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Part |: Reduction of Feynman Integrals




Reduction of Feynman Integrals

High-precision computation

The rapid development of HEP experiments has brought us 5= 14TV, 3000 " por experiment
high-precision data in decades, which in turn demands Eoal ATLAS and CMS
. .. . . OExp — Experimental HL-LHC Projection
high-precision calculations in theory (Let uy = —): —Treoy ——

US 1\/1 Tot Stat Exp Th

® At 2012: = 1.4+ 0.3(Exp) £ (negligible Th). Cagn == 180708 12

e At 2022: p = 1.05 4 0.04(Exp) =+ 0.04(Th). Sver = 3118 15 21
OwH —— 5.7 33 24 40

Oy — 42 26 13 31

The future experiments (Run Il of LHC, HL-LHC) require o e

reducing theoretical uncertainties by at least a factor of 5-10 (1-2
higher orders in ay).
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Expected relative uncertainty

o
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Reduction of Feynman Integrals

Reduction of Feynman Integrals

The computation of Feynman integrals involves two parts:

® Reduce loop integrals to certain basis (which is called master integrals) by using
Integration-By-Parts identities (IBPs).

I, v, ) = E ciL;, where Z;'s are master integrals.

%

® Calculate Mls. For analytic calculation, there are Mellin-Barnes method, canonical form
method. And for numeric calculation, we have tools like AMFlow, sector decomposition,
dimensional difference equations and numerical differential equations. All these method
depend on IBP.

Problems Massless double box | Massless double-pentagon | 4-loop g+ g — H
Reduction time 18h 12d 860d
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Part |I: Introduction of Intersection Theory




Introduction of Intersection Theory

Introduction of Intersection Theory

The intersection theory reveals the vector space structure of a class of integrals known as period
integrals, by treating these integrals as a non-degenerate bilinear form between the integration
domain and a meromorphic differential form. [arXiv: 1711.00469][arXiv: 1810.03818]

I:/ upr = (pL|Cr] .
Cr

® u: A given multivalued function u =[]/, P;(z)* called twist, which defines an
n-dimensional affine variety M as M := CP™\ |J*,{P;(z) = 0} and a single-valued
holomorphic 1-form w = dlog u.

® . A smooth p-form on M, governed by cohomology group H?(M, V) with covariant
derivative V,, = d + wA.

® C: A p-simplex of M, governed by homology group H,(M, L)) with the local system L
generating by all branches of .
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Introduction of Intersection Theory

One may find following isomorphism according to Poincaré duality and de Rham theorem:
(See [K. Aomoto & M. Kita, Theory of hypergeometric functions.] for more details.)

HP(M,V,,) L HP(M,V_,)

0 Ry
. Sle
. Intersection
He (M, LY) H,_,(ML,)
(o] o]
And hence the dual integrals are introduced as
M= u'or=[CLler) .

Cr
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Introduction of Intersection Theory

Due to the isomorphism between HP(M,V,,) and H? ?(M,V_,,), one can introduce a
non-degenerate bilinear pairing between (bra) vectors and dual (ket) vectors, known as the
intersection number (pr|¢R),,-

(2;1)”/CL(¢L) AR = é;}iz /CSOL/\L(QDR)v

(pLler), =

With
Uer) =vr = Vu(hbr), uer)=¢L—V_u(r),
h= Z (1_9937p) ) ez,p = 9(|£C—p|—6) ) Pw = {poles of w}7 vwwL =YL, v—wwR = ¥YR-
PEP.,
After choosing the basis of cohomology group, denoted as {{e;|} and {|h;)}, one have
(ool = (prlhi), (Cil)ij@j\ , Cy = (edlhy),, -

Y
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Introduction of Intersection Theory

Relative cohomology |

One can introduce relative cohomology group by the isomorphism [arXiv: 1804.00366]
H'(CP"\ P,,{D=0},V_,) ~ H}(CP"\ P, U{D=0},V_,).

Here boundaries are divided into two parts [arXiv: 2104.06898][arXiv: 2112.00055]
® Twisted boundaries: Given by P,,. In their neighborhoods V., is locally invertible. They

are boundaries regulated by u.
® Relative boundaries: Given by {D = 0}. In their neighborhoods V., is only invertible up
to an integration constant. They are singularities introduced by ¢ and not regulated by w.

Leray coboundaries are introduced instead of regulators in twist.

u(Ih"wxm’xm*l"”’mn)¢R/\d9 oA Adbg, 0
Tm41, T,

U(Ilv"‘ 7I7n70;”' ?0)
¢>R> :
wo
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5Im+1:"' ,Ind)R =

And intersection numbers are

<§0L|5zm+1,-~ ,zn,¢R>w = <Reszm+1_m_m”_0 %QDL
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Intersection Theory in Feynman Parametrization

Feynman & LP parametrization

Consider the LP parametrization

— EVE (_1)VF(d/2) > xlijiildxi —d/2
oo svm) = e LF((L+1)d/271/)/0 (H T(v;) ><u+W) '

When some of the v;'s are zero, meaning they are kind of integrals belong to sub-sectors within

the integral family, we can insert a §(z;) into the integration measure, and get rid of the I'(1;)
in the denominator by

J,"{)_l
L'(p)

And we can express integrals in all sectors of the family using a unified LP polynomial
G =U + W. Stripping the pre-factors we consider

J(Vlv"' 7Vn) = /OOC ( H x?i_ldxi) ( H 5(5&) dl’z) (U+W)7d/2 .

%,v;>0 2,v;=0

= d(z:) + O(p").
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Intersection Theory in Feynman Parametrization

For those v; < 0, i.e., integrals with numerators, we can integrate by parts and obtain

oo +vi—1 00 —1 —V;
/ dllL G2 = / dxixf— (8) G2
0 L(p+vy) Jo L(p) Oz
:/ dx; 0(x;) <_é‘)> Gfd/2+(9(p1)’
0 0
Therefore, we can again express the integrals using the same G polynomial.

