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ABSTRACT
       We study quantum quench of finite rate through topological quantum transitions in two-dimensional Chern and Z2 topological insulators. We choose the representative Haldane model 

and the Kane-Mele model to investigate the behavior of excitation density generated by the quench and the impact of disorder. For the Haldane model, as long as the spectral gap is not 
closed by strong disorder, we find the excitation density at the end of the quench obeys the power-law relation with the quench rate, consistent with the prediction of the Kibble-Zurek 
mechanism. However, anti-Kibble-Zurek behavior is observed in disordered Kane-Mele model, which we attribute to the existence of a disorder-induced gapless region. Moreover,  the 
dependence of particle's onsite occupation on the quench rate exhibits a similar behavior as the excitation density, which facilitates the experimental examination of KZ prediction in 
these models.

MODEL
• The disordered Haldane model [1] with additional NNNN 

hopping is given as 

METHOD

 NUMERICAL RESULTS 
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CONCLUSION AND OUTLOOK
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• We study the dynamics of finite-rate quench in the Haldane and Kane-Mele model. For both clean and disordered Haldane model, we find the power-law 

decaying of the excitation density with quench rate consistent with  Kibble-Zurek prediction. For the Kane-Mele model involving the Z2 topological phase, 
while the KZ behavior of excitation density is also observed in the clean limit, disorder can induce the anti-KZ feature by extending the single critical point to 
a gapless region. 

•  We propose using electron’s onsite occupation to experimentally detect the breakdown of the adiabatic evolution and capture the KZ and anti-KZ behavior of 
excitation density. Furthermore, the locality of the occupation could allow us to isolate the excitations in the bulk from those on the boundary of the system. 

•  There are a couple of open questions which deserve future investigation, such as understanding anti-KZ behavior of the excitation density in disordered Kane-
Mele model and proceed to examine the KZ mechanism in interacting systems, especially those involving fractional topological orders.

   where t1, t2, and t3 denote the hopping between the nearest 
neighboring (NN), the next NN, and the next next NN sites. 
The last term is the staggered potential and onsite disorder 
potential uniformly distributed between [-W, W].

• The lattice is initially half filled. We then quench the system 
across the topological quantum phase transition of the model. 
We expect excitation density are analogous to the topological 
defects in the case of symmetry-breaking phase transitions. 
According to the KZ theory, excitation density obey a 
power-law relation with the quench rate                              , 
where z is the dynamical critical exponent and ν is the critical 
exponent of the correlation length. They can be extracted 
from the relations                        and                                     .                

  

• The disordered Kane-Mele model [2] is given as 
    • the NN hopping, the 

staggered sublattice 
potential and disorder 
potential

    • the intrinsic spin-orbit 
     coupling (SOC)
    • the Rashba SOC

 • We discretize the whole duration of the quench into N steps,  
the time evolution corresponding to the mth single-particle  
eigenstate can be                                                                     
with time interval               . Initially                                 
where             is the mth instantaneous single-particle 
eigenstate of the Hamiltonian at          . The excitation density 
at time t can then be defined as       

• Disorder effect on the scaling of excitation density
-Haldane model

• Detect the breakdown of adiabatic evolution using particle’s occupation
-Periodical boundary conditions

• Spectral gap for Haldane model with system size 
L=60. Parameters of Haldane model are chosen 
as                                                          .    

• The spectral gap develops a minimum at a critical 
point for W<2.                                     

• With these parameters, the numerical extraction of 
z and ν for clean Haldane model in Figs. 2(a) and 
(b) matches the theoretical known 

    for Dirac fermions. With these values, the KZ 
theory predicts                     .

 • We examine whether the site resolved occupation of particles[3] 
can be a measurable quantity to detect the breakdown of 
adiabatic evolution. We compute the difference between the 
actual occupation at the end of the quench, and the static 
occupation for a specific lattice site i

   where ni is the occupation number operator on site i. Without 
loss of generality, we assume i belongs to one of the two 
sublattice of honeycomb lattice (say, the A lattice).

FIG. 1. FIG. 2.

• The typical quench result is displayed in Fig. 2(c), where t2 linearly varies with time from 0.1 to 0.3,         
scaling as                     for sufficiently large system. 
• The results for W=1 are shown in Figs. 2(d)-(f). We further extract                  and           , which 
together give KZ prediction                        .
• The numerical simulation of the quench dynamics suggests                        , which is in good agreement             
with the KZ prediction. Model parameters and quench protocol are the same as those in clean case. 

-Kane-Mele model
FIG. 3. • Parameters of clean Kane-Mele model are chosen as                 and              . 

• The dependence of the final excitation density on the quench rate for clean Kane-Mele 
model exhibits similar behavior as clean and disordered Haldane model, consisting 
with KZ prediction                     , when      linearly varies from 0.1 to 0.7.      

• For disordered Kane-Mele model, the behavior of the excitation density is more 
complicated. Typical data are shown in Fig. 3(a) for W=0.3.        first decays with 
increasing quench rate for                     . Then it starts to grow with     and reaches a 
maximum at              . At last,        decays for sufficiently slow quench.

• Such non-monotonic behavior of excitation density will be attributed to the existence of 
disordered-induced gapless region [Fig. 3(b)].

• The origin of this gapless region can be understood by tracking the indirect band gap in 
the clean limit [Fig. 3(c)].

• The band structure in Fig. 3(d) of the clean Kane-Mele model along the trajectory                 
adggggfgsdf with              , from which the closing of the indirect band gap can be 
clearly seen.

-Open boundary conditions

• The particle’s occupation difference      for (a) clean Haldane model, (b) 
disordered Haldane model with W=1, (c) clean Kane-Mele model and 
(d) disordered Kane-Mele model with W=1. Quench protocols are the 
same in Figs. 2 and 3. Parameters are the same for Haldane model 
while we choose               for Kane-Mele model here.

• In (a)-(c),      shows a power-law decay with exponents close to 1, 
while in (d), the behavior unveils the non-monotonic relation. 

FIG. 4. FIG. 5.

• The particle’s occupation difference      as for clean Haldane model [(a) and 
(b)], and the clean Kane-Mele model [(c) and (d)] under open boundary 
conditions.

• In (a) and (c), we display      on the A site of the central unit cell, which 
show a power-law relation.                           

• In (c) and (d), we display      averaged over the A sites in all unit cells on the 
boundary, which show non-monotonic dependence on    .


