# Elliptic Feynman Integrals in Normal Form Made Simple

#### Yiyang Zhang (张逸洋)

in collaboration with Jiaqi Chen (陈家麒), Ming Lian (廉明), Xing Wang (王星), Xiaofeng Xu (徐小峰), and Li Lin Yang (杨李林)

> Zhejiang Institute of Modern Physics Zhejiang University

> > January 10, 2025

Yiyang Zhang (ZJU)

### Feynman integrals

• Experiment: Data of observables from colliders (LHC, Future: HL-LHC, CEPC, FCC-ee, etc) in a high precision



• Theory: Standard Model, perturbative QFT, tasks boiled into the calculation of Feynman integrals (in dimensional regularization)



# Differential equation method

#### Differential equation: Calculate families of integrals

 Linear system: Master integrals as the basis integrals, reduction with IBP relations, intersection number, etc

$$I_i = c_{ij} M_j \,. \tag{1}$$

• Closure under differentiation: Gauss-Manin system

$$d\boldsymbol{M}(\boldsymbol{x},\varepsilon) = \boldsymbol{A}(\boldsymbol{x},\varepsilon)\boldsymbol{M}(\boldsymbol{x},\varepsilon).$$
(2)

• Special linear form:

$$d\boldsymbol{M}(\boldsymbol{x},\varepsilon) = \boldsymbol{A}(\boldsymbol{x},\varepsilon)\boldsymbol{M}(\boldsymbol{x},\varepsilon) = (\boldsymbol{A}^{(0)}(\boldsymbol{x}) + \varepsilon \boldsymbol{A}^{(1)}(\boldsymbol{x}))\boldsymbol{M}(\boldsymbol{x},\varepsilon). \quad (3)$$

ε-factorised form: Easy to expand in ε, iterated integrals as the coefficients

$$\mathrm{d} \boldsymbol{M}(\boldsymbol{x}, arepsilon) = arepsilon \boldsymbol{A}(\boldsymbol{x}) \boldsymbol{M}(\boldsymbol{x}, arepsilon)$$
 .

Yiyang Zhang (ZJU)

January 10, 2025

(4)

# MPLs (Multiple polylogarithms)

#### MPLs (Multiple polylogarithms)

$$G(z_1, \cdots, z_n; y) = \int_0^y \frac{\mathrm{d}t_1}{t_1 - z_1} \int_0^{t_1} \frac{\mathrm{d}t_2}{t_2 - z_2} \cdots \int_0^{t_{n-1}} \frac{\mathrm{d}t_n}{t_n - z_n} \,. \tag{5}$$

Iterated integrals on (the covering space of) the moduli space  $\mathcal{M}_{0,n}$  where the points can be understood as the Riemann sphere (with marked points  $z_1, \dots, z_n$ ), and different points mean the marked points are not isomorphic.

### Functions beyond MPLs

 The next-to-easiest class of function is the elliptic Feynman integrals, associated with elliptic curves whose Riemann surface is a torus of genus 1.



• The existence of such integrals can be traced back to the two-loop corrections to the electron self-energy by Sabry in 1962, while the first fully analytic calculation was done half a century later. [Hönemann *et al.* 2018]



- Other more complicated functions include
  - Higher genus: Hyperelliptic
  - Higher dimensions: Calabi-Yau

# Elliptic curve

#### Elliptic curve:

A smooth, projective, algebraic curve in  $\mathbb{CP}^2$  of genus 1 with one marked point.

#### Elliptic curve in different forms:

• From the **maximal cut**:

$$w^2 = P_4(z) \equiv (z - c_1)(z - c_2)(z - c_3)(z - c_4),$$
 (6

which is the most relevant one in the context of Feynman integrals.

• Legendre normal form:

$$y^2 = P_L(x) \equiv x(x-1)(x-\lambda), \qquad (7)$$

with the geometry encoded in  $\lambda$ .

