

Luminosity measurement without using EMC

Jin Fang¹, Weiping Wang², Jin Zhang¹, Bingxin Zhang³, Haiming Hu³, Guangshun Huang⁴

> ¹SUN YAT-SEN UNIVERSITY ²JGU ³IHEP ⁴USTC March 12, 2025

Outline

- Motivation
- Data Sets
- Selection criteria
- Background study
- Comparison between data and MC
- Measured integrated luminosities
- Systematic Uncertainty
- Result
- Comparison with published results
- Summary

- \blacktriangleright Luminosity (\mathcal{L}) is an important input for many measurement. So, precise measurement of luminosity is highly desired.
- ➤ In e^+e^- collider, the precise measurement is achieved due to the well-understood QED processes $e^+e^- \rightarrow e^+e^-$, $e^+e^- \rightarrow \gamma\gamma$, and $e^+e^- \rightarrow \mu^+\mu^-$.
- \succ For a specific process, the luminosity is usually determined as

$$\mathcal{L} = \frac{N}{\epsilon \times \sigma}$$

where N is the number of event, σ is cross section of the physical process and ϵ denotes the detection efficiency.

In a study of high energy EMC showers, it was found that the EMC electronics occasionally failed to provide valid signals for crystals with high deposited energy. (See Tang Guangyi's report)

➤ The left plot shows the EMC energy deposition of a typical high energy (approximately 2 GeV) electron or positron shower, where no problem occurs.

> The right plot shows an example of a shower missing the readout of the EMC energy deposition from one crystal.

Plots from BESIII work (<u>CPC</u> <u>46, 113003 (2022)</u>)

- In the plots, two abnormal accumulations can be found for the data samples, which are not present for the MC sample
- These accumulations are formed by events in which the reconstructed energy deposition by the charged track in the EMC is missing the readout signal from one crystal
- The 3% data events in green square region are saturation events

- The existence of saturation effects was not known previously: <u>CPC 41,063001 (2017)</u>
- Yield loss caused by saturation effects has been recovered in <u>CPC 46, 113002 (2022)</u> and <u>CPC 46, 113003 (2022)</u>.

- To avoid the impact of saturation and other possible imperfect simulation of EMC showers, we propose a luminosity measurement method using MDC only.
- > The luminosity is calculated by following formula

$$\mathcal{L} = \frac{N_{ee}}{\epsilon_{ee} \times \sigma_{ee}} = \frac{N_{\mu\mu}}{\epsilon_{\mu\mu} \times \sigma_{\mu\mu}} = \frac{N_{ee} + N_{\mu\mu}}{\epsilon_{ee} \times \sigma_{ee} + \epsilon_{\mu\mu} \times \sigma_{\mu\mu}} = \frac{N_{obs} - N_{bkg}}{\epsilon_{ee} \times \sigma_{ee} + \epsilon_{\mu\mu} \times \sigma_{\mu\mu}}$$

where N_{obs} is the total number of observed signal events, cross section σ is given by accurate QED theoretical calculation and ϵ denotes the detection efficiency which is estimated by signal MC.

- This method is applicable across all energy ranges and serves as a cross-check of the previously published luminosity results.
- > Potentially identify other issues with EMC, and we do find an inefficiency of 1%!

➤ 2013-2014 R-scan data (BOSS 7.0.3)

104 energy points in total, ranging from 3.8500 to 4.5900 GeV

- ➤ 2020 XYZ data (BOSS 7.0.6)
 - 7 energy points in total, ranging from 4.6000 to 4.7000 GeV
- ➤ 2021 XYZ data (BOSS 7.0.7)

6 energy points in total, ranging from 4.7400 to 4.9500 GeV

Data Sets

➤ MC samples:

Process	Generator
e ⁺ e ⁻	BABAYAGA NLO
$\gamma^+\gamma^-$	BABAYAGA NLO
$\mu^+\mu^-$	BABAYAGA NLO
e ⁺ e ⁻ e ⁺ e ⁻	DIAG36
$e^+e^-\eta$	EKHARA
$e^+e^-\eta'$	EKHARA
$e^{+}e^{-}K^{+}K^{-}$	GALUGA
$e^+e^-\pi^+\pi^-$	GALUGA
$e^+e^-\mu^+\mu^-$	DIAG36
$q \overline{q}$	Hybrid

Selection Criteria

- \succ N_{good} = 2, Q_{tot} = 0 (V_r < 1 cm, |V_z| < 10 cm, |cos θ| < 0.8)
- \succ 0.2 $E_{beam} < P_{\ell^{\pm}} < 1.1E_{beam}$
- $\succ \text{ Back-to-back, } \left| \Delta \theta_{\ell^{\pm}} \right| = \left| \theta_1 + \theta_2 180^{\circ} \right| < 10^{\circ}, \left| \Delta \phi_{\ell^{\pm}} \right| = \left| \left| \phi_1 \phi_2 \right| 180^{\circ} \right| < 5^{\circ}$

Background study

Taking 4.58 GeV as an example, to remove the beam-associated and cosmic ray background, we use the sideband method.

