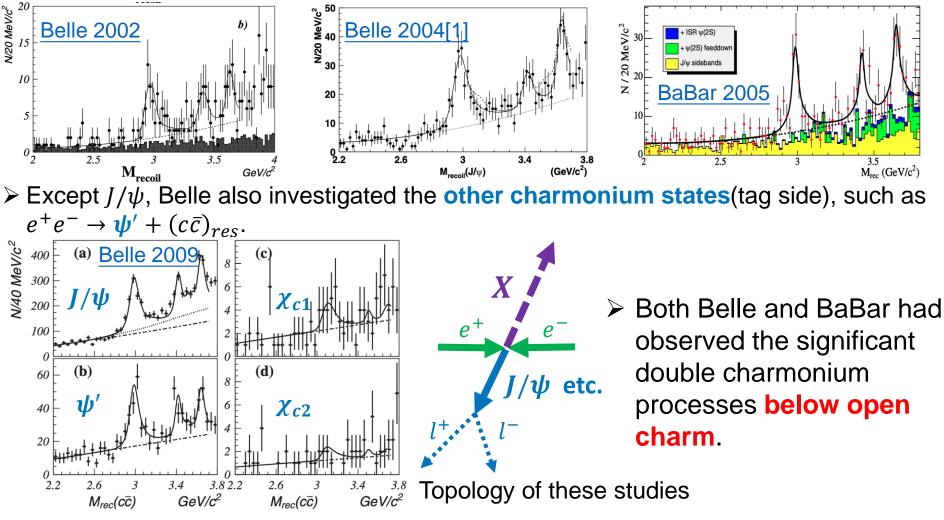
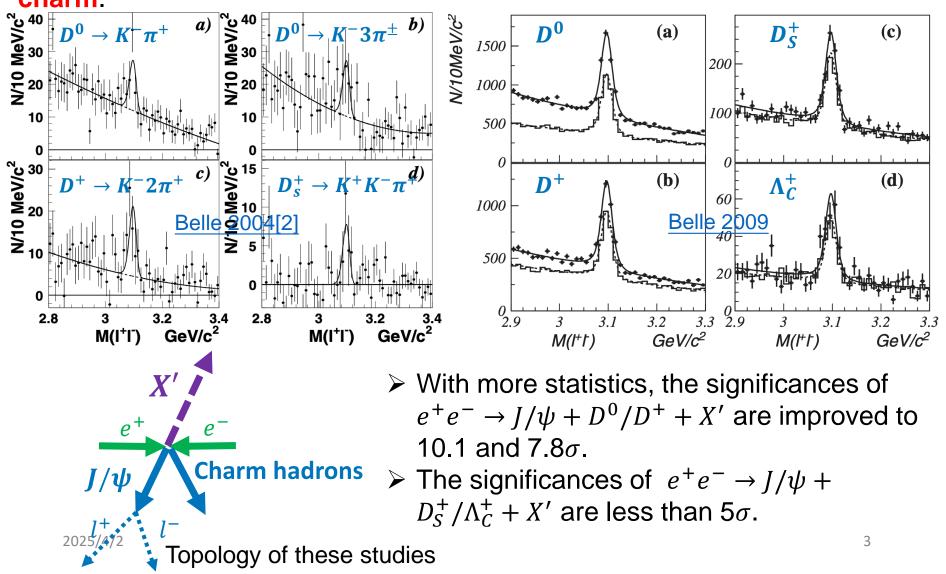


