

momentum dependence of $K^*(892)$'s ρ_{00} at BESIII

Zequn Sun^{1,2},Peilian Liu¹,Yuepeng Zhang³, Weimin Liu³, Weiping Wang⁴, Wenbiao Yan³, Xinping Xu⁵,Qipeng Hu³

> ¹IHEP ²UCAS ³USTC ⁴JGU ⁵SUDA

March 12, 2025

Outline

Motivation

- Data sets and event selection
- 3 Spin alignment of $K^*(892)$
- 4 Systematic uncertainty

5) Summary

- BACKUF
 - fit for data
 - fit for luarlw

<ロ> (四) (四) (三) (三) (三) (三)

Spin density matrix of vector meson

- The spin state of a vector state is described by 3 × 3 spin density matrix
 - ρ_{mm} : probability to be in $|s; s_z = m\rangle$ state
- The polarization vector is related to some elements of spin density matrix

$$\begin{pmatrix} \rho_{-1,-1} & \rho_{-1,0} & \rho_{-1,1} \\ \rho_{-1,0}^* & \rho_{00} & \rho_{01} \\ \rho_{-1,1}^* & \rho_{01}^* & \rho_{11} \end{pmatrix}$$

 $\vec{\mathcal{P}} = [\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3] = [\sqrt{2} \text{Re}(\rho_{-1,0} + \rho_{01}), \sqrt{2} \text{Im}(\rho_{-1,0} + \rho_{01}), (\rho_{11} - \rho_{-1,-1})]$ Angular of decay particle (kaon) at K^{*0} helicity

frame

- extract some elements, e.g. ho_{00}
- Vector meson are polarized or not by comparing of ρ₀₀ and 1/3

- $\rho_{00} \neq 1/3$: spin alignment
- The angle distribution for the decay particle in the rest frame:

$$W(\theta^*, \phi^*) = \boxed{\frac{3}{4\pi} [\frac{1}{2}(1 - \rho_{00}) + \frac{1}{2}(3\rho_{00} - 1)\cos^2\theta^*] - \operatorname{Re}\rho_{1,-1}\sin^2\phi^*\cos 2\phi^* - \frac{1}{\sqrt{2}}\operatorname{Re}(\rho_{10} - \rho_{0,-1})\sin 2\theta^*\cos\phi^* + \operatorname{Im}\rho_{1,-1}\sin^2\theta^*\sin 2\phi^* + \frac{1}{\sqrt{2}}\operatorname{Im}(\rho_{10} - \rho_{0,-1})\sin 2\theta^*\sin\phi^*] = \operatorname{Per}(\theta^*)$$

ρ_{00} of vector meson

Heavy ion collision: contribution from QGP(Quark-Gluon Plasma) & fragmentation

- e+e- collision:contribution from fragmentation, Z⁰ energy
 - $x_p < 0.3$, consistent with 1/3; $x_p > 0.3$, larger than 1/3pp collision:contribution from PDF fucntion & fragmentation.
 - ALICE: ρ_{00} for ϕ and K^* are consistant with 1/3.
- SESIII: e^+e^- collision: fragmentation, γ^* dominant
 - BAM-00884, unbinned $\rho_{00} @ \sqrt{s}$ =3.5 GeV.
 - How about momentum dependence of ρ₀₀?

How to determine ρ_{00} at BESIII

MC for the correction efficiency.

Get ρ₀₀ component from fitting the efficiency corrected signal events.

$$W(\theta^*) = \frac{3}{4} [(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^*]$$

Outline

Motivation

- 2 Data sets and event selection
 - Spin alignment of K*(892)
 - 4 Systematic uncertainty

Summary

- 6 BACKUF
 - fit for data
 - fit for luarlw

Data sets

- Boss version: 703
- Data sets:

	\sqrt{s} (GeV)	Run number	$\mathcal{L}\left(pb^{-1} ight)$
chic1 scan	3.4900	47467 - 47493	12.11
	3.5080	51657 - 51893	181.79
	3.5097	51584 - 51656	39.29
	3.5104	51894 - 52090	183.64
	3.5146	52298 - 52332	40.92

• Hadronic MC samples:

LUARLW, 10M events each point.(nominal) HYBRID, 10M events each point.