- ➤ avz is defined as V_z of a event, average of tracks.
- In this plot, the beam-associated background is represented by the red histogram. Normalization is done according to data-taking time.
- The Bhabha and Dimu signal processes are represented by the green and blue histograms, respectively.
- For the sideband method, we choose |avz| < 3 as our signal region and 6 < |avz| < 9 as our background region.
- Bhabha events account for 95% of the total events, while Dimu events account for 4% of the total events.

Background study

> For other background processes, we use MC to simulate the residual events in data

Background	N _{total}	N _{sur}	Scale factor	N _{scaled}	Ratio (%)
γγ	1000000	11	0.188	2	0
$\tau^+\tau^-$	300000	1211	0.100	121	0.02
$e^{+}e^{-}e^{+}e^{-}$	200000	1724	0.006	10	0
$e^+e^-\eta$	100000	1	0.032	0	0
$e^+e^-\eta'$	100000	3	0.031	0	0
$e^+e^-K^+K^-$	40000	571	0.059	33	0
$e^+e^-\pi^+\pi^-$	40000	81	0.631	51	0.01
$e^+e^-\mu^+\mu^-$	400000	358	0.816	292	0.04
$q\overline{q}$	500000	4111	0.342	1405	0.20

Comparison between data and MC

➤ Taking 4.58 GeV as an example

BABAYAGA NLO simulated MC events agree with data quite well

Measured integrated luminosities

\sqrt{s} (GeV)	$\mathcal{L}\left(\mathrm{pb^{-1}}\right)$	\sqrt{s} (GeV)	$\mathcal{L}(\mathrm{pb^{-1}})$	\sqrt{s} (GeV)	$\mathcal{L}(\mathrm{pb^{-1}})$	\sqrt{s} (GeV)	$\mathcal{L}\left(\mathrm{pb^{-1}}\right)$
3.8500	8.118 ± 0.009	3.9550	8.306 ± 0.009	4.0160	6.721 ± 0.008	4.1000	7.413 ± 0.009
3.8900	7.963 ± 0.009	3.9600	8.658±0.009	4.0180	7.148 ± 0.009	4.1100	7.350 ± 0.009
3.8950	7.741 ± 0.009	3.9650	7.911±0.009	4.0200	6.873±0.008	4.1200	7.857 ± 0.009
3.9000	7.758±0.009	3.9700	7.491±0.009	4.0250	6.697±0.008	4.1300	7.411±0.009
3.9050	7.842 ± 0.009	3.9750	8.206±0.009	4.0300	16.727±0.013	4.1400	7.466 ± 0.009
3.9100	7.398±0.009	3.9800	8.018±0.009	4.0350	6.876±0.009	4.1450	8.023±0.009
3.9150	7.645 ± 0.009	3.9850	8.152±0.009	4.0400	6.704 ± 0.008	4.1500	7.867 ± 0.009
3.9200	6.978 ± 0.008	3.9900	8.187±0.009	4.0500	6.744 ± 0.008	4.1600	8.194 ± 0.010
3.9250	6.848 ± 0.008	3.9950	8.134±0.009	4.0550	7.063±0.009	4.1700	18.452 ± 0.014
3.9300	6.873±0.008	4.0000	7.903±0.009	4.0600	6.471±0.008	4.1800	7.523 ± 0.009
3.9350	7.311±0.009	4.0050	7.693±0.009	4.0650	7.169 ± 0.009	4.1900	7.779 ± 0.009
3.9400	7.407 ± 0.009	4.0100	7.333±0.009	4.0700	7.446 ± 0.009	4.1950	7.740 ± 0.009
3.9450	7.738±0.009	4.0120	7.064±0.009	4.0800	7.906±0.009	4.2000	7.785 ± 0.009
3.9500	7.912±0.009	4.0140	6.836±0.008	4.0900	7.765 ± 0.009	4.2030	7.038±0.009