Advantages in intersection theory

® \We do NOT need to consider the spacetime dimension shift cause by partial derivatives in
usual IBP reduction methods, since integrands with extra factors of G in the denominator
are treated automatically in a unified way.

® The Symanzik polynomials are usually simpler than the Baikov polynomial since they are
homogeneous polynomials of the Feynman parameters, and can be naturally interpreted in
a projective space.
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Intersection Theory in Feynman Parametrization

Intersection theory in Feynman parametrization

In our approach, we'd like to consider

Feynman integrands € H"(CP"\ P,,{D =0},V,,) (relative forms)
~ HM(CP"\ P,uU{D=0}V,)
Dual integrands € H*(CP"\ P,U{D=0},V_,) (alg./holo. forms)

The dual forms contain factors such as 1/x; that are singular at the relative boundaries. We
can then calculate intersection numbers just as in Baikov representation with a slight change.

U(Il,"' 7IWL707"' ’0)

U($17"' 7xm7x’ln+17"' amn)

537m+17"' 7$n¢L = ¢L A deﬂﬁm+170 ARRRNA daﬂfmo )

while the intersection numbers being

(Borro on i hi), = <¢L‘Reszm+1:..:mn:0 %hi>w0 .

Note that we can always choose the dual basis {|/;)} to have at most simple poles at
the relative boundaries so that the ratio uy/u do not contribute here.
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Applications

Part IV: Applications
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Applications

Example 1: One-loop bubble B

Consider bubble integrals whose kinematic variables are m?, m3 and p? = .

mi

ma

G=U+W=ux+ 20+ mfﬁ + m%z% + mfxlxz + mgxlxg — ST1 %o .

The dimension of each layer is obtained by considering all non-zero sectors defined by products
of zero or more § functions and summing the dimensions of them.

z1

A 1 . 11
e e {1,6(m)}y, =P e{1,6(m),d(m)}, WY e {1} hi =0 e {1, } .

They correspond to the Mls Jgup(1,1), Jeub(0,1) and Jeup(1,0).
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Applications

Let us decompose Ig,p(1,2) (corresponding to ¢y, = zp day A dap) as
Igub(1,2) = c1 Izub(1,1) + ¢2 Igun(0,1) + ¢3 Igup(1,0) .
Intersection number gives

(d—3)(m? — m3 + s) (d—2)(m}+ m — s) d—2
o =- = — c3 =
! A(m?, m2, s) r 2m2N(m2, md,s)

A(mi, m3, s)
Another example is Igup(—1,2), with

d Ty (1 + m%xg + m%xg — sxg)
YL = 5 a

(5(331)(1561 Adxy.

Repeating the procedure as above, one can find

2m3 — (d—2) (m} — mj — s)

IBub(f]-aZ) = 2m2
2

Igup(0,1).
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Applications

Example 2: Two-loop sunrise

Consider sunrise integrals whose kinematic variables are m?, m? and p* = s.

mi

ms3
G = 117y + 2103 + To23 + M2 (1 + 23) + (M2 + M3 — 8) 12023 + MA2A (1) + 2p) .
We find the basis are

e e (1,8(m)}, o e {l,m,6(m)}, e=e® el m, a3, 0(m:)}.

. 1 R 1 A 1
hEl) c {17}7 h§2) S {17127}3 hz:h’53) S {1’I1,I37}.
ol X T2

Again, the basis of outermost layer correspond to the Mls Is,un(1,1,1), Isun(2,1,1),
Isun(1,1,2) and Isy,(1,0,1).
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Applications

We can now reduce a target integral, e.g., Isun(1,2,1) into the 4 Mls:
ISun(la 27 1) = (51[Sun(1a la 1) + CQISun(za 1, 1) + C3]Sun(1a la 2) + C4ISun(1a O, 1) .
Repeating the procedures as in the one-loop example, we find

(d—3)(3d— 8)(m? + m3 — s)

I DY A A B

= A= BymE(m
(d—4)A(mi, m3, s) ’

g = A(d—3)m3(m3 — s)
(d=4)A(m3,m3,s)

(d—2)

Cp = .

(d 4))‘(m17m§78)
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Applications

Degenerate limits

Subtleties in relative cohomology

The relative cohomology method involves certain subtleties in specific degenerate limits. These
occur when Feynman diagrams contain equal internal masses or involve light-like external
momentum. [arXiv: 2104.06898]

In the massless external limit, one may find some forms become exact on their respective cuts,
such as the bubble integral Iz, (1,1). For this case the basis may shrink to a smaller set of
basis.

6® = [1,6(m),6(m)} 2% o® = {5(m),6(z)}

An even trickier degenerate limit is when m; = my = m, in addition to p2 = 0. In this case,
the two tadpoles Ig,p(1,0) and Ig,u(0,1) are equivalent by IBP relations alone, without
invoking the symmetry relations. The reduction can still be done with

e=06(z), h=1/z1+1/1,.
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Summary

A novel approach to reduce loop integrals in the Feynman parametrization with the help of
intersection theory and relative cohomology.
® |n the Feynman parametrization, the recursive structure of representations in different
sub-sectors of an integral family is manifest.
® The Symanzik polynomials are homogeneous in the Feynman parameters, and are usually
simpler than the Baikov polynomial.
® In the Feynman parametrization, one does not need to introduce ISPs unless they appear
in the numerator. When that happens, the integral can be easily represented by integrands
with Symanzik polynomials in the denominator.
Outlooks:
® Improve the efficiency further and to tackle more difficult problems.
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Summary

Thanks for listening!
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