OED MC:

 $e^+e^- \rightarrow e^+e^-/\mu^+\mu^-/\gamma\gamma$: Babayaga3.5 $e^+e^- \rightarrow e^+e^- + X(X:$ leptons and hadrons): DIAG36,EKHARA,GALUGA2.0

Hadronic event selection

Same as R-value analysis published in PRL 128, 062004 (2022)

Track Level

- Veto Bhabha and Di-gamma events
 - $N_{\text{shower}} \ge 2$
 - $E_1 \ge E_2 \ge 0.65 E_{\text{beam}}$
 - $|\Delta \theta| = |\theta_1 + \theta_2 180^\circ| < 10^\circ$

Isolated photon

- Energy deposition should be larger than 0.1 GeV
- Angle from the nearest charged track should be larger than 20°
- $0 < T_{\rm EMC} < 700 \, \rm ns$
- Good charged hadronic tracks
 - $|V_r| < 0.5 \text{ cm}$, $|V_z| < 5.0 \text{ cm}$, $|\cos \theta| < 0.93$
 - $p_{\text{track}} < 0.94 p_{\text{beam}}$, where $p_{\text{beam}} \approx E_{\text{beam}}$
 - $\chi_{\text{prob.}} = (dE/dx_{\text{measure}} dE/dx_{\text{proton}}) / \sigma_{\text{proton}} > 10$
 - Remove charged tracks when E/p > 0.8 and $p > 0.65p_{beam}$
 - Veto γ -conversions when $M(e^+ e^-) < 0.1$ GeV and $\theta_{ee} < 15^{\circ}$

Event Level

At least 2 good charged hadronic tracks

- Number of good charged hadronic tracks = 2:
 - $|\Delta \theta| = |\theta_1 + \theta_2 180^\circ| > 10^\circ \text{ or } |\Delta \phi| =$ $||\phi_1 - \phi_2| - 180^\circ| > 15^\circ$
 - At least 2 isolated photons

Number of good charged hadronic tracks = 3:

- The two highest momentum tracks are required not back-to-back: $|\Delta \theta| = |\theta_1 + \theta_2 - 180^\circ| < 10^\circ \text{ or}$ $|\Delta \phi| = ||\phi_1 - \phi_2| - 180^\circ| < 15^\circ$
- (number of track with $E/p > 0.8) \le 1$
- (number of track with PID ratio > 0.25) \leq 1, where the PID ratio is defined as $r_{\text{PID}} = \frac{1}{\text{Prob.}(e)}$

 $\overline{\text{Prob.}(p) + \text{Prob.}(K) + \text{Prob.}(\pi) + \text{Prob.}(e)}$

Number of good charged hadronic tracks ≥ 4: No additional requirements

 $e^+e^- \rightarrow K^*(892) + X$

March 12, 2025

(日)

Reconstruction of $K^*(892)$ via $K^*(892) \rightarrow K\pi$

PID (dE/dx + ToF)

- Prob.(K)>Prob.(π),Prob.(K)>Prob.(p) and Prob(K)>0.001
- Prob.(π)>Prob.(K),Prob.(π)>Prob.(p) and Prob(π)>0.001

2 combinate all $K^{\pm}\pi^{\mp}$

7/44

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Outline

Data sets and event selection

Spin alignment of $K^*(892)$

Systematic uncertainty

Summary Summary

- BACKUP
 - fit for data
 - fit for luarlw

QED Background MC

QED background: Bhabha, di-gamma, di-muon, and two-photon events.

All QED process can be well described by polynomial function.

		7	(100TO)
YUe	nena	znand	IUSTCI.

Binning determination

• The **resolution** of $\cos \theta^*$ and $P_{K^{*0}}$:

- Obtained by LUARLW MC, and fited with double Gaussian function
- ② The candidate events are divided into **10 intervals** of $\cos heta^*$
 - $\Delta \cos \theta^* = 0.2 > 5\sigma_{\cos \theta^*}$
- The momentum intervals is set at 0.1 GeV, ranging from 0.4 to 1.6 GeV.

•
$$\Delta P_{K^{*0}} = 0.1 > 5\sigma_{P_{K^{*0}}}$$

The difference between data and MC

The MC fits with the data well.

Yuepeng Zhang (I	USTC	
------------------	------	--

 $e^+e^- \rightarrow K^*(892) + X$

March 12, 2025

< ∃⇒

Extract $K^{*0}(892)$ signals

- Unbinned maximum likelihood fit method is used to extract signals from $M(K^{\pm}\pi^{\mp})$ in each (p vs. $\cos \theta^*$) bin.
 - Signal: Breit-Wigner \otimes Gaussian
 - Background: 3th-order Chebyshev polynomial
 - The parameter of the breit-Wigner function is fixed to the $K^*(892)$'s PDG values.