Measured integrated luminosities

\sqrt{s} (GeV)	$\mathcal{L}(\mathrm{pb^{-1}})$	\sqrt{s} (GeV)	$\mathcal{L}(\mathrm{pb^{-1}})$	\sqrt{s} (GeV)	$\mathcal{L}(\mathrm{pb^{-1}})$	\sqrt{s} (GeV)	$\mathcal{L}(\mathrm{pb}^{-1})$
4.2060	7.874±0.010	4.2650	8.867±0.010	4.3800	8.440±0.010	4.5400	9.834±0.011
4.2100	7.938±0.010	4.2700	8.834±0.010	4.3900	7.718±0.010	4.5500	9.138±0.011
4.2150	7.987±0.010	4.2750	8.823±0.010	4.3950	8.025±0.010	4.5600	8.670±0.011
4.2200	8.093±0.010	4.2800	8.984±0.010	4.4000	7.423±0.010	4.5700	8.825±0.011
4.2250	8.442 ± 0.010	4.2850	8.800 ± 0.010	4.4100	7.263 ± 0.010	4.5800	8.995±0.011
4.2300	8.430 ± 0.010	4.2900	9.267±0.011	4.4200	7.816±0.010	4.5900	8.650±0.011
4.2350	8.505 ± 0.010	4.3000	8.705 ± 0.010	4.4250	7.677 ± 0.010		
4.2400	8.826±0.010	4.3100	9.195±0.011	4.4300	7.046 ± 0.009	_	
4.2430	8.808 ± 0.010	4.3200	9.640±0.011	4.4400	7.910±0.010		
4.2450	8.726±0.010	4.3300	8.930±0.010	4.4500	7.983±0.010		
4.2480	8.829±0.010	4.3400	8.968±0.010	4.4600	9.081±0.011		
4.2500	8.860 ± 0.010	4.3500	8.786±0.010	4.4800	8.544 ± 0.011		
4.2550	8.909±0.010	4.3600	8.346±0.010	4.5000	8.345±0.010	-	
4.2600	9.148±0.010	4.3700	8.773±0.010	4.5200	9.046±0.011	-	

Measured integrated luminosities

\sqrt{s} (GeV)	$\mathcal{L}(\mathrm{pb}^{-1})$
4.6000	589.73 ± 0.09
4.6120	103.70 ± 0.04
4.6200	524.96 ± 0.09
4.6400	559.73 ± 0.09
4.6600	532.21 ± 0.09
4.6800	1673.30 ± 0.1
4.7000	538.50 ± 0.09
4.7400	166.24 ± 0.05
4.7500	370.44 ± 0.07
4.7800	516.81 ± 0.09
4.8400	530.63 ± 0.09
4.9180	209.98 ± 0.06
4.9460	160.94 ± 0.05

- nGood requirement
- $\succ \Delta \theta$ cut range
- $\succ \Delta \phi$ cut range
- \succ cos θ cut range
- ➢ Momentum cut range
- > MC statistic
- Beam energy
- Background estimation
- Tracking efficiencies
- Uncertainty of Generator

Control samples are selected to study the following systematic uncertainties.

nGood requirement

- $N_{\text{good}} \ge 2$ ($V_{\text{r}} < 1 \text{ cm}$, $|V_{\text{z}}| < 10 \text{ cm}$, $|\cos \theta| < 0.8$, $0.2 < P_{\ell^{\pm}}/P_{beam} < 1.1$)
- $|\Delta \theta_{\ell^{\pm}}| < 10^{\circ}$ and $|\Delta \phi_{\ell^{\pm}}| < 5^{\circ}$ for the two tracks with largest momentum
- The efficiency difference between data and MC with $N_{good} = 2$ are taken as systematic uncertainties.
- $\succ \Delta \theta$ cut range
- $N_{\text{good}} = 2 \ (V_{\text{r}} < 1 \text{ cm}, \ |V_{\text{z}}| < 10 \text{ cm}, \ |\cos \theta| < 0.8, \ 0.2 < P_{\ell^{\pm}}/P_{beam} < 1.1)$
- $|\Delta \theta_{\ell^{\pm}}| < 20^{\circ}$ and $|\Delta \phi_{\ell^{\pm}}| < 5^{\circ}$ to guarantee the control sample is pure
- The efficiency difference between data and MC with $|\Delta \theta_{\ell^{\pm}}| < 10^{\circ}$ are taken as systematic uncertainties.
- $\succ \Delta \phi$ cut range
- $N_{\text{good}} = 2 \ (V_{\text{r}} < 1 \text{ cm}, |V_{\text{z}}| < 10 \text{ cm}, |\cos \theta| < 0.8, 0.2 < P_{\ell^{\pm}}/P_{beam} < 1.1)$
- $\left| \Delta \theta_{\ell^{\pm}} \right| < 10^{\circ}$
- The efficiency difference between data and MC with $|\Delta \phi_{\ell^{\pm}}| < 5^{\circ}$ are taken as systematic uncertainties.