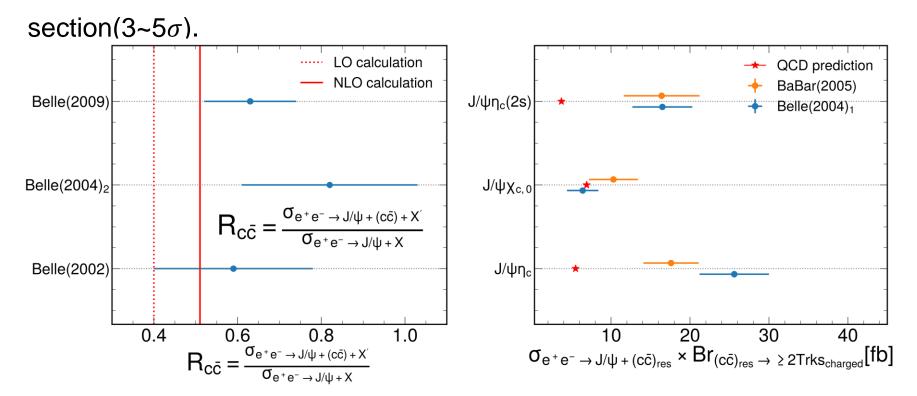
Institute of High Energy Physics, Chinese Academy of Sciences



Study of $e^+e^- \rightarrow \phi + s\overline{s} + X$


Yuzhi Che, Yaquan Fang, Yanping Huang, Gang Li, Xinchou Lou, Manqi Ruan, Jinfei Wu, <u>Gengyuan Zhang</u>, Huaqiao Zhang

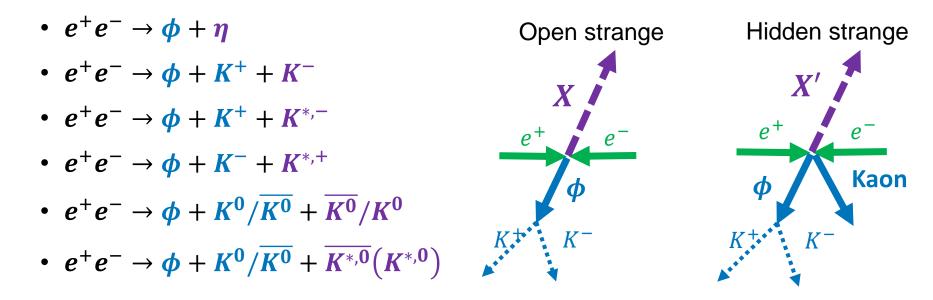
April 2nd, 2025


> The significant double charmonium processes, $e^+e^- \rightarrow J/\psi + (c\bar{c})_{res}$, was observed by Belle, then confirmed by Belle and BaBar with higher significance.

> The processes of $e^+e^- \rightarrow J/\psi + (c\bar{c})$ were also investigated above open charm.

> The experiment and QCD(NLO) have some discrepancy, especially in cross

> The dominant mechanism for J/ψ production in e^+e^- annihilation is $e^+e^- \rightarrow J/\psi + c\bar{c}$.


- We would like to perform studies with BESIII data to investigate the properties of strong interaction.
- ➢ BESIII had accumulated huge e⁺e[−] collision data from 2 to 4.95 GeV. Due to the lower C.M.S. energy, we cannot measure the double charmonium processes.
- > So, we try to measure the double strangeonium processes, $e^+e^- \rightarrow \phi + s\overline{s} + X$ with BESIII data.
 - We will study the $e^+e^- \rightarrow \phi + s\overline{s} + X$ processes with the e^+e^- collision data@3.08GeV by measuring a ratio,

$$R_{s\bar{s}} = \frac{\sigma(e^+e^- \to \phi + (s\bar{s}) + X)}{\sigma(e^+e^- \to \phi + \text{anything})}$$

Methodology

 \succ We investigate the $e^+e^- \rightarrow \phi + s\overline{s} + X$ processes in both hidden and open

strange. The following processes are taken into our account,

 \succ The ϕ is reconstructed via $\phi \rightarrow K^+K^-$ decay mode, that gives better resolution.

Data and MC

➢ Boss version : 708.

> Data : e^+e^- collision data @3080 MeV.

