2025.1.7

Status

- Beam induced Background
 - No Shielding version, Higgs + Z(3T) + High Lumi Z(2T)
 - 2nd LYSO of Lumi changed to 800-950mm
 - Change the stainless-steel outside of the magnet coil to Al(10~140mm--> 2)
 - Change the stainless-steel outside of the cryo-module to Ti(10~135mm --> 3)
 - Shielding version(Baseline): Pair + Single(BGB/BTH/BGC/TSC).
 - 10cm Paraffin at both ends of Yoke
 - 10mm outside of the beam pipe between 1115~1900mm
 - 10mm outside of the cryo-module between 1050~7160mm
 - 10mm W between 800~1050mm(outside of Lumi + space between lumi and cryo)

3

Status

- Beam induced Background
 - No Shielding version, Higgs + Z(3T) + High Lumi Z(2T)
 - 2nd LYSO of Lumi changed to 800-950mm
 - Change the stainless-steel outside of the magnet coil to Al(10~140mm--> 2)
 - Change the stainless-steel outside of the cryo-module to Ti(10~135mm --> 3)
 - Shielding version(Baseline): Pair + Single(BGB/BTH/BGC/TSC).
 - 10cm Paraffin at both ends of Yoke
 - 10mm outside of the beam pipe between 1115~1900mm
 - 10mm outside of the cryo-module between 1050~7160mm
 - 10mm W between 800~1050mm
 - Higgs, Z(3T) and High Lumi Z(2T) first version finished.
 - More BGC Collimators needed, Sha is working on it.

Parameters @ High-Z with 3T

Dou Wang

	Z									
Number of IPs	2									
Circumference (km)	99.955									
SR power per beam (MW)	30	50								
Half crossing angle at IP (mrad)	16	5.5								
Bending radius (km)	10.7									
Energy (GeV)	45.5									
Energy loss per turn (GeV)	0.037									
Damping time $\tau_x/\tau_y/\tau_z$ (ms)	816/816/408									
Piwinski angle	24.2	29.5								
Bunch number	11934	13104								
Punch specing (ng)	23.1	23.1								
Bunch spacing (ns)	(17% gap)	(9% gap)								
Bunch population (10 ¹¹)	1.4	2.1								
Beam current (mA)	806.9	1345.2								
Phase advance of arc FODO (°)	60									
Momentum compaction (10 ⁻⁵)	1.43									
Beta functions at IP β_x^* / β_y^* (m/mm)	0.13/1.0									
Emittance $\varepsilon_x / \varepsilon_v$ (nm/pm)	0.27/5.1									
Betatron tune v_x/v_y	317/317									
Beam size at IP σ_x/σ_v (um/nm)	6/72									
Bunch length (natural/total) (mm)	2.5/9.3	2.2/10.6								
Energy spread (natural/total) (%)	0.04/0.15	0.04/0.15								
Energy acceptance (DA/RF) (%)	1.2/1.7	1.2/2.1								
Beam-beam parameters ξ_x / ξ_y	0.0045/0.069	0.0046/0.074								
RF voltage (GV)	0.12	0.15								
RF frequency (MHz)	650 (1 ce	ll cavity)								
Harmonic number	216720									
Longitudinal tune v _s	0.035	0.040								
Beam lifetime (Bhabha/beamstrahlung) (min)	170/95800	120/932								
Beam lifetime requirement (min)	77	81								
Luminosity per IP $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$	50.3	95.2								

~1/2

5

Writing Status

Chapter 3 The Machine Detector Interface and Luminosity Measurement

3.1	Introdu	ction	
3.2	Interac	tion Regio	n
3.3	Key Co	mponents	
	3.3.1	Beam Pip	1e
		3.3.1.1	Introduction
		3.3.1.2	Mechanical Design
		3.3.1.3	Thermal Analysis
	3.3.2	Final Foc	using System
		3.3.2.1	introduction
		3.3.2.2	superconducting-quadrupole-magnet-q1a
		3.3.2.3	superconducting-quadrupole-magnet-q1b
		3.3.2.4	superconducting-quadrupole-magnet-q2
		3.3.2.5	superconducting-anti-solenoid
	3.3.3	Cyro-mo	dule
		3.3.3.1	Cooling Scheme
		3.3.3.2	SC Magnet Cryomodule Design
3.4	Beam 1	induced Ba	ackgrounds
	3.4.1	Introduct	ion and Sources
		3.4.1.1	Photon Backgrounds
		3.4.1.2	Beam Loss backgrounds
	3.4.2	Shielding	Design/mitigation methods
		3.4.2.1	Collimator and Mask
		3.4.2.2	Shielding
	3.4.3	Effectives	ness
	3.4.4	Impact E	stimation
		3.4.4.1	Noise on Detector
		3.4.4.2	Radiation Environment
	3.4.5	Benchma	rk
		3.4.5.1	Introduction
		3.4.5.2	BEPCII and BESIII
		3.4.5.3	Beam background experiment
		3.4.5.4	Beam Background Simulation
3.5	Lumin	osity Meas	surement System
	3.5.1	Introduct	ion
	3.5.2	Fast Lum	inosity Monitor

	3.5.3	LumiCal acceptance		 											 		35
	3.5.4	Detecting radiative Bhabha events		 											 		37
	3.5.5	LumiCal detector simulation		 		 -		-							 		39
	3.5.6	LYSO calorimeter simulation		 				-							 		41
	3.5.7	Systematics on integral luminosity		 											 		42
3.6	Summa	ary		 											 		44
3.7	Summa	ary & Outlook		 											 		45

Backup