- \succ cos θ cut range
- $N_{\text{good}} = 2 \ (V_{\text{r}} < 1 \text{ cm}, |V_{\text{z}}| < 10 \text{ cm}, |\cos \theta| < 0.82, 0.2 < P_{\ell^{\pm}}/P_{beam} < 1.1)$
- $|\Delta \theta_{\ell^{\pm}}| < 10^{\circ} \text{ and } |\Delta \phi_{\ell^{\pm}}| < 5^{\circ}$
- The efficiency difference between data and MC with $|\cos \theta| < 0.8$ are taken as systematic uncertainties.
- Momentum cut range
- $N_{\text{good}} = 2 \ (V_{\text{r}} < 1 \text{ cm}, |V_{\text{z}}| < 10 \text{ cm}, |\cos \theta| < 0.8, 0.2 < P_{\ell^{\pm}}/P_{beam} < 1.1)$
- $|\Delta \theta_{\ell^{\pm}}| < 10^{\circ} \text{ and } |\Delta \phi_{\ell^{\pm}}| < 5^{\circ}$
- The efficiency difference between data and MC with $0.2 < P_{\ell^{\pm}}/P_{beam} < 1.1$ are taken as systematic uncertainties.
- \succ MC statistic

The systematic uncertainty of MC statistics is estimated by:

$$\frac{\sqrt{(1-\epsilon)*\epsilon}}{\sqrt{N}}$$

➢ Beam energy

We use the BabayagaNLO generator to obtain the cross section and fit the cross section lineshape as shown in Figure. By changing the beam energy within 0.5 MeV, the impact of variations in center-of-mass energy on the luminosity results can be observed, which is considered as a systematic uncertainty.

Background estimation

The ratio of the physical background to signal is very small, at about 0.2%. Therefore, the uncertainty due to background estimation for the physical process is neglected.

Regarding the beam-associated background, it is previously selected using the sideband method and can also be estimated by using a fit method. The difference between the two methods is considered as a systematic uncertainty. Taking 4.58 GeV as an example.

Uncertainty of Generator

In this analysis, the generator of signal events is BabayagaNLO, according to the document of Babayaga generator, the estimated theoretical accuracy is about 0.1%.(Phys. Lett. B663, 209 (2008))

Tracking efficiency

The uncertainty of the tracking efficiency has been studied using the $e^+e^- \rightarrow e^+e^-$. For each electron, the uncertainty is 0.15%. (CPC 46, 113003 (2022))

For each muon, at 4.178 GeV, select the control sample $e^+e^- \rightarrow \mu^+\mu^-\gamma$, and compare the data and MC distributions in momentum and $\cos \theta$.

The ratio of selection efficiencies between data and MC at 4.178 GeV is obtained. The $\cos \theta$ ranges from -1 to 1, divided into 50 bins, and the momentum ranges from 0.1 to 2.1 GeV/c, divided into 42 bins.

For each muon track in the MC sample, the corresponding ratio is found based on its $\cos \theta$ and momentum values, and this ratio is used as the weight for the track. The corrected selection efficiency is obtained, and the difference in the luminosity result is treated as a systematic uncertainty, the uncertainty is 0.02%.

Taking 4.60 GeV as an example, the summary of the systematic uncertainties is shown in Table.

Source	Systematic Uncertainty(%)
nGood requirement	0.04
$\Delta \theta$ cut range	0.10
$\Delta \phi$ cut range	0.01
$\cos\theta$ cut range	0.01
Momentum cut range	0.04
MC statistic	0.27
Beam energy	0.04
Background estimation	0.23
Tracking efficiencies of e^+e^-	0.30
Tracking efficiencies of $\mu^+\mu^-$	0.02
Uncertainty of Generator	0.10
Total	0.50

Comparisons with published results: 3.85~4.59 GeV

The luminosity obtained by this work is systematically higher than the published result by 1.5%.