The different forms can be connected to each other with suitable Möbius transformations.

```
Yiyang Zhang (ZJU)
```

# Abelian differentials

We define the pre-canonical basis with Abelian differentials

#### Abelian differentials

• First kind: holomorphic

$$\phi_1 = \frac{1}{2} \frac{\mathrm{d}x}{\sqrt{P_L(x)}} = \mathrm{d}F(\sin^{-1}\sqrt{x/\lambda},\lambda)\,,\tag{8}$$

• Second kind: meromorphic with vanishing residues

$$\phi_2 = \frac{1}{2} \frac{x \, \mathrm{d}x}{\sqrt{P_L(x)}} = \mathrm{d}F(\sin^{-1}\sqrt{x/\lambda}, \lambda) - \mathrm{d}E(\sin^{-1}\sqrt{x/\lambda}, \lambda), \quad (9)$$

• Third kind: meromorphic with non-vanishing residues

$$\phi_{i-2} = \frac{1}{2} \frac{\sqrt{P_L(e_i)}}{x - e_i} \frac{\mathrm{d}x}{\sqrt{P_L(x)}} = -\frac{\sqrt{P_L(e_i)}}{e_i} \mathrm{d}\Pi(\lambda/e_i, \sin^{-1}\sqrt{x/\lambda}, \lambda) \,.$$
(10)

Yiyang Zhang (ZJU)

### Differential equations

The differential equations are in a special linear form, and the  $oldsymbol{A}^{(0)}$  part is

$$\mathbf{A}^{(0)} = d\lambda \begin{pmatrix} \frac{1}{2(1-\lambda)} & \frac{1}{2(\lambda-1)\lambda} & 0 & \cdots & 0\\ \frac{1}{2(1-\lambda)} & \frac{1}{2(\lambda-1)} & 0 & \cdots & 0\\ \frac{1}{2(\lambda-1)} & -\frac{1}{2(\lambda-1)} & 0 & \cdots & 0\\ \frac{1}{2(\lambda-1)\sqrt{P_L(e_5)}} & -\frac{(e_5-1)e_5}{2(\lambda-1)\lambda\sqrt{P_L(e_5)}} & 0 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ \frac{(e_{n+1}-1)e_{n+1}}{2(\lambda-1)\sqrt{P_L(e_{n+1})}} & -\frac{(e_{n+1}-1)e_{n+1}}{2(\lambda-1)\lambda\sqrt{P_L(e_{n+1})}} & 0 & \cdots & 0 \end{pmatrix} \\ + \sum_{i=5}^{n+1} de_i \begin{pmatrix} 0 & 0 & 0 & \cdots & 0\\ 0 & 0 & 0 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ -\frac{e_i}{2\sqrt{P_L(e_i)}} & \frac{1}{2\sqrt{P_L(e_i)}} & 0 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} .$$
(11)

Yiyang Zhang (ZJU)

### $\varepsilon$ -factorised basis with constant period matrix

• The transformation from the pre-canonical basis to the  $\varepsilon\text{-}\mathsf{factor}\mathsf{ised}$  basis

$$\mathcal{T} = \begin{pmatrix} E(1-\lambda) & -K(1-\lambda) & 0 & 0\\ E(\lambda) - K(\lambda) & K(\lambda) & 0 & 0\\ E(\sin^{-1}a_5,\lambda) - F(\sin^{-1}a_5,\lambda) & F(\sin^{-1}a_5,\lambda) & 1 & 0\\ E(\sin^{-1}a_{\infty},\lambda) - F(\sin^{-1}a_{\infty},\lambda) & F(\sin^{-1}a_{\infty},\lambda) & 0 & 1 \end{pmatrix} .$$
(12)

• With such transformation, the **period matrix** turns out to be a constant matrix,

$$\mathcal{P} = \begin{pmatrix} \pi & 0 & 0 & 0\\ 0 & -\pi i & 0 & 0\\ \pi i & 0 & \pi i & 0\\ \pi i & 0 & 0 & \pi i \end{pmatrix},$$
(13)

from which we obtain special relations for elliptic integrals, e.g.

