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The reduction of Feynman integrals plays a crucial role in the study of
quantum field theory. Currently, the standard method for integral
reduction is the Laporta algorithm for solving the integration-by-parts
(IBP) identities of Feynman integrals. However, when dealing with
complex families of integrals, the IBP reduction process can become
highly intricate and tedious, often requiring substantial computational
time even with the use of supercomputers. Therefore, improving the
computational efficiency of integral reduction is of great importance,
necessitating the development of more effective methods.

In the language of twisted homology, the equivalence classes of integration
contours are elements (cycles) of a twisted homology group determined by the
polynomial 𝛼𝛼0𝒰𝒰 + ℱ. This homology group is dual to the twisted cohomology group
of the integrands. In the literature [1711.00469] and [1810.03818], there have been
extensive discussions on how to perform integral reduction using the vector-space
structure of the cohomology groups. This can be done using the techniques of
intersection theory. The homology groups of integration contours also admit a
vector-space structure, and in principle can be used for integral reduction as well.
However, this path has not been followed in the literature to the best of our
knowledge. Now, we will exploit the equivalence of integration domains to reduce
one-loop integrals. Our procedure mainly consists of two steps:

a) transform of the integration contours either
by explicit choices of the 𝒳𝒳 and 𝒴𝒴 functions,
or by appropriate variable changes;

b) split the integration contour into several
parts, and identify each part manifestly as a
Feynman integral.

The following diagram illustrates how this
method is used to achieve the reduction of the
bubble family. As a result, we have derived
universal recursive formulas for the reduction
of one-loop integrals in both irreducible and
reducible sectors. The reduction relations can
be easily implemented in a computer program.
We have applied them to various examples and
observed remarkable performance.

As shown in the figure, each
point on the coordinate plane
represents a class of Feynman
integrals with the same level
of complexity. The horizontal
axis denotes the number of
propagators with nonzero in-
dices, while the vertical axis
represents the sum of the inte-
gral indices. For one-loop in-
tegrals, each point on the pur-
ple line corresponds to mast-
er integrals.

As a relatively complex example, we consider the reduction of
the pentagon family. As shown in the figure, the blue diagram
represents a pentagon diagram with three internal lines of
different masses, and its external lines are light-like. This
family can be represented using a 5 × 5 symmetric matrix 𝒁𝒁,
constructed from kinematic invariants. Subsequently, with the
reduction formulas we provide, one only needs to compute
certain cofactors of 𝒁𝒁 to achieve a direct and directional reduc-
tion of the integrals

In certain cases, the top sector of the pentagon diagram is
reducible. For instance, the pink diagram (𝑝𝑝1 ⋅ 𝑝𝑝2 = 0) and the
purple diagram (𝑝𝑝1 = 𝑝𝑝2) represent cases where all internal
lines are massless. The peculiarity of these cases lies in 𝒁𝒁 = 0.
In our method, these cases can also be directionally reduced.
By leveraging the null space of the matrix 𝒁𝒁, one can directly
decompose the integrals of the top sector into those of lower
sectors.

Given the success in one-loop problems, it is natural to extend our approach to multi-loop integrals. A new ingredient at higher loops is that there can be more
than one master integrals within a sector, and it is no longer guaranteed that all indices can be reduced to 1 or 0. Correspondingly, in our approach, we find
that when we perform the variable transformations, certain variables appear in the denominators of the transformed integrands. Such transformations are
therefore only valid if the corresponding indices are greater than 1. We have made initial attempts in the sunrise families. Finally, in this work we have only
exploited the equivalence of integration contours in a simple way. There can be deeper mathematical structures behind these equivalence relations. For
example, it is possible to employ the concept of intersection numbers between two integration contours to directly compute the reduction coefficients. This
provides a particularly intriguing future perspective.
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As an example, we depict the reduction process for the
integral 𝐼𝐼(2,1,1,1,1)(green point) in the figure. In our method,
the reduction can be carried out directly and directionally along
the colored lines to the master integrals (the pink line
represents the reduction of reducible sectors). In contrast, for
the IBP method, the reduction cannot proceed directly or
directionally. Instead, one must generate relationships between
various integrals represented by the gray lines and solve a
complex system of equations. Therefore, our new method is
significantly more efficient than the IBP method.

We found that Feynman integrals can be expressed as

where we generalize the well-known Cheng-Wu
theorem into a more general form. The 𝒳𝒳 and 𝒴𝒴 in
the delta function can be adjusted arbitrarily to some
extent. This essentially provides equivalence classes
of integration domains: when the 𝑛𝑛-form 𝑓𝑓𝑓𝑓 is
integrated over any hypersurface 𝑆𝑆𝑛𝑛 defined by 𝒳𝒳 −
𝒴𝒴 = 0, the results are all equivalent.
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