Comparisons with published results: 4.60~4.95 GeV

The luminosity obtained by this work is systematically higher than the published result by 1.0%.

After further investigations, the differences are primarily attributed to two sources.

- For the previous analysis from 3.85 to 4.59 GeV, Babayaga3.5 has been used as signal MC model. Now, with the BabayagaNLO, the previous results are found to be underestimated by 0.5%. Additionally, it is found that when both good charged tracks are required to deposited energy in the EMC, there is 1% efficiency difference between the signal MC and data.
- For the previous analysis from 4.60 to 4.96 GeV, it is found that when both good charged tracks are required to deposited energy in the EMC, there is 1% efficiency difference between the signal MC and data.

Comparisons with published results : 3.85~4.59 GeV

The luminosity obtained by requiring both charged tracks have EMC shower information is systematically lower than the nominal result by 1%, and there is no energy-dependence in these differences.

Comparisons with published results : 4.60~4.95 GeV

The luminosity obtained by requiring both charged tracks have EMC shower information is systematically lower than the nominal result by 1%, and there is no energy-dependence in these differences.

- ➤ The luminosity is measured from 3.85 to 4.95 GeV using only the MDC information.
- Our results are systematically higher than the published ones by 1.5% and 1.0% at (3.85, 4.59) GeV and (4.60, 4.95) GeV, respectively.
- > There is a 0.5% difference between Babayaga3.5 and BabayagaNLO.
- \blacktriangleright An inefficiency of 1% is found in data compared with MC.

Thanks for your attention!

Back up

 \succ Cross section

E_{cm} (GeV)	$\mathcal{L}(pb^{-1})$ (publish)	$\mathcal{L}(pb^{-1})$ (this work)
3.8500	$7.999 \pm 0.009 \pm 0.058$	$8.118 \pm 0.009 \pm 0.04$
3.8900	$7.826 \pm 0.009 \pm 0.057$	$7.963 \pm 0.009 \pm 0.05$
3.8950	$7.666 \pm 0.009 \pm 0.054$	$7.741 \pm 0.009 \pm 0.07$
3.9000	$7.665 \pm 0.009 \pm 0.054$	$7.758 \pm 0.009 \pm 0.04$
3.9050	$7.720 \pm 0.009 \pm 0.054$	$7.842 \pm 0.009 \pm 0.04$
3.9100	$7.344 \pm 0.009 \pm 0.056$	$7.398 \pm 0.009 \pm 0.03$
3.9150	$7.538 \pm 0.009 \pm 0.054$	$7.645 \pm 0.009 \pm 0.04$
3.9200	$6.903 \pm 0.008 \pm 0.053$	$6.978 \pm 0.008 \pm 0.03$
3.9250	$6.800 \pm 0.008 \pm 0.050$	$6.848 \pm 0.008 \pm 0.04$
3.9300	$6.829 \pm 0.008 \pm 0.048$	$6.873 \pm 0.008 \pm 0.03$
3.9350	$7.216 \pm 0.009 \pm 0.053$	$7.311 \pm 0.009 \pm 0.04$
3.9400	$7.303 \pm 0.009 \pm 0.056$	$7.407 \pm 0.009 \pm 0.04$
3.9450	$7.632 \pm 0.009 \pm 0.063$	$7.738 \pm 0.009 \pm 0.03$

E_{cm} (GeV)	$\mathcal{L}(pb^{-1})$ (publish)	$\mathcal{L}(pb^{-1})$ (this work)
3.9500	$7.813 \pm 0.009 \pm 0.057$	$7.912 \pm 0.009 \pm 0.04$
3.9550	$8.212 \pm 0.009 \pm 0.066$	$8.306 \pm 0.009 \pm 0.04$
3.9600	$8.619 \pm 0.010 \pm 0.066$	$8.658 \pm 0.009 \pm 0.04$
3.9650	$7.818 \pm 0.009 \pm 0.058$	$7.911 \pm 0.009 \pm 0.04$
3.9700	$7.426 \pm 0.009 \pm 0.057$	$7.491 \pm 0.009 \pm 0.03$
3.9750	$8.111 \pm 0.009 \pm 0.057$	$8.206 \pm 0.009 \pm 0.04$
3.9800	$7.916 \pm 0.009 \pm 0.059$	$8.018 \pm 0.009 \pm 0.04$
3.9850	$8.092 \pm 0.009 \pm 0.077$	$8.152 \pm 0.009 \pm 0.04$
3.9900	$8.139 \pm 0.009 \pm 0.061$	$8.187 \pm 0.009 \pm 0.04$
3.9950	$8.052 \pm 0.009 \pm 0.057$	$8.134 \pm 0.009 \pm 0.04$
4.0000	$7.814 \pm 0.009 \pm 0.060$	$7.903 \pm 0.009 \pm 0.04$
4.0050	$7.605 \pm 0.009 \pm 0.056$	$7.693 \pm 0.009 \pm 0.05$
4.0100	$7.255 \pm 0.009 \pm 0.053$	$7.333 \pm 0.009 \pm 0.04$

