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Part I: Reduction of Feynman Integrals
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High-precision computation

The rapid development of HEP experiments has brought us
high-precision data in decades, which in turn demands
high-precision calculations in theory (Let µ =

σExp
σSM

):

• At 2012: µ = 1.4± 0.3(Exp)± (negligible Th).
• At 2022: µ = 1.05± 0.04(Exp)± 0.04(Th).

The future experiments (Run III of LHC, HL-LHC) require
reducing theoretical uncertainties by at least a factor of 5-10 (1-2
higher orders in αs).
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Reduction of Feynman Integrals

The computation of Feynman integrals involves two parts:
• Reduce loop integrals to certain basis (which is called master integrals) by using

Integration-By-Parts identities (IBPs).

I(ν1, ν2, · · · , νn) =
∑

i
ciIi , where Ii’s are master integrals .

• Calculate MIs. For analytic calculation, there are Mellin-Barnes method, canonical form
method. And for numeric calculation, we have tools like AMFlow, sector decomposition,
dimensional difference equations and numerical differential equations. All these method
depend on IBP.

Problems Massless double box Massless double-pentagon 4-loop g + g → H
Reduction time 18h 12d 860d
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Part II: Introduction of Intersection Theory
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Introduction of Intersection Theory

The intersection theory reveals the vector space structure of a class of integrals known as period
integrals, by treating these integrals as a non-degenerate bilinear form between the integration
domain and a meromorphic differential form. [arXiv: 1711.00469][arXiv: 1810.03818]

I =
∫
CR

u φL ≡ ⟨φL|CR] .

• u: A given multivalued function u =
∏m

i=1 Pi(x)αi called twist, which defines an
n-dimensional affine variety M as M := CPn \

⋃m
i=1{Pi(x) = 0} and a single-valued

holomorphic 1-form ω = d log u.
• φ: A smooth p-form on M, governed by cohomology group Hp(M,∇ω) with covariant

derivative ∇ω = d + ω∧.
• C: A p-simplex of M, governed by homology group Hp(M,L∨

ω) with the local system L∨
ω

generating by all branches of u.
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One may find following isomorphism according to Poincaré duality and de Rham theorem:
(See [K. Aomoto & M. Kita, Theory of hypergeometric functions.] for more details.)

Hc
p(M,L∨

ω) Hn−p(M,Lω)

Hp(M,∇ω) Hn−p
c (M,∇−ω)

⟨• | •⟩

⟨•
|•

]

[•
|•⟩

Period

[• | •]
Intersection

P.D.

And hence the dual integrals are introduced as

I∨ =

∫
CL

u−1 φR ≡ [CL|φR⟩ .
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Due to the isomorphism between Hp(M,∇ω) and Hn−p
c (M,∇−ω), one can introduce a

non-degenerate bilinear pairing between (bra) vectors and dual (ket) vectors, known as the
intersection number ⟨φL|φR⟩ω.

⟨φL|φR⟩ω ≡ 1

(2πi)n

∫
C
ι(φL) ∧ φR =

(−1)n

(2πi)n

∫
C
φL ∧ ι(φR) ,

With
ι(φL) = φL −∇ω(hψL) , ι(φR) = φL −∇−ω(hψR) ,

h =
∑

p∈Pω

(1−θx,p) , θx,p = θ(|x−p|−ϵ) , Pω = {poles of ω} , ∇ωψL = φL , ∇−ωψR = φR .

After choosing the basis of cohomology group, denoted as {⟨ei|} and {|hi⟩}, one have

⟨φL| =
∑
i,j

⟨φL|hi⟩ω
(
C−1

)
ij ⟨ej| , Cij ≡ ⟨ei|hj⟩ω .
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Relative cohomology
One can introduce relative cohomology group by the isomorphism [arXiv: 1804.00366]

Hn(CPn \ Pω, {D = 0},∇−ω) ≃ Hn
c (CPn \ Pω ∪ {D = 0},∇−ω) .

Here boundaries are divided into two parts [arXiv: 2104.06898][arXiv: 2112.00055]
• Twisted boundaries: Given by Pω. In their neighborhoods ∇±ω is locally invertible. They

are boundaries regulated by u.
• Relative boundaries: Given by {D = 0}. In their neighborhoods ∇±ω is only invertible up

to an integration constant. They are singularities introduced by φ and not regulated by u.
Leray coboundaries are introduced instead of regulators in twist.