 $e^+e^- \rightarrow K^*(892) + X$

March 12, 2025

The fit result and MC efficiency

 $0.8 < P_{K^*} < 0.9 \; {\rm GeV/c}$

• The signal yields of data is shown in left figure.

 ho_{00} result while $P_{\phi} \in (0.8, 0.9)$ GeV/c

$$W(\theta^*) = \frac{3}{4} [(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^*]$$

ho_{00} result in each momentum bin

Yuepeng Zhang (USTC)

 $e^+e^- \rightarrow K^*(892) + X$

March 12, 2025

(日)

14/44

ho_{00} result in each momentum bin

Yuepeng Zhang (USTC)

 $e^+e^- \rightarrow K^*(892) + X$

March 12, 2025

< ∃⇒

ho_{00} result in each momentum bin

Yuepeng Zhang (USTC)

 $e^+e^- \rightarrow K^*(892) + X$

March 12, 2025

イロト イヨト イヨト

 ho_{00} result at $\sqrt{s} = 3.5 \text{ GeV/c}^2$

 $e^+e^- \rightarrow K^*(892) + X$

æ

K^{*0} come from resonance decay

- At BESIII, K^{*0} may come from fragmentation or by resonance decay.
 - The helicity distribution of the resonance decay to K^{*0} may **influence** the decay angle of K^{*0}
- 2 List table show that the number of K^{*0} decayed by resonance(by topology)

source	percent(%)
$K_2^{*+}(1430)$	1.74
$K_1^0(1400)$	1.46
$K_1^+(1400)$	0.75
$K_2^{*0}(1430)$	0.61
$K_1^+(1270)$	0.31

• Generate MC to consider the effect from those resonances.(ongoing)

Outline

Motivation

- Data sets and event selection
- 3) Spin alignment of *K**(892)

Systematic uncertainty

Summary

4

- BACKUF
 - fit for data
 - fit for luarlw

Systematic uncertainty (still ongoing)

• MC model: LUARLW \rightarrow HYBRID.

- The difference between two MC model results.
- 2 Event selection
 - Same as R-value analysis.
- Fit method
 - Signal pdf & background pdf

Beam associated background

• N_{beam} is estimate by sideband method.

Outline

Motivation

- 2) Data sets and event selection
- 3 Spin alignment of $K^*(892)$
- 4 Systematic uncertainty

- fit for data
- fit for luarlw

Summary and outlook

- Spin alignment of inclusive K^* is studied with $\mathcal{L} = 457.75 \text{ pb}^{-1}$ at $\sqrt{s} = 3.5$ GeV.
- **(2)** ρ_{00} for K^* deviates from 1/3, ϕ is more polarized than K^* does.

Next to do:

- Finish systematic uncertainty for $\sqrt{s} = 3.5$ GeV.
- Other energy points(3.65 GeV and 3.08 GeV).

Yuepeng Zhang (USTC

Outline

Motivation

- Data sets and event selection
- 3 Spin alignment of $K^*(892)$
- Systematic uncertainty

Summary

- fit for data
- fit for luarlw

<ロ> (四) (四) (三) (三) (三) (三)

data result on $0.4 < P_{K*} < 0.5 \text{ GeV}$

э

data result on $0.5 < P_{K*} < 0.6$ GeV

э

data result on $0.6 < P_{K*} < 0.7$ GeV

э

data result on 0.7<PK*<0.8 GeV

э

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

data result on 0.8<P_{K*}<0.9 GeV

data result on $0.9 < P_{K*} < 1.0$ GeV

э

data result on $1.0 < P_{K*} < 1.1$ GeV

э

data result on $1.1 < P_{K*} < 1.2 \text{ GeV}$

э

data result on 1.2<P_{K*}<1.3 GeV

 $e^+e^- \rightarrow K^*(892) + X$

March 12, 2025

(4月) (4日) (4日)

29/44

data result on 1.3<P_{K*}<1.4 GeV

data result on 1.4<PK** < 1.5 GeV

data result on 1.5<P_{K*}<1.6 GeV

< 3 >

lon result on $0.4 < P_{K^*} < 0.5 \text{ GeV}$

 $e^+e^- \rightarrow K^*(892) + X$

March 12, 2025

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

33/44

э

lon result on $0.5 < P_{K^*} < 0.6 \text{ GeV}$

lon result on $0.6 < P_{K^*} < 0.7 \text{ GeV}$

lon result on $0.7 < P_{K^*} < 0.8 \text{ GeV}$

 $e^+e^- \rightarrow K^*(892) + X$

March 12, 2025

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

36/44

э

lon result on $0.8 < P_{K^*} < 0.9 \text{ GeV}$

lon result on $0.9 < P_{K^*} < 1.0 \text{ GeV}$

lon result on $1.0 < P_{K^*} < 1.1 \text{ GeV}$

lon result on $1.1 < P_{K^*} < 1.2 \text{ GeV}$

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

lon result on $1.2 < P_{K^*} < 1.3 \text{ GeV}$

lon result on $1.3 < P_{K^*} < 1.4 \text{ GeV}$

lon result on $1.4 < P_{K^*} < 1.5 \text{ GeV}$

lon result on $1.5 < P_{K^*} < 1.6 \text{ GeV}$