$$E(\sin^{-1} a, \lambda)K(1-\lambda) + F(\sin^{-1} a, \lambda) \left[E(1-\lambda) - K(1-\lambda)\right] = \frac{1}{a}\sqrt{(1-a^2)(1-\lambda a^2)} \left[\frac{1}{a^2-1}\Pi\left(\frac{a^2(1-\lambda)}{a^2-1}, 1-\lambda\right) + K(1-\lambda)\right].$$
 (14)

### Pros and cons

- Pros:
  - Remove non-ε-factorised mixing easier
  - Asymptotically  $d \log$ -forms in the degenerated limit, UT boundary conditions
- Cons:
  - Logarithmic integration kernels around any degenerated points
  - Too many different kinds of elliptic integrals

#### Question

A canonical basis?  $\Rightarrow$  Apply algorithms in [Görges *et al.* 2023], done!

#### Canonical basis

"I have discovered a truly marvelous proof of this, which this

margin is too narrow to contain."

-- Pierre de Fermat

Yiyang Zhang (ZJU)

# Conclusion

#### Procedure:

Construct basis in Legendre normal family, which is simpler, and with Möbius transformation we can project the basis back to the generic integral family without loss of generality.

- Method for systematizing the construction of ε-factorised (canonical) basis for (univariate) elliptic Feynman integrals (with kinematic marked points)
- Pre-canonical basis which enjoys nice properties, make subsequent procedures to remove the mixing with sub-sectors easier
- $\varepsilon$ -factorised basis for the non-planar double box with an inner massive loop, useful for the calculations of phenomenological processes, e.g. dijet and diphoton production
- No new algorithms for constructing  $\varepsilon$ -factorised basis, however, we can apply any algorithms with the workflow here and offer the corresponding basis directly once the integral family is specified, without following algorithms case by case

# Outlook

- Check if the intersection matrix is constant (the definition for canonical basis beyond MPLs? [Duhr *et al.* 2024])
- Prove the equivalence of the methods with Picard-Fuchs operator [Pögel *et al.* 2023] and with semi-simple unipotent decomposition [Görges *et al.* 2023]
- Express the connection matrices in modular variables and consider their modular properties, potential applications to faster numerical computation with modular transformations (both for the base and the fibre) [Weinzierl 2021]
- Further simplification for the case with dlog-forms (when we will have dlog-forms?) and special relations involved.
- Better interpretation (choice) for the canonical basis integral associated with Abelian differential of the second kind
- Apply the workflow to more complicated geometries (with marked points), e.g. hyperelliptic Feynman integrals [Duhr *et al.* 2024]

The End

Yiyang Zhang (ZJU)

# The integral family

We consider a generic univariate integral family defined by

$$I = \int_{\mathcal{C}} u \,\varphi\,,\tag{15}$$

where u is a multi-valued function

$$u = P_4(z)^{-1/2} \prod_{i=1}^n (z - c_i)^{-\beta_i \varepsilon},$$
 (16)

while  $\varphi$  is single-valued 1-form with potential poles at the branch points  $c_i$ 's (we denote  $c_{n+1} = c_{\infty} \equiv \infty$ ).

• We apply the Möbius transformation from  $P_4(z)$  to  $P_L(x)$ , then

$$u_L = P_L(x)^{-1/2} \prod_{i=2}^{n+1} (x - e_i)^{-\beta_i \varepsilon}, \qquad (17)$$

with  $e_1 = \infty$ ,  $e_2 = 0$ ,  $e_3 = \lambda$  and  $e_4 = 1$ .

