



# **CEPC Jet&Clusters**

Kaili Zhang

**IHEP** 

zhangkl@ihep.ac.cn



• Samples

Vertex

• TDR

# CEPC sample/release



- Latest master release.
  - Need 6GB memory, speed slower.
- H->qq, Z->qq, WW/ZZ->4q sample available under
  - /cefs/higgs/zhangkl/Production/2412/
  - /cefs/higgs/guofy/CEPCSW\_tdr24.12.1/performance/JER\_eeqq
  - New PID, vertex fit in latest: /cefs/higgs/zhangkl/Production/24122
- Other processes and generators under study @Nazima

Limited /cefs disk quota. 800T->356T available.

### MCParticle Parent/Daughter Pointer



- Bug: MCParticle container will lose pointer relationship in copy.
  - MCParticle-> getDaughters(0)->getPDG()
  - Essential for mc topology.
  - If "keep \*" all the time, no this issue.
  - Reported to software group.

```
JetOrigin
                    INFO id: 620d5704
PDG : 25
generatorStatus : 2
simulatorStatus : 0
charge: 0
time : 0
mass : 125
vertex : 0 0 0
endpoint : 0 0 0
momentum : -21.8565 21.5034 -27.6322
momentumAtEndpoint : 0 0 0
spin : 0 0 0
colorFlow : 0 0
parents :
daughters : ffffffff-1
```

```
620d57088
PDG : -14
generatorStatus : 0
simulatorStatus : 1073741824
charge : 0
time : 6.46358
vertex : -1160.4 68.2995 -1437.91
endpoint : -6312.01 -4567.78 -10000
momentum : -0.192624 -0.173348 -0.320146
momentumAtEndpoint : -0.192624 -0.173348 -0.320146
spin : 0 0 0
colorFlow: 0 0
parents: 620d57041
daughters :
id: 620d57089
PDG : 13
generatorStatus : 0
simulatorStatus : 1073741824
charge : -1
mass : 105.658
vertex : -1160.4 68.2995 -1437.91
endpoint : -422.527 -646.651 -3417.13
momentum : -0.406967 -0.317798 -0.551624
momentumAtEndpoint : -0 -0 0
spin : 0 0 0
colorFlow: 00
parents : 620d57041
daughters :
```

#### Sample Requirement for TDR note



No endcap;

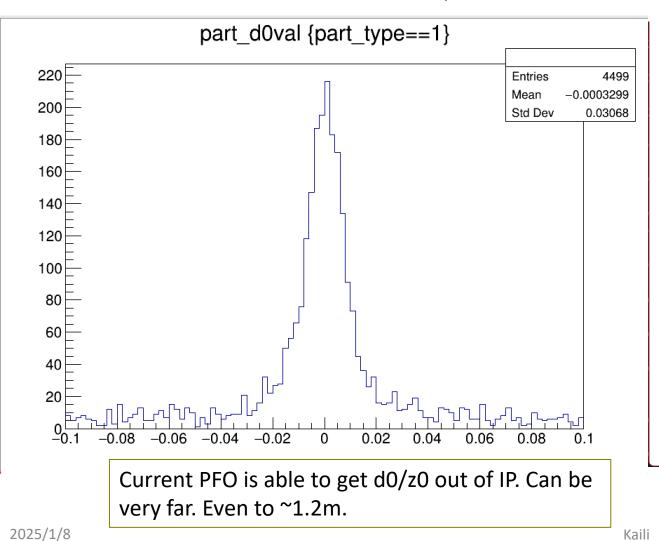
Ecal 10\*10mm.

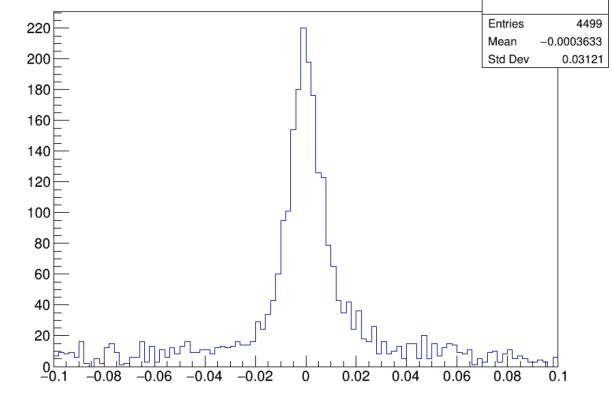
Also we assume there are no big change in detector level.