δxm+1,··· ,xnϕR =
u(x1, · · · , xm, xm+1, · · · , xn)

u(x1, · · · , xm, 0, · · · , 0)
ϕR ∧ dθxm+1,0 ∧ · · · ∧ dθxn,0 .

And intersection numbers are〈
φL
∣∣δxm+1,··· ,xnϕR

〉
ω
=

〈
Resxm+1=···=xn=0

u
u0
φL

∣∣∣∣ϕR

〉
ω0

.
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Part III: Intersection Theory in Feynman Parametrization
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Feynman & LP parametrization
Consider the LP parametrization

I(ν1, · · · , νn) = eϵγEL (−1)ν Γ(d/2)
Γ ((L + 1)d/2− ν)

∫ ∞

0

(∏
i

xνi−1
i dxi
Γ(νi)

)
(U +W)

−d/2
.

When some of the νi’s are zero, meaning they are kind of integrals belong to sub-sectors within
the integral family, we can insert a δ(xi) into the integration measure, and get rid of the Γ(νi)
in the denominator by

xρ−1
i
Γ(ρ)

= δ(xi) +O(ρ1) .

And we can express integrals in all sectors of the family using a unified LP polynomial
G ≡ U +W. Stripping the pre-factors we consider

J(ν1, · · · , νn) =

∫ ∞

0

( ∏
i,νi>0

xνi−1
i dxi

)( ∏
i,νi=0

δ(xi) dxi

)
(U +W)

−d/2
.
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For those νi < 0, i.e., integrals with numerators, we can integrate by parts and obtain∫ ∞

0

dxi
xρ+νi−1

i
Γ(ρ+ νi)

G−d/2 =

∫ ∞

0

dxi
xρ−1

i
Γ(ρ)

(
− ∂

∂xi

)−νi

G−d/2

=

∫ ∞

0

dxi δ(xi)

(
− ∂

∂xi

)−νi

G−d/2 +O(ρ1) .

Therefore, we can again express the integrals using the same G polynomial.

Advantages in intersection theory
• We do NOT need to consider the spacetime dimension shift cause by partial derivatives in

usual IBP reduction methods, since integrands with extra factors of G in the denominator
are treated automatically in a unified way.

• The Symanzik polynomials are usually simpler than the Baikov polynomial since they are
homogeneous polynomials of the Feynman parameters, and can be naturally interpreted in
a projective space.
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Intersection theory in Feynman parametrization
In our approach, we’d like to consider

Feynman integrands ∈ Hn(CPn \ Pω, {D = 0},∇ω) (relative forms)
≃ Hn

c (CPn \ Pω ∪ {D = 0},∇ω)
Dual integrands ∈ Hn(CPn \ Pω ∪ {D = 0},∇−ω) (alg./holo. forms)

The dual forms contain factors such as 1/xi that are singular at the relative boundaries. We
can then calculate intersection numbers just as in Baikov representation with a slight change.

δxm+1,··· ,xnϕL =
u(x1, · · · , xm, 0, · · · , 0)

u(x1, · · · , xm, xm+1, · · · , xn)
ϕL ∧ dθxm+1,0 ∧ · · · ∧ dθxn,0 ,

while the intersection numbers being〈
δxm+1,··· ,xnϕL

∣∣hi
〉
ω
=
〈
ϕL

∣∣∣Resxm+1=···=xn=0
u0

u hi

〉
ω0

.

Note that we can always choose the dual basis {|hi⟩} to have at most simple poles at
the relative boundaries so that the ratio u0/u do not contribute here.
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Part IV: Applications
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Example 1: One-loop bubble
Consider bubble integrals whose kinematic variables are m2

1, m2
2 and p2 = s.

p

m2

m1

G = U +W = x1 + x2 + m2
1x21 + m2

2x22 + m2
1x1x2 + m2

2x1x2 − sx1x2 .

The dimension of each layer is obtained by considering all non-zero sectors defined by products
of zero or more δ functions and summing the dimensions of them.

ê(1)i ∈ {1, δ(x1)} , êi = ê(2)i ∈ {1, δ(x1), δ(x2)} , ĥ(1)
i ∈

{
1,

1

x1

}
, ĥi = ĥ(2)

i ∈
{
1,

1

x1
,
1

x2

}
.

