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Introduction

Feynman integrals
• Experiment: Data of observables from colliders (LHC, Future:

HL-LHC, CEPC, FCC-ee, etc) in a high precision

• Theory: Standard Model, perturbative QFT, tasks boiled into the
calculation of Feynman integrals (in dimensional regularization)
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Introduction

Differential equation method

Differential equation: Calculate families of integrals
• Linear system: Master integrals as the basis integrals, reduction with IBP

relations, intersection number, etc

Ii = cijMj . (1)

• Closure under differentiation: Gauss-Manin system

dM(x, ε) = A(x, ε)M(x, ε) . (2)

• Special linear form:

dM(x, ε) = A(x, ε)M(x, ε) = (A(0)(x) + εA(1)(x))M(x, ε) . (3)

• ε-factorised form: Easy to expand in ε, iterated integrals as the
coefficients

dM(x, ε) = εA(x)M(x, ε) . (4)
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Introduction

MPLs (Multiple polylogarithms)

MPLs (Multiple polylogarithms)

G(z1, · · · , zn; y) =
y∫

0

dt1
t1 − z1

t1∫
0

dt2
t2 − z2

· · ·
tn−1∫
0

dtn
tn − zn

. (5)

Iterated integrals on (the covering space of) the moduli space M0,n

where the points can be understood as the Riemann sphere (with marked
points z1, · · · , zn), and different points mean the marked points are not
isomorphic.
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Introduction

Functions beyond MPLs

• The next-to-easiest class of function is the elliptic Feynman
integrals, associated with elliptic curves whose Riemann surface is a
torus of genus 1.

• The existence of such integrals can be traced back to the two-loop
corrections to the electron self-energy by Sabry in 1962, while the first
fully analytic calculation was done half a century later. [Hönemann
et al. 2018]

• Other more complicated functions include
• Higher genus: Hyperelliptic
• Higher dimensions: Calabi-Yau
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Introduction

Elliptic curve

Elliptic curve:
A smooth, projective, algebraic curve in CP2 of genus 1 with one marked point.

Elliptic curve in different forms:
• From the maximal cut:

w2 = P4(z) ≡ (z − c1)(z − c2)(z − c3)(z − c4) , (6)

which is the most relevant one in the context of Feynman integrals.
• Legendre normal form:

y2 = PL(x) ≡ x(x− 1)(x− λ) , (7)

with the geometry encoded in λ.

The different forms can be connected to each other with suitable Möbius
transformations.
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Pre-canonical basis

Abelian differentials
We define the pre-canonical basis with Abelian differentials

Abelian differentials
• First kind: holomorphic

ϕ1 =
1

2

dx√
PL(x)

= dF (sin−1
√
x/λ, λ) , (8)

• Second kind: meromorphic with vanishing residues

ϕ2 =
1

2

x dx√
PL(x)

= dF (sin−1
√

x/λ, λ)− dE(sin−1
√

x/λ, λ) , (9)

• Third kind: meromorphic with non-vanishing residues

ϕi−2 =
1

2

√
PL(ei)

x− ei

dx√
PL(x)

= −
√

PL(ei)

ei
dΠ(λ/ei, sin−1

√
x/λ, λ) . (10)
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Pre-canonical basis

Differential equations
The differential equations are in a special linear form, and the A(0) part is

A(0) = dλ



1
2(1−λ)

1
2(λ−1)λ 0 · · · 0

1
2(1−λ)

1
2(λ−1) 0 · · · 0

(e5−1)e5

2(λ−1)
√

PL(e5)
− (e5−1)e5

2(λ−1)λ
√

PL(e5)
0 · · · 0

... ... ... . . . ...
(en+1−1)en+1

2(λ−1)
√

PL(en+1)
− (en+1−1)en+1

2(λ−1)λ
√

PL(en+1)
0 · · · 0



+

n+1∑
i=5

dei



0 0 0 · · · 0
0 0 0 · · · 0
... ... ... . . . ...

− ei
2
√

PL(ei)

1

2
√

PL(ei)
0 · · · 0

... ... ... . . . ...
0 0 0 · · · 0


. (11)
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ε-factorised form

ε-factorised basis with constant period matrix
• The transformation from the pre-canonical basis to the ε-factorised basis

T =


E(1− λ) −K(1− λ) 0 0

E(λ)−K(λ) K(λ) 0 0
E(sin−1 a5, λ)− F (sin−1 a5, λ) F (sin−1 a5, λ) 1 0
E(sin−1 a∞, λ)− F (sin−1 a∞, λ) F (sin−1 a∞, λ) 0 1

 . (12)

• With such transformation, the period matrix turns out to be a constant
matrix,

P =


π 0 0 0
0 −πi 0 0
πi 0 πi 0
πi 0 0 πi

 , (13)

from which we obtain special relations for elliptic integrals, e.g.
E(sin−1 a, λ)K(1− λ) + F (sin−1 a, λ) [E(1− λ)−K(1− λ)] =

1

a

√
(1− a2)(1− λa2)

[
1

a2 − 1
Π

(
a2(1− λ)

a2 − 1
, 1− λ

)
+K(1− λ)

]
. (14)
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ε-factorised form

Pros and cons
• Pros:

• Remove non-ε-factorised mixing easier
• Asymptotically d log-forms in the degenerated limit, UT boundary

conditions
• Cons:

• Logarithmic integration kernels around any degenerated points
• Too many different kinds of elliptic integrals

Question
A canonical basis? ⇒ Apply algorithms in [Görges et al. 2023], done!