Following samples are almost ready.

For ttbar, Vcs/Vcb, LLP, weak mixing angle, need analyzer to participate.

| <del>-</del>         | D                                  | Damain (1 | Delevent Det Denfermen au (1   |
|----------------------|------------------------------------|-----------|--------------------------------|
| <u> </u>             | Process @ c.m.e←                   | Domain←   | Relevant Det. Performance      |
| Z→μμ←                | Z@ 91.2 GeV←                       | Z←¹       | lepton ID, tracking←           |
| Η→γγ←                | ЧЧР                                | Higgs←    | photon ID, EM resolution←      |
| Higgs recoil←        | ℓℓH←                               | Higgs←    | Lepton ID, track dP/P←         |
| H→ss←                | ννΗ @ 240 GeV <sup>←</sup>         | Higgs←    | PID, Vertexing, PFA + JOI←     |
| H→inv←               | ЧРРР                               | Higgs/NP← | PFA, MET←                      |
| Vcs/Vcb <sup>←</sup> | WW→ℓνqq @ 240/160 GeV <sup>-</sup> | Flavor←   | PFA, JOI + PID (lepton, tau)←  |
| H→LLP←               | ℓℓH←                               | NP←       | TPC, TOF, calo, muon detectors |
|                      | ←                                  | ·         |                                |
| Η→μμ<⁻               | qqH€                               | Higgs←    | lepton ID, tracking, OTK←      |
| Top mass & width←    | Threshold scan @ 360 GeV←          | EW←       | Beam energy←                   |
| Weak mixing angle←   | Z→bb @ 91.2 GeV←                   | EW←       | JOI←                           |


| Signal Process      | Sample Stats | Bkg Process             | Stats                      |
|---------------------|--------------|-------------------------|----------------------------|
| Z->mm@91.2GeV       | 100k         | ee->mm@91.2             | In barrel nearly bkg free. |
| H->yy Z->qq         | 100k         | ee->qqy, ee->WW/ZZ->qqy |                            |
| Z->II, Hrecoil      | 100k         | ee->WW/ZZ->II+qq        |                            |
| Z->vv, H->ss        | 100k         | ee->(WW/ZZ)->qq         |                            |
| Z->qq, H->invisible | 100k         | ee->(WW/ZZ)->qq         |                            |
| Z->qq, H->mm        | 100k         | ee->(WW/ZZ)->II+qq      |                            |


Generally, for bkg, need 240GeV, ee->qq(y); ee->WW/ZZ->(qq)qq; ee->WW/ZZ->II(same flavor)+qq.

#### D0, Z0 without vertex fit



ZH->vvbb, 200 events. For PFOs with tracks and truth matched. Unit: mm; 0.1mm=100um. Vertex baseline position resolution: 3um. After fix, now d0, z0 value can be read correctly.

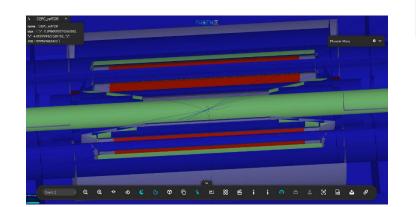




part z0val {part type==1}

Will further check with ChenGuang with Vertex fit.