They correspond to the MIs JBub(1, 1), JBub(0, 1) and JBub(1, 0).
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Let us decompose IBub(1, 2) (corresponding to φL = x2 dx1 ∧ dx2) as

IBub(1, 2) = c1 IBub(1, 1) + c2 IBub(0, 1) + c3 IBub(1, 0) .

Intersection number gives

c1 = − (d − 3)(m2
1 − m2

2 + s)
λ(m2

1,m2
2, s)

, c2 = − (d − 2)(m2
1 + m2

2 − s)
2m2

2λ(m2
1,m2

2, s)
, c3 =

d − 2

λ(m2
1,m2

2, s)
,

Another example is IBub(−1, 2), with

φL =
d
2

x2
(
1 + m2

1x2 + m2
2x2 − sx2

)
G δ(x1)dx1 ∧ dx2 .

Repeating the procedure as above, one can find

IBub(−1, 2) =
2m2

2 − (d − 2)
(
m2

1 − m2
2 − s

)
2m2

2

IBub(0, 1) .
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Example 2: Two-loop sunrise
Consider sunrise integrals whose kinematic variables are m2

1, m2
3 and p2 = s.

p

m3

m1

0

G = x1x2 + x1x3 + x2x3 + m2
1x21(x2 + x3) + (m2

1 + m2
3 − s)x1x2x3 + m2

3x23(x1 + x2) .
We find the basis are

ê(1)i ∈ {1, δ(x1)} , ê(2)i ∈ {1, x2, δ(x2)} , êi = e(3)i ∈ {1, x1, x3, δ(x2)} .

ĥ(1)
i ∈

{
1,

1

x1

}
, ĥ(2)

i ∈
{
1, x2,

1

x2

}
, ĥi = h(3)

i ∈
{
1, x1, x3,

1

x2

}
.

Again, the basis of outermost layer correspond to the MIs ISun(1, 1, 1), ISun(2, 1, 1),
ISun(1, 1, 2) and ISun(1, 0, 1).
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We can now reduce a target integral, e.g., ISun(1, 2, 1) into the 4 MIs:

ISun(1, 2, 1) = c1ISun(1, 1, 1) + c2ISun(2, 1, 1) + c3ISun(1, 1, 2) + c4ISun(1, 0, 1) .

Repeating the procedures as in the one-loop example, we find

c1 =
(d − 3)(3d − 8)(m2

1 + m2
3 − s)

(d − 4)λ(m2
1,m2

3, s)
,

c2 = −4(d − 3)m2
1(m2

1 − s)
(d − 4)λ(m2

1,m2
3, s)

,

c3 = −4(d − 3)m2
3(m2

3 − s)
(d − 4)λ(m2

1,m2
3, s)

,

c4 = − (d − 2)2

(d − 4)λ(m2
1,m2

3, s)
.
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Degenerate limits

Subtleties in relative cohomology
The relative cohomology method involves certain subtleties in specific degenerate limits. These
occur when Feynman diagrams contain equal internal masses or involve light-like external
momentum. [arXiv: 2104.06898]

In the massless external limit, one may find some forms become exact on their respective cuts,
such as the bubble integral IBub(1, 1). For this case the basis may shrink to a smaller set of
basis.

ê(2) = {1, δ(x1), δ(x2)}
p2→0−−−→ ê(2) = {δ(x1), δ(x2)}

An even trickier degenerate limit is when m1 = m2 = m, in addition to p2 = 0. In this case,
the two tadpoles IBub(1, 0) and IBub(0, 1) are equivalent by IBP relations alone, without
invoking the symmetry relations. The reduction can still be done with

ê = δ(x2) , ĥ = 1/x1 + 1/x2 .
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Summary

A novel approach to reduce loop integrals in the Feynman parametrization with the help of
intersection theory and relative cohomology.
• In the Feynman parametrization, the recursive structure of representations in different

sub-sectors of an integral family is manifest.
• The Symanzik polynomials are homogeneous in the Feynman parameters, and are usually

simpler than the Baikov polynomial.
• In the Feynman parametrization, one does not need to introduce ISPs unless they appear

in the numerator. When that happens, the integral can be easily represented by integrands
with Symanzik polynomials in the denominator.

Outlooks:
• Improve the efficiency further and to tackle more difficult problems.
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Thanks for listening!
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