

CEPC vertex Detector

Zhijun Liang

Ref-TDR

- More than 50 pages ready (95%)
- Introduction part (ready)
- R & D part
 - Jadepix/Taichu (1st draft ready)
 - Stitching (1st draft ready)
- Detector design
 - Physics Layout (1st draft ready)
 - Background (Z pole estimation to be updated)
 - Stitching design (1st draft ready)
 - Mechanics (1st draft ready)

https://latex.ihep.ac.cn/project/6745179fef5108a66841008a

Chapter	1 Ver	tex Detect	or	1				
1.1	Physics	Requirem	nents, Operation Plan	1				
1.2	Sensor	Technolog	gy Overview	2				
1.3	R&D e	fforts and	results	3				
	1.3.1	CMOS pi	xel sensor JadePix series	3				
		1.3.1.1	Overview of JadePix development	3				
		1.3.1.2	Exploring the performance limit of TJ 180 nm process	4				
	1.3.2	MAPS Ta	nichuPix series	5				
		1.3.2.1	TaichuPix specification	6				
		1.3.2.2	TaichuPix-3 performance	6				
		1.3.2.3	Beam test of a backup vertex detector prototype	8				
	1.3.3	Stitching		10				
		1.3.3.1	Stitching technology	12				
		1.3.3.2	Material budget	12				
		1.3.3.3	The radius bending test	14				
		1.3.3.4	Prototype Process Verification	15				
		1.3.3.5	Performance of the MAPS chip after bending	16				
1.4	Detecto	or Design		18				
	1.4.1	Layout		19				
	1.4.2	Backgrou	nd estimation	23				
	1.4.3	Performa	nce	26				
		1.4.3.1	Hit number and efficiency	26				
		1.4.3.2	Resolution	27				
		1.4.3.3	Under dead sensors	28				
		1.4.3.4	Beam background	29				
1.5	Sensors	s and Elect	tronics	29				
	1.5.1	R&D plan	1	29				
	1.5.2	Stitched sensor prototype design						
		1.5.2.1	Sensor architecture and functional blocks	30				
		1.5.2.2	Design of the repeated sensor unit	32				
		1.5.2.3	Design of the Left-End Block (LEB)	40				
		1.5.2.4	Power consumption estimates	40				
	1.5.3	Backend	electronics and Cables	41				
1.6	Mechai			41				
	1.6.1	General S	Support Structure	41				
		1.6.1.1	Ladder and Support	41				
		1.6.1.2	Ladder-Based Barrel and Beam Pipe Integration	43				
		1.6.1.3	Bent MAPS Cylinders and Beam Pipe Fixation	43				
	1.6.2	_		47				
		1.6.2.1	Cooling Requirements	47				
		1.6.2.2	Air Cooling and Simulation	47				
	1.6.3	Services		47				

Rough schedule for 3 years (preliminary)

- 2025: stitching engineering run design based on TJ180nm
- 2026: Engineering run design based on TPSCO 65nm
- 2027: Vertex detector prototyping

Stitching design

- Repeated sensor unit (RSU) design
 - Dead area in power switches
 - Stitched backbone
 - Deadzone Implemented in simulation

RSU (Repeated Sensor Unit)

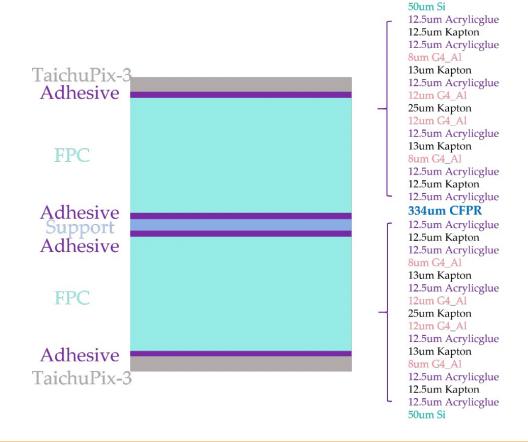

Stitched backbone	Sensor Block	Power switches	Sensor Block	Power switches	Sensor Block	Power switches	Stitched backbone	Sensor Block	Power switches	Sensor Block	Power switches	Sensor Block
Stitched backbone	Sensor Sensor	Power switches	Block Zensor	Power switches	Block Zensor	Power switches	Stitched backbone	Sensor Sensor	Power switches	Block Zensor	Power switches	Sensor Sensor

Figure 1.49: Proposed floor-plan for a repeated sensor unit (RSU) (not to scale).

backup

Aluminum flexible PCB

- Yunpeng found a PCB company interested in developing Aluminum flexible PCB
- May be able to reduce the material for ladder design

