Measurement of energy correlators inside Jets and gluon spin interference during parton shower at CMS

报告人:林桢 导师: 肖朦

LHC: Large Hadron collider

Location of the four LHC experiments around the circumference of the LHC ring

Zhejiang University

CMS detector

Brass + Plastic scintillator ~7,000 channels

Zhejiang University

Measurements of energy correlators inside jets and the determination of α_s

SILICON TRACK Pixel (100x150 μm) ~1 Microstrips (80x180 μ

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

> PRESHOWER Silicon strips ~16m² ~137,000 channels

FORWARD CALORIMETER

Steel + Quartz fibres ~2,000 Channels

Zhejiang University

Proton proton collision Sufficient QCD processes

Hard Scattering Perturbative QCD Parton Shower Resummation

Proton

Hadronization **Non-perturbative, PDF** MPI Tunes

Jet measurements

Hard Scattering Perturbative QCD

Parton will transfer to jet because of the color confinement

Parton Shower Resummation **Hadronization Non-perturbative, PDF**

Zhejiang University

Parton Shower Resummation **Hadronization Non-perturbative, PDF**

Traditional

Jet substructure

- Jet flavour tagging - Compare MC to data to improve understanding of PS

Parton Shower Resummation **Hadronization Non-perturbative, PDF**

More fundamental

Jet substructure - Lund plane

Measurements of energy correlators inside jets and the determination of α_s

Using C/A decluster to restore parton splitting

Parton Shower Resummation **Hadronization Non-perturbative, PDF**

More fundamental

Jet substructure

- Lund plane
- Energy energy correlators

Initial proposal: Chen, Moult, Zhang, and Zhu, *arXiv:2004.11381*

NLO+NLL: Lee, Meçaj, and Moult, arXiv:2205.03414

NLO+NNLLapprox: Chen, Gao, Li, Xu, Zhang, and Zhu, arXiv:2307.07510

Zhejiang University

Zhejiang University

Measurements of energy correlators inside jets and the determination of α_s

11

Compare to MC to enhance understanding

Zhejiang University

Data vs various parton shower model, difference ~ 10%

No model match data well in all p_t^{jet} regions

- : Exp systematic
- : Theo systematic

12

Zhejiang University

Most precise α_{c} determination from jet substructure

Zhejiang University

14

Parton Shower Resummation **Hadronization Non-perturbative, PDF**

More fundamental

Jet substructure

- Lund plane
- Energy energy correlators
- Gluon spin interference

Gluon spin interference

$\Delta \varphi$ follows the distribution: 1 + $Acos(2\Delta \varphi)$ (Arising from Spin Correlation)

$x \to xg(g \to q\bar{q})$

Restore parton splitting chain and flavor tagging

Zhejiang University

Measurement of gluon spin interference during parton shower

C/A declustering

Expected significance Herwig: Theorectical prediction Pythia: Pseudo Data Using <u>CombinedLimit Tool</u> to calculate the expected significance

- Include theoretical and experimental systematics
- Included MC stat uncertainty

Score $(g \rightarrow qq) > 0.5$ Significance : 7.0 σ

Zhejiang University