E_{cm} (GeV)	$\mathcal{L}(pb^{-1})$ (publish)	$\mathcal{L}(pb^{-1})$ (this work)
4.0120	$7.027 \pm 0.009 \pm 0.058$	$7.064 \pm 0.009 \pm 0.04$
4.0140	$6.768 \pm 0.009 \pm 0.055$	$6.836 \pm 0.008 \pm 0.03$
4.0160	$6.636 \pm 0.008 \pm 0.048$	$6.721 \pm 0.008 \pm 0.03$
4.0180	$7.040 \pm 0.009 \pm 0.058$	$7.148 \pm 0.009 \pm 0.03$
4.0200	$6.810 \pm 0.009 \pm 0.050$	$6.873 \pm 0.008 \pm 0.04$
4.0250	$6.642 \pm 0.008 \pm 0.048$	$6.697 \pm 0.008 \pm 0.04$
4.0300	$16.639 \pm 0.013 \pm 0.118$	$16.837 \pm 0.013 \pm 0.08$
4.0350	$6.783 \pm 0.009 \pm 0.050$	$6.876 \pm 0.009 \pm 0.03$
4.0400	$6.651 \pm 0.009 \pm 0.048$	$6.704 \pm 0.008 \pm 0.03$
4.0500	$6.659 \pm 0.009 \pm 0.048$	$6.744 \pm 0.008 \pm 0.03$
4.0550	$6.997 \pm 0.009 \pm 0.052$	$7.063 \pm 0.009 \pm 0.03$
4.0600	$6.421 \pm 0.008 \pm 0.048$	$6.471 \pm 0.008 \pm 0.03$
4.0650	$7.105 \pm 0.009 \pm 0.052$	$7.169 \pm 0.009 \pm 0.03$

E_{cm} (GeV)	$\mathcal{L}(pb^{-1})$ (publish)	$\mathcal{L}(pb^{-1})$ (this work)
4.0700	$7.341 \pm 0.009 \pm 0.053$	$7.446 \pm 0.009 \pm 0.04$
4.0800	$7.810 \pm 0.009 \pm 0.065$	$7.906 \pm 0.009 \pm 0.04$
4.0900	$7.695 \pm 0.009 \pm 0.057$	$7.765 \pm 0.009 \pm 0.04$
4.1000	$7.366 \pm 0.009 \pm 0.060$	$7.413 \pm 0.009 \pm 0.04$
4.1100	$7.238 \pm 0.009 \pm 0.054$	$7.350 \pm 0.009 \pm 0.04$
4.1200	$7.775 \pm 0.009 \pm 0.061$	$7.857 \pm 0.009 \pm 0.04$
4.1300	$7.302 \pm 0.009 \pm 0.055$	$7.411 \pm 0.009 \pm 0.04$
4.1400	$7.364 \pm 0.009 \pm 0.054$	$7.466 \pm 0.009 \pm 0.04$
4.1450	$7.904 \pm 0.010 \pm 0.064$	$8.023 \pm 0.009 \pm 0.04$
4.1500	$7.781 \pm 0.009 \pm 0.057$	$7.867 \pm 0.009 \pm 0.04$
4.1600	$8.039 \pm 0.010 \pm 0.059$	$8.194 \pm 0.010 \pm 0.05$
4.1700	$18.246 \pm 0.015 \pm 0.131$	$18.534 \pm 0.014 \pm 0.08$
4.1800	$7.447 \pm 0.009 \pm 0.053$	$7.523 \pm 0.009 \pm 0.03$