Kaili


#### **Towards TDR**

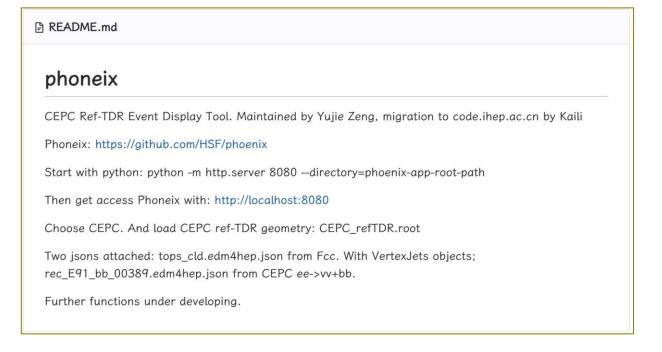


| Chapte   | r I Det | ector and Physics performance                                                         | 1  |  |
|----------|---------|---------------------------------------------------------------------------------------|----|--|
| 1.1      | Introdu | action                                                                                | 1  |  |
| 1.2      | Detecto | ector Performance                                                                     |    |  |
|          | 1.2.1   | Tracking (Chenguang Zhang, Hao Zhu, et al.)                                           | 1  |  |
|          |         | 1.2.1.1 Tracking efficiency                                                           | 1  |  |
|          |         | 1.2.1.2 Momentum resolution                                                           | 2  |  |
|          |         | 1.2.1.3 Impact parameter resolution                                                   | 3  |  |
|          | 1.2.2   | PID                                                                                   | 4  |  |
|          |         | 1.2.2.1 Photon, Electron and Muon (Ligang Xia, Danning Liu, et al.)                   | 4  |  |
|          |         | 1.2.2.2 Charged Hadrons (Chenguang Zhang, Xiaotian Ma, et al.)                        | 4  |  |
|          | 1.2.3   | Jets (Kaili Zhang, Xiaotian Ma, Yingqi Hou, Chenguang Zhang, Jiarong Li, et al.)      | 6  |  |
|          |         | 1.2.3.1 Actual Jet Energy Resolution                                                  | 7  |  |
|          |         | 1.2.3.2 Jet performance in physics events                                             | 7  |  |
|          | 1.2.4   | Vertexing (Chenguang Zhang, et al.)                                                   | 12 |  |
|          |         | 1.2.4.1 Vertex Efficiency                                                             | 12 |  |
|          |         | 1.2.4.2 Vertex Resolution                                                             | 12 |  |
|          | 1.2.5   | Jet Flavor Tagging - traditional way (Chenguang Zhang, et al.)                        | 12 |  |
|          | 1.2.6   | Jet Origin ID (Manqi Ruan, Kaili Zhang, et al.)                                       | 12 |  |
| 1.3      | Physics | s Benchmarks                                                                          | 13 |  |
|          | 1.3.1   | Event Generation (Kaili Zhang, Gang Li, et al.)                                       | 13 |  |
|          |         | 1.3.1.1 Monte Carlo event generators                                                  | 13 |  |
|          |         | 1.3.1.2 Generated signal and background samples                                       | 13 |  |
|          | 1.3.2   | Analysis Tools                                                                        | 13 |  |
|          |         | 1.3.2.1 Multivariate analysis tools                                                   | 13 |  |
|          | 1.3.3   | Higgs mass and production cross-section through recoil mass (Mingshui Chen, et al.)   | 14 |  |
|          | 1.3.4   | Branching ratios of the Higgs boson in hadronics final states (Yanping Huang, et al.) | 14 |  |
|          | 1.3.5   | $H \to \gamma \gamma$ (Yaquan Fang, et al.)                                           | 14 |  |
|          | 1.3.6   | H 	o invisible (Mingshui Chen, et al.)                                                | 14 |  |
|          | 1.3.7   | Weak mixing angle (Zhijun Liang, Bo Liu, et al.)                                      | 14 |  |
|          | 1.3.8   | A channel in flavor physics (Shanzhen Chen, et al.)                                   | 14 |  |
|          | 1.3.9   | top mass and width (Xiaohu Sun, et al.)                                               | 14 |  |
|          | 1.3.10  | W fusion cross section (Hongbo Liao, et al.)                                          | 14 |  |
|          | 1.3.11  | Long-lived particles (Liang Li, et al.)                                               | 14 |  |
|          | 1.3.12  | smuon (Xuai Zhuang, et al.)                                                           | 14 |  |
|          |         | $Z \to \mu\mu$                                                                        |    |  |
| 2025/1/  | 1.3.14  | $H \to \mu\mu$                                                                        | 14 |  |
| ZUZJ/ 1/ | 0       |                                                                                       |    |  |

Provide the post-calibration distribution?
Timescale;
Some channel can start (photon, muon)
Some still missing (endcap, MET)
Analysis tools (now PID available,
Still need isolated objects, vertex, flavor tagging.)

# **Event display**




@Zeng Yujie, You Zhengyun



His slides

Version to use: <a href="https://code.ihep.ac.cn/zhangkl/phoneix">https://code.ihep.ac.cn/zhangkl/phoneix</a>

- Latest geometry applied;
- Enough for general purpose.

