄 𝑒𝑖𝑢𝑄𝑃(𝑄)

Using [ ෡𝐻𝐵, ෠𝑉𝑚] = 0 Θ 𝑢 = 1

𝑃 𝑄 =
1

2𝜋
∞−׬
∞

𝑑𝑄 𝑒−𝑖𝑢𝑄Θ(u) = 

𝛿(Q)

Heat Q = 0 deterministically without fluctuation.

𝑝𝐵 𝑖𝑗 = 𝑝𝐵,𝑖𝑝𝐵,𝑗𝑖 = 𝑇𝑟[෡Π𝑗
𝐵 𝒯𝑒−𝑖 𝑜׬

𝑡
𝑑𝑡′𝐻 𝑡′ ෡Π𝑖

𝐵 ො𝜌 0 ෡Π𝑖
𝐵 𝒯𝑒𝑖 𝑜׬

𝑡
𝑑𝑡′𝐻 𝑡′ ෡Π𝑗

𝐵]
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Time evolution of the system in Non-isolated Adiabatic Processes
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ො𝜌𝑆 t = 𝑇𝑟𝐵[𝒯𝑒
−𝑖 𝑜׬

𝑡
𝑑𝑡′𝐻 𝑡′ ො𝜌 0 𝒯𝑒𝑖 𝑜׬

𝑡
𝑑𝑡′𝐻 𝑡′ ]

ො𝜌 t =෍

𝑖

෡𝑀𝑖 𝑡 ො𝜌𝑆 0 ෡𝑀𝑖
†
(𝑡)Using [ ෡𝐻𝐵, ෠𝑉𝑚] = 0

෡𝑀𝑖 𝑡 = 𝑝𝐵,𝑖 0 𝒯𝑒−𝑖 𝑜׬
𝑡
𝑑𝑡′𝐻𝑆 𝑡′ +σ𝑚 𝑔𝑚 𝑡 𝜈𝑚,𝑖 ෡Π𝑚

𝑆Kraus op. 

෍

𝑖

෡𝑀𝑖 𝑡 ෡𝑀𝑖
† 𝑡 = ෠𝕀𝑆

The map ℰ: ℰ ො𝜌𝑆 0 = σ𝑖
෡𝑀𝑖 𝑡 ො𝜌𝑆 0 ෡𝑀𝑖

†(𝑡) makes   ො𝜌𝑆 0 → ො𝜌𝑆 t .

ℰ is a trace − preserving and unital Kraus map. 

ℰ unital map: ℰ ෠𝕀𝑆 = σ𝑖
෡𝑀𝑖 𝑡 ෠𝕀𝑆 ෡𝑀𝑖

† 𝑡 = ෠𝕀𝑆

ℰ trace preserving map: 𝑇𝑟𝑆 ො𝜌𝑆 t = 𝑇𝑟𝑆 ො𝜌𝑆 0
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Demonstration with the specific model
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A two level system in a HO bath ෡𝐻𝑆 𝑡 = 
𝜔𝑆(𝑡)

2
ො𝜎𝑧

෡𝐻𝐵 =෍

𝜇

𝜔𝜇 ො𝑎𝜇
† ො𝑎𝜇

෡𝐻𝑆𝐵 𝑡 = 𝑔𝑒 𝑡 ۧ|𝑒 |𝑒ۦ + 𝑔𝑔 𝑡 ۧ|𝑔 |𝑔ۦ ෍

𝜇

𝑓𝜇 ො𝑎𝜇
† ො𝑎𝜇

[ ෡𝐻𝑆𝐵 𝑡 , ෡𝐻 𝑡 ] = 0Under the condition:

ො𝜌𝑆 𝑡 =෍

𝑗=0

∞

𝑝𝐵,𝑗
𝑁

0 { 𝑝𝑆,𝑒𝑒 0 ۧ|𝑒 𝑆𝑆ۦ𝑒| + 𝑝𝑆,𝑔𝑔 0 ۧ|𝑔 𝑆𝑆ۦ𝑔|

+ 𝑒𝑖[ഥ𝜔𝑆 𝑡 + ( ത𝑔𝑒 𝑡 − ത𝑔𝑔 𝑡 )𝑗 ]𝑡 𝑝𝑆,𝑔𝑒 0 ۧ|𝑔 𝑆𝑆ۦ𝑒|

+ 𝑒−𝑖[ഥ𝜔𝑆 𝑡 + ( ത𝑔𝑒 𝑡 − ത𝑔𝑔 𝑡 )𝑗 ]𝑡 𝑝𝑆,𝑒𝑔 0 ۧ|𝑒 𝑆𝑆ۦ𝑔| }

From the Karaus map:

ഥ𝜔𝑆 𝑡 =
1

𝑡
න
0

𝑡

𝑑𝑡′𝜔𝑆(𝑡′) ҧ𝑔𝑚 𝑡 =
1

𝑡
න
0

𝑡

𝑑𝑡′𝑔𝑚(𝑡′) (m = e, g)


