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Abstract

Minimizing the dissipative loss and the fluctuation of the dissipation are important for the improvement of the performance for small heat engines, since

the fluctuations become non-negligible in small systems. We explore the simultaneous optimization of the dissipation and its fluctuation employing some

relations on the thermodynamic geometry of the parameter space of a micro scale heat engine within linear response regime.

Introduction

Thermodynamic geometry [1,2] is a suitable framework to address the issue of optimiza-

tion of small heat engines. The thermodynamic geometric expression of dissipation is

known for micro scales [3-6]. The fluctuation of the dissipation is also expressed simi-

larly [8]. Although there are optimization schemes with minimum dissipation [9] or the

trade-off approach between work fluctuation and efficiency, up to our knowledge, the

simultaneous minimization of dissipation and its fluctuation is still an open problem.

In this work, we state the simultaneous optimization of the dissipation and its fluctuation

for small cycles employing some properties of geometry [10].

Motivation

To obtain a bound on a thermodynamical quantity in terms of a geometric quantity

which is independent of the protocol.

Framework

Linear response regime, slow driving

Termodynamic Geometry

Dissipation: 〈A〉 = 〈U − W 〉 [7]
(λw, λu) = (k(t), T (t)) : control parameters,

(Xw, Xu) = P, S : conjugate generalized forces (random variables)

〈A〉 =
∫ τ

0
dt λu 〈Ẋu〉 −

∫ τ

0
dt 〈Xw〉λ̇w (1)

Linear response of the system

〈A〉 =
∮

dt g(1)
µν (t) λ̇µ(t) λ̇ν(t) (2)

Its fluctuation: [8]

〈(∆A)2〉 =
∫ τ

0
dt g(2)

µν (t) λ̇µ(t) λ̇ν(t) (3)

where,

g(1)
µν (t) = β(t)

∫ ∞

0
dt′〈∆Xj(0)∆Xi(t′)

〉
(4)

and for the fluctuations:

g(2)
µν (t) = 2T (t) g(1)

µν (t) . (5)

Thermodynamic length:

L(i) =
∫ τ

0
dt

√
g(i)

µν(t) λ̇µ(t) λ̇ν(t) =
∮ √

g
(1)
µν dλµ dλν . (6)

Small cycle (k(t) = k0 + δk and T (t) = T0 + δT ) approximation on (5):

L(2) =
√

2T0 L(1) . (7)

Figure 1. Parameter space

Optimization with a Small Cycle

Using Cauchy-Schwartz inequality in (2) and (3)

〈A〉 ≥ L(1)2/τ , 〈(∆A)2〉 ≥ L(2)2/τ (8)

Equalities hold : L(i) integrand is constant in time.

Because of the relation (5), the two metrics are different only

by an overall factor for a sufficiently small cycle. Therefore

simultaneous optimization of 〈A〉 and 〈∆A2〉 is possible for

any small closed path with an appropriately chosen protocol

≡ for given k0, T0, τ and Wqs .

Demonstration: Isoperimetric Inequality and Harmonic Oscillator
Potential

Figure 2. Brownian particle trapped in a harmonic oscillator potential, in water. (k, T ) are control
parameters

Isoperimetric inequality [10]:

L(i)2 ≥ 4πA(i) − κiA(i)2 ' 4πA(i)
(9)

where A(i) '
√

det[g(i)]k0,p0 Wqs is the thermodynamic area

with constant κi. Equality: the boundary curve is a geodesic circle.

A geodesic circle with a small radius r on the tangent space of g(1)

is the same as the one with a small radius
√

2T0 r on the tangent

space of g(2).

∴ 〈A〉opt ' 2π

√
m

k0

Wqs

τ
(10)

〈∆A2〉opt ' 4πT0

√
m

k0

Wqs

τ
(11)

for harmonic oscillator potential, given k0, T0, τ and Wqs .

Concluding Remarks

Employing the thermodynamic geometry for a small cycle we can mini-

mize the dissipation and its fluctuation simultaneously. Using isoperimet-

ric inequality, we showed that the optimum values of dissipation and its

fluctuation can be expressed in terms of given k0, T0 and Wqs values.

In our proceeding work, we compared our results with the well-known

cycles such as Stirling, Otto and Carnot and observed that our optimum

choice of the cycle is actually giving the minimum value of the dissipation

and its fluctuation.
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