≻ MC samples:

- $e^+e^- \rightarrow \phi + \eta$
- $e^+e^- \rightarrow \phi + K^+ + K^-$
- $e^+e^- \to \phi + K^+ + K^{*,-}$
- $e^+e^- \to \phi + K^- + K^{*,+}$
- $e^+e^- \rightarrow \phi + K^0/\overline{K^0} + \overline{K^0}/K^0$
- $e^+e^- \rightarrow \phi + K^0/\overline{K^0} + \overline{K^{*,0}}(K^{*,0})$

Event selection

 \succ The event candidates are required to satisfy,

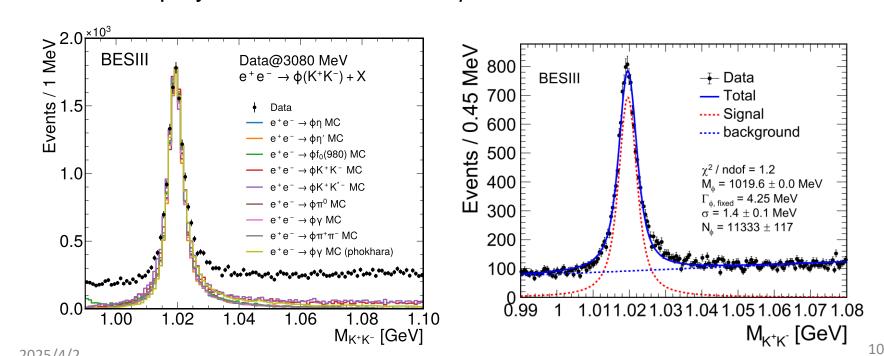
- Good charged tracks **not originating from** K_S^0 : $|R_{XY}| < 1$ cm, $|R_Z| < 1$ 0cm, $|cos\theta| < 0.93$
- Good charged tracks originating from K_S^0 : $|cos\theta| < 0.93$
- Good photon : $0 \le TDC \le 14(50)$ ns , $E_{\gamma} > 25/50$ MeV for $|cos\theta| < 0.8 / 0.86 < |cos\theta| < 0.92$
- PID for pion/kaon/proton, $Prob(K) > Prob(\pi)$, Prob(K) > Prob(p)
- K_S^0 reconstruction : secondary vertex fit is used, and a requirement on significance of decay length is applied.

$$L/\sigma_L > 2$$

Event selection

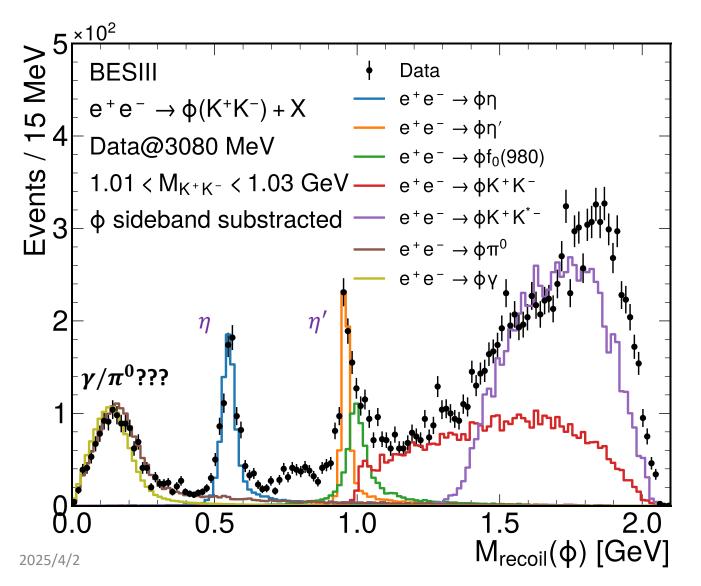
> Vetoes are applied to suppress possible backgrounds,

- At least 2 good charged tracks with opposite charge, which are identified as a pair of K^+K^- .
- All of the combinations of K^+K^- are used to reconstruct ϕ candidate.
- > Further selections on K_S^0 candidates are applied to suppress possible backgrounds,
 - A pre-selection of K_S^0 candidate is adopted by requiring K_S^0 mass window, $M_{\pi^+\pi^-} \in [485, 515]$ MeV, ~ 3σ .