Yiyang Zhang (ZJU)

### Möbius transformation

 As promised, the pre-canonical basis constructed in Legendre family can be transformed back to the original generic family with a Möbius transformation

$$\phi_1 = \frac{\sqrt{c_{13}c_{24}}}{2} \frac{\mathrm{d}z}{\sqrt{P_4(z)}},\tag{18}$$

$$\phi_2 = \frac{1}{2} c_{41} \sqrt{\frac{c_{13}}{c_{24}}} \frac{z - c_2}{z - c_1} \frac{\mathrm{d}z}{\sqrt{P_4(z)}}, \tag{19}$$

$$\phi_{i-2} = \frac{1}{2}\sqrt{P_4(c_i)} \left(\frac{1}{z-c_i} - \frac{1}{c_{1i}}\right) \frac{\mathrm{d}z}{\sqrt{P_4(z)}},$$
 (20)

$$\phi_{n-1} = -\frac{1}{2}(z - c_1) \frac{\mathrm{d}z}{\sqrt{P_4(z)}} \,. \tag{21}$$

• The pre-canonical basis integrals are asymptotically  $d \log$ -forms in the degenerated limit  $c_1 \rightarrow c_2$ , which indicates a UT boundary conditions there.

Yiyang Zhang (ZJU)

### Semi-simple unipotent decomposition

For simplicity, we reorder pre-canonical basis defined before as

$$\widetilde{\phi}_1 = \phi_1, \quad \widetilde{\phi}_{i-3} = \phi_{i-2}, \quad \widetilde{\phi}_{n-1} = \phi_2.$$
 (22)

 Decompose the period matrix into the semi-simple and the unipotent part and remove the semi-simple part.

$$\widetilde{\mathcal{P}}_{\rm pre} = \widetilde{\mathcal{P}}_{\rm pre}^{\rm ss} \cdot \widetilde{\mathcal{P}}_{\rm pre}^{\rm u} \,, \tag{23}$$

where

$$\widetilde{\mathcal{P}}_{\mathrm{pre}}^{\mathrm{u}} = egin{pmatrix} 1 & 0 & 0 & rac{arpi_1(\lambda)}{arpi_0(\lambda)} \\ 0 & 1 & 0 & rac{arpi_0(\lambda)artheta_1(e_5,\lambda) - arpi_1(\lambda)artheta_0(e_5,\lambda)}{arpi_0(\lambda)} \\ 0 & 0 & 1 & rac{arpi_0(\lambda)artheta_1(e_6,\lambda) - arpi_1(\lambda)artheta_0(e_6,\lambda)}{arpi_0(\lambda)} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Rescale the last integrals.
- Integrate out the non- $\varepsilon$ -factorised terms.

### Canonical basis

We denote the reordered pre-canonical basis as  $\widetilde{I_i}$  and the canonical basis as  $M_i.$ 

The basis integrals associated to Abelian differentials of the first and the third kind are

$$M_1 = \frac{1}{\varpi_0} \widetilde{I}_1, \quad M_{i-3} = \widetilde{I}_{i-3} - \vartheta_0(e_i, \lambda) M_1.$$
(25)

The basis integral associated to Abelian differentials of the second kind is the most special one

$$M_{n-1} = \left\{ \frac{1}{\pi\varepsilon} \frac{\partial}{\partial\tau} - \frac{1}{8} \left[ \sum_{i=2}^{n+1} \beta_i \left( \lambda + e_i - 1 \right) \varpi_0(\lambda)^2 + \sum_{i=5}^{n+1} \beta_i \vartheta_0(e_i, \lambda)^2 \right] \right\} M_1,$$
(26)  
where we choose the variables for the base manifold (moduli space  $\mathcal{M}_{1,n-2}$ ) as  
the modular variables  $\frac{\varpi_1(\lambda)}{\varpi_0(\lambda)} = -i\tau, \frac{\varpi_0(\lambda)\vartheta_1(e_i,\lambda) - \varpi_1(\lambda)\vartheta_0(e_i,\lambda)}{\varpi_0(\lambda)} = -2(z_i + \tau).$