E_{cm} (GeV)	$\mathcal{L}(pb^{-1})$ (publish)	$\mathcal{L}(pb^{-1})$ (this work)
4.1900	$7.650 \pm 0.009 \pm 0.061$	$7.779 \pm 0.009 \pm 0.04$
4.1950	$7.589 \pm 0.009 \pm 0.054$	$7.740 \pm 0.009 \pm 0.04$
4.2000	$7.709 \pm 0.010 \pm 0.059$	$7.785 \pm 0.009 \pm 0.04$
4.2030	$6.915 \pm 0.009 \pm 0.050$	$7.038 \pm 0.009 \pm 0.03$
4.2060	$7.740 \pm 0.010 \pm 0.060$	$7.874 \pm 0.010 \pm 0.04$
4.2100	$7.827 \pm 0.010 \pm 0.067$	$7.938 \pm 0.010 \pm 0.05$
4.2150	$7.906 \pm 0.010 \pm 0.062$	$7.987 \pm 0.010 \pm 0.04$
4.2200	$8.057 \pm 0.010 \pm 0.058$	$8.093 \pm 0.010 \pm 0.04$
4.2250	$8.305 \pm 0.010 \pm 0.064$	$8.442 \pm 0.010 \pm 0.04$
4.2300	$8.310 \pm 0.010 \pm 0.070$	$8.430 \pm 0.010 \pm 0.04$
4.2350	$8.416 \pm 0.010 \pm 0.063$	$8.505 \pm 0.010 \pm 0.04$
4.2400	8.713±0.010±0.066	$8.826 \pm 0.010 \pm 0.05$
4.2430	$8.703 \pm 0.010 \pm 0.071$	$8.808 \pm 0.010 \pm 0.04$

E_{cm} (GeV)	$\mathcal{L}(pb^{-1})$ (publish)	$\mathcal{L}(pb^{-1})$ (this work)
4.2450	$8.591 \pm 0.010 \pm 0.071$	$8.726 \pm 0.010 \pm 0.04$
4.2480	$8.698 \pm 0.010 \pm 0.068$	$8.829 \pm 0.010 \pm 0.04$
4.2500	$8.747 \pm 0.010 \pm 0.071$	$8.860 \pm 0.010 \pm 0.04$
4.2550	$8.794 \pm 0.010 \pm 0.064$	$8.909 \pm 0.010 \pm 0.05$
4.2600	$8.990 \pm 0.010 \pm 0.065$	$9.148 \pm 0.010 \pm 0.04$
4.2650	$8.770 \pm 0.010 \pm 0.068$	$8.867 \pm 0.010 \pm 0.04$
4.2700	$8.724 \pm 0.010 \pm 0.064$	$8.834 \pm 0.010 \pm 0.05$
4.2750	$8.712 \pm 0.010 \pm 0.062$	$8.823 \pm 0.010 \pm 0.04$
4.2800	$8.884 \pm 0.010 \pm 0.070$	$8.984 \pm 0.010 \pm 0.04$
4.2850	$8.711 \pm 0.010 \pm 0.065$	$8.800 \pm 0.010 \pm 0.04$
4.2900	$9.142 \pm 0.011 \pm 0.079$	$9.267 \pm 0.011 \pm 0.04$
4.3000	$8.568 \pm 0.010 \pm 0.062$	$8.705 \pm 0.010 \pm 0.04$
4.3100	$9.125 \pm 0.011 \pm 0.081$	$9.195 \pm 0.011 \pm 0.05$

E_{cm} (GeV)	$\mathcal{L}(pb^{-1})$ (publish)	$\mathcal{L}(pb^{-1})$ (this work)	
4.3200	$9.502 \pm 0.011 \pm 0.071$	71 9.640±0.011±0.04	
4.3300	8.805±0.010±0.077 8.930±0.010±0.		
4.3400	$8.857 \pm 0.011 \pm 0.066 \qquad 8.968 \pm 0.010 \pm 0.$		
4.3500	$8.721 \pm 0.011 \pm 0.066$	$8.786 \pm 0.010 \pm 0.04$	
4.3600	$8.223 \pm 0.010 \pm 0.069$	$8.346 \pm 0.010 \pm 0.04$	
4.3700	$8.690 \pm 0.011 \pm 0.071$	$8.773 \pm 0.010 \pm 0.04$	
4.3800	$8.365 \pm 0.010 \pm 0.070$	$8.440 \pm 0.010 \pm 0.05$	
4.3900	$7.661 \pm 0.010 \pm 0.056$	$7.718 \pm 0.010 \pm 0.04$	
4.3950	$7.964 \pm 0.010 \pm 0.067$	$8.025 \pm 0.010 \pm 0.04$	
4.4000	$7.342 \pm 0.010 \pm 0.055$	$7.423 \pm 0.010 \pm 0.03$	
4.4410	$7.186 \pm 0.010 \pm 0.058$	$7.263 \pm 0.010 \pm 0.03$	
4.4200	7.707 $\pm 0.010 \pm 0.059$ 7.816 $\pm 0.010 \pm 0.04$		
4.4250	$7.606 \pm 0.010 \pm 0.056$	$7.677 \pm 0.010 \pm 0.03$	

