
Seiberg-Witten curve of quiver theory with antisymmetric matter

Xinyi Cai, Jiahao Chen and Xinyu Zhang

Zhejiang Institute of Modern Physics, School of Physics, Zhejiang University,
866 Yuhangtang Rd, Hangzhou, Zhejiang, 310058, China

Seiberg-Witten curve of quiver theory with antisymmetric matter

Xinyi Cai, Jiahao Chen and Xinyu Zhang

Zhejiang Institute of Modern Physics, School of Physics, Zhejiang University,
866 Yuhangtang Rd, Hangzhou, Zhejiang, 310058, China

Introduction

Quantum field theory has been successfully applied in many areas of
physics, but the standard perturbative approach is insufficient to describe
many important phenomena. It is therefore inevitable to consider non-
perturbative effects, such as instantons.
The 4D N = 2 supersymmetric gauge theories have been a fruitful field
of study for theoretical physicists for decades. The solution to the low-
energy dynamics can be encoded in the Seiberg-Witten geometry. This
solution can be derived from an honest multi-instanton calculus.
Our aim is to apply the instanton counting approach to derive the
Seiberg-Witten solution for linear SU quiver gauge theories decorated
with antisymmetric matter on one or both sides:

or

The partition function

Ω-background

The partition function Z of 4D N = 2 supersymmetric gauge theory in
the Ω-background can be computed exactly, taking the form:

Z(a,m, q; ε1, ε2) = Zpert(a,m; ε1, ε2)×
∞∑
k=0

qkZk(a,m; ε1, ε2),

where Zpert stands for perturbative contribution and Zk is the non-
perturbative contribution from the k-instanton sector, given by a sta-
tistical sum over Young diagrams.

Flat space limit and prepotential

• In the limit ε1, ε2 → 0, the Ω-background goes back to the flat space
R4, and the main contribution to Z comes from a limit shape configure
with k ∼ 1

ε1ε2
. The Wilsonian low energy effective prepotential F can

then be extracted by

F = − lim
ε1,ε2→0

ε1ε2 lnZ.

•Combining contributions from perturbative and non-perturbative
parts, the expression for Z can be expressed by the continuous density
function ρ(x) as:

Z =

ˆ
Dρ e−

1
ε1ε2

(F eff(ρ)+O(ε1,ε2)).

Derive the difference equation

Define the amplitude functions

Yi(x) = exp

ˆ
R
dxρi(x) ln(x− x), i ∈ Vertγ labels the SU subgroups.

The saddle point equation of F eff(ρ) gives the difference equation serving
exactly as constraints specifying the way Yi is joined at the branch cut:

Y+
i (x)Y−

i (x) = qiF (Y(x)),

where F (Y(x)) is a highly schematic notation, absorbing all possible
polynomials of x and mass deformed parameter in Yi(x).

Construct the iWeyl invariant

The transformations above generate the iWeyl group iW of the theory. By analytically continue Yi(x)
over C⟨x⟩, one constructs the holomorphic iWeyl invariants Xi(Yi(x)) that are invariant under the action
of iW :

Xi(Y(x)) = Yi(x) + Ψ(Y(x)) = Ti(x) ∈ Poly[x],

where the schematic Laurent polynomial Ψ(Y(x)) stands for higher order terms in qi which are
generated by applying iWeyl transformations on Yi(x).
The above set of equations gives the cameral curve Cu over CP1

x = C⟨x⟩ ∪ {∞}. The cameral curve
together with the vector-valued Seiberg-Witten differential which is schematically given by

dS = x
∑
i

(α∨
i d lnYi − λ∨

i d lnPi(x)),

forms a geometric interpretation of the theory, containing all information of Seiberg-Witten data.

Extract Seiberg-Witten data

Eliminating all but one of the Yi(x)’s in the above equations formally gives the cameral curve Cu, which
is a iW-cover of CP1

x.
For our case of the SU linear quiver gauge theory, it’s much easier to construct the equivalent but much
”smaller” spectral curve, obtained by organizing the iWeyl invariants Xi into a generating polynomial

det(t · Ir+1 − gλi
(x)) = 0,

and replacing all occurrences of Xi in its coefficients by Ti(x). This is precisely the Seiberg-Witten
curve that we are trying to derive, and the associated Seiberg-Witten differential is:

λ = x
dt

t
.

A simple case: SU theory with antisymmetric matter

As the simplest example, consider the 4D N = 2 theory with gauge group SU(v), containing a
single antisymmetric hypermultiplet of mass m in addition to Nf fundamental ones of mass mf , f =
1, · · · , Nf .

F eff(ρ) of the theory writes:

F eff(ρ) =−
¨

dx′dx′′ρ(x′)ρ(x′′)

(
K(x′ − x′′)− 1

2
K(x′ + x′′ −m)

)
+

ˆ
dx′ρ(x′)

x2

2
ln q− 2K

(
x− m

2

)
+

Nf∑
f=1

K(x′ −mf)


+
∑
l

bl

(
1−
ˆ
Il

ρ(x′)dx′
)
+
∑
l

aDl

(
al −
ˆ
Il

x′ρ(x′)dx′
)
.

Taking the variation of F eff with respect to x twice gives the the difference equation for Y(x):

Y+(x)Y−(x) = P(x)Y(m− x), P(x) = q

∏Nf

f=1(x−mf)

(x− m
2 )

2
.

By constructing the iWeyl invariant X , its master equation is given by:

X (Y(x)) = Y(x) + P(x)
Y(m− x)

Y(x)
+ P(x)P(m− x)

1

Y(m− x)
= T (x).

After eliminating Y(m− x) from the above equation one immediately obtains a cubic Seiberg-Witten
curve:

Y3 + P (x)Y +Q(x) = 0,

which is consistent with the physical interpretation of the additional antisymmetric part.

General case

The similar procedure can be applied to the general case of SU linear quiver theory decorated by
antisymmetric matter on one or both sides, where we derive their Seiberg-Witten curve using the pure
field theoretical techniques described above and compare the results with those obtained from the brane
construction method in string theory.
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