Canonical basis
"I have discovered a truly marvelous proof of this, which this

margin is too narrow to contain."

−− Pierre de Fermat
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Conclusion and outlook

Conclusion

Procedure:
Construct basis in Legendre normal family, which is simpler, and with Möbius
transformation we can project the basis back to the generic integral family
without loss of generality.

• Method for systematizing the construction of ε-factorised (canonical) basis
for (univariate) elliptic Feynman integrals (with kinematic marked points)

• Pre-canonical basis which enjoys nice properties, make subsequent
procedures to remove the mixing with sub-sectors easier

• ε-factorised basis for the non-planar double box with an inner massive loop,
useful for the calculations of phenomenological processes, e.g. dijet and
diphoton production

• No new algorithms for constructing ε-factorised basis, however, we can apply
any algorithms with the workflow here and offer the corresponding basis
directly once the integral family is specified, without following algorithms
case by case
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Conclusion and outlook

Outlook
• Check if the intersection matrix is constant (the definition for

canonical basis beyond MPLs? [Duhr et al. 2024])
• Prove the equivalence of the methods with Picard-Fuchs

operator [Pögel et al. 2023] and with semi-simple unipotent
decomposition [Görges et al. 2023]

• Express the connection matrices in modular variables and consider
their modular properties, potential applications to faster numerical
computation with modular transformations (both for the base and the
fibre) [Weinzierl 2021]

• Further simplification for the case with d log-forms (when we will
have d log-forms?) and special relations involved.

• Better interpretation (choice) for the canonical basis integral
associated with Abelian differential of the second kind

• Apply the workflow to more complicated geometries (with marked
points), e.g. hyperelliptic Feynman integrals [Duhr et al. 2024]
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The End
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Backup Slides

The integral family
• We consider a generic univariate integral family defined by

I =

∫
C
uφ , (15)

where u is a multi-valued function

u = P4(z)
−1/2

n∏
i=1

(z − ci)
−βiε , (16)

while φ is single-valued 1-form with potential poles at the branch
points ci’s (we denote cn+1 = c∞ ≡ ∞).

• We apply the Möbius transformation from P4(z) to PL(x), then

uL = PL(x)
−1/2

n+1∏
i=2

(x− ei)
−βiε , (17)

with e1 = ∞, e2 = 0, e3 = λ and e4 = 1.
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Backup Slides

Möbius transformation
• As promised, the pre-canonical basis constructed in Legendre family

can be transformed back to the original generic family with a Möbius
transformation

ϕ1 =

√
c13c24
2

dz√
P4(z)

, (18)

ϕ2 =
1

2
c41

√
c13
c24

z − c2
z − c1

dz√
P4(z)

, (19)

ϕi−2 =
1

2

√
P4(ci)

(
1

z − ci
− 1

c1i

)
dz√
P4(z)

, (20)

ϕn−1 = −1

2
(z − c1)

dz√
P4(z)

. (21)

• The pre-canonical basis integrals are asymptotically d log-forms in the
degenerated limit c1 → c2, which indicates a UT boundary conditions
there.
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Backup Slides

Semi-simple unipotent decomposition

• For simplicity, we reorder pre-canonical basis defined before as

ϕ̃1 = ϕ1 , ϕ̃i−3 = ϕi−2 , ϕ̃n−1 = ϕ2 . (22)

• Decompose the period matrix into the semi-simple and the
unipotent part and remove the semi-simple part.

P̃pre = P̃ss
pre · P̃u

pre , (23)

where

P̃u
pre =


1 0 0 ϖ1(λ)

ϖ0(λ)

0 1 0 ϖ0(λ)ϑ1(e5,λ)−ϖ1(λ)ϑ0(e5,λ)
ϖ0(λ)

0 0 1 ϖ0(λ)ϑ1(e6,λ)−ϖ1(λ)ϑ0(e6,λ)
ϖ0(λ)

0 0 0 1

 . (24)

• Rescale the last integrals.
• Integrate out the non-ε-factorised terms.
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Backup Slides

Canonical basis

We denote the reordered pre-canonical basis as Ĩi and the canonical basis
as Mi.
The basis integrals associated to Abelian differentials of the first and the
third kind are

M1 =
1

ϖ0
Ĩ1 , Mi−3 = Ĩi−3 − ϑ0(ei, λ)M1 . (25)

The basis integral associated to Abelian differentials of the second kind is
the most special one

Mn−1 =

{
1

πε

∂

∂τ
− 1

8

[
n+1∑
i=2

βi (λ+ ei − 1)ϖ0(λ)
2 +

n+1∑
i=5

βiϑ0(ei, λ)
2

]}
M1 ,

(26)
where we choose the variables for the base manifold (moduli space M1,n−2) as
the modular variables ϖ1(λ)

ϖ0(λ)
= −iτ , ϖ0(λ)ϑ1(ei,λ)−ϖ1(λ)ϑ0(ei,λ)

ϖ0(λ)
= −2(zi + τ).
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