E_{cm} (GeV)	$\mathcal{L}(pb^{-1})$ (publish)	$\mathcal{L}(pb^{-1})$ (this work)	
4.4300	$6.962 \pm 0.010 \pm 0.058$	$7.046 \pm 0.009 \pm 0.03$	
4.4400	7.813±0.010±0.063 7.910±0.010±0.04		
4.4500	7.859±0.010±0.064 7.983±0.010±0		
4.4600	$8.961 \pm 0.011 \pm 0.065$	$9.081 \pm 0.011 \pm 0.04$	
4.4480	$8.387 \pm 0.011 \pm 0.061$	$8.544 \pm 0.011 \pm 0.04$	
4.5000	$8.243 \pm 0.011 \pm 0.068$	$8.345 \pm 0.010 \pm 0.04$	
4.5200	$8.949 \pm 0.011 \pm 0.070$	$9.046 \pm 0.011 \pm 0.04$	
4.5400	$9.657 \pm 0.011 \pm 0.074$	$9.834 \pm 0.011 \pm 0.04$	
4.5500	$9.053 \pm 0.011 \pm 0.074$	$9.138 \pm 0.011 \pm 0.04$	
4.5600	$8.588 \pm 0.011 \pm 0.064$	$8.670 \pm 0.011 \pm 0.05$	
4.5700	$8.693 \pm 0.011 \pm 0.076$	$8.825 \pm 0.011 \pm 0.04$	
4.5800	$8.837 \pm 0.011 \pm 0.075$	$9.013 \pm 0.011 \pm 0.05$	
4.5900	$8.495 \pm 0.011 \pm 0.068$	$8.650 \pm 0.011 \pm 0.04$	

E_{cm} (GeV)	$\mathcal{L}(pb^{-1})$ (publish)	$\mathcal{L}(pb^{-1})$ (this work)	
4.6000	586.9±0.1±3.9	$589.73 \pm 0.09 \pm 2.92$	
4.6120	$103.65 \pm 0.05 \pm 0.55$	$103.70 \pm 0.04 \pm 0.55$	
4.6200	521.53±0.11±2.76 524.96±0.09±3.3		
4.6400	$551.65 \pm 0.12 \pm 2.92$	$559.73 \pm 0.09 \pm 3.49$	
4.6600	$529.43 \pm 0.12 \pm 2.81$	532.21±0.09±2.89	
4.6800	$1667.39 \pm 0.21 \pm 8.84$	$1673.30 \pm 0.15 \pm 9.70$	
4.7000	$535.54 \pm 0.12 \pm 2.84$	$538.50 \pm 0.09 \pm 2.73$	
4.7400	$163.87 \pm 0.07 \pm 0.87$	$166.24 \pm 0.05 \pm 0.84$	
4.7500	$366.55 \pm 0.10 \pm 1.94$	$370.44 \pm 0.07 \pm 2.17$	
4.7800	$511.47 \pm 0.12 \pm 2.71$	$516.81 \pm 0.09 \pm 2.82$	
4.8400	$525.16 \pm 0.12 \pm 2.78$	$530.63 \pm 0.09 \pm 3.91$	
4.9180	$207.82 \pm 0.08 \pm 1.10$	0 209.98±0.06±1.19	
4.9460	159.28±0.07±0.84	$160.94 \pm 0.05 \pm 1.61$	

luminosity measurement without using EMC

Jin Fang

Cosmic background

- $\Delta t_{tof} = t_+ t_-$
- The concentration of separate is distributed between 5-10 absolute values

EMC rec

EmcRecAlg.TimeMax=60;

Table: The results at 4.58 GeV.

	Without EMC	With EMC	ratio
TimeMax=60	666810	666672	99.98%
TimeMax=35	666272	658934	98.90%
ratio	99.92%	98.84%	