Event selection

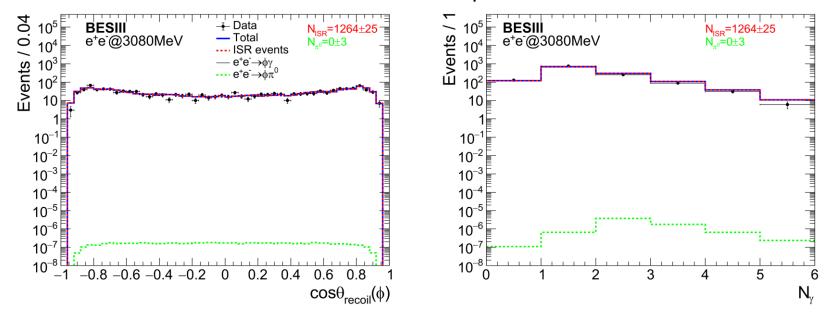
> If there are more than 1 pair of K^+K^- passing the selection criteria, multiply entries will be stored.

> The signal mass window of ϕ is determined to be [1.01, 1.03] GeV.


- The signal model is BW $\otimes \mbox{Double}$ sides CB, and the background model

is 2^{nd} polynomial. The width of ϕ is fixed to PDG values.

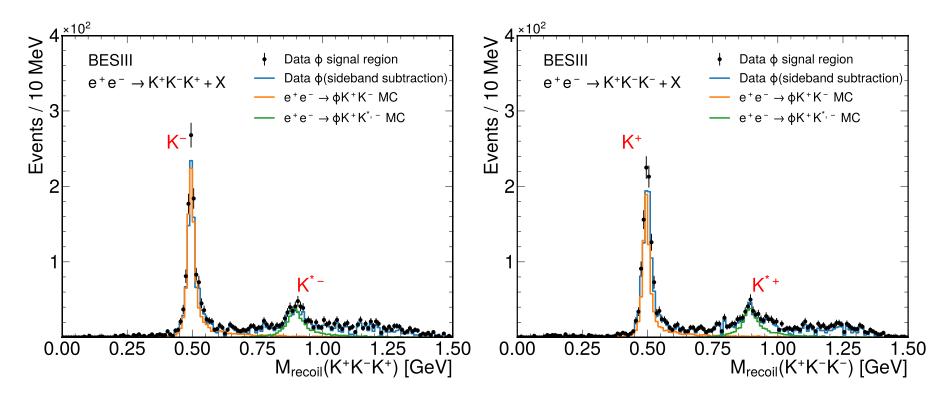
The distribution of $M_{recoil}(\phi)$


> The distribution of M_{recoil} against ϕ is shown in **data.**

Several clear peaks are observed, such as η , η' and f states.

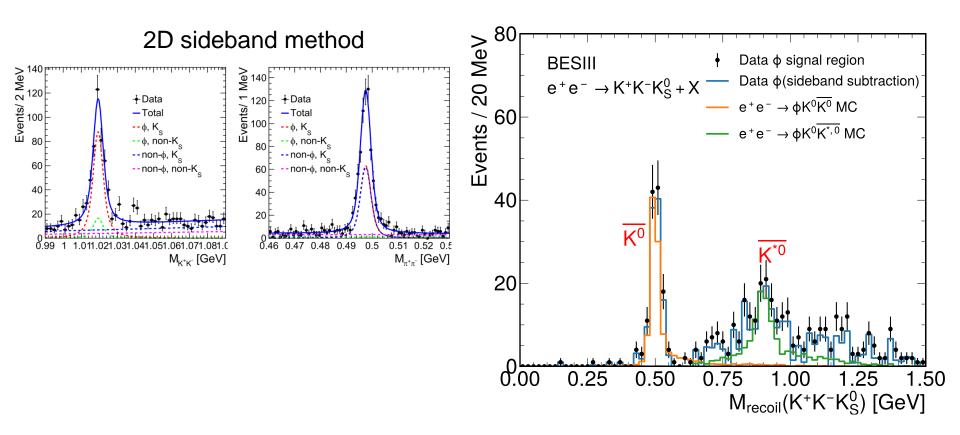
Events in $M_{recoil}(\phi) < 0.4$ GeV region

> The fit results of the simultaneous fit to N_{γ} and $cos\theta_{recoil}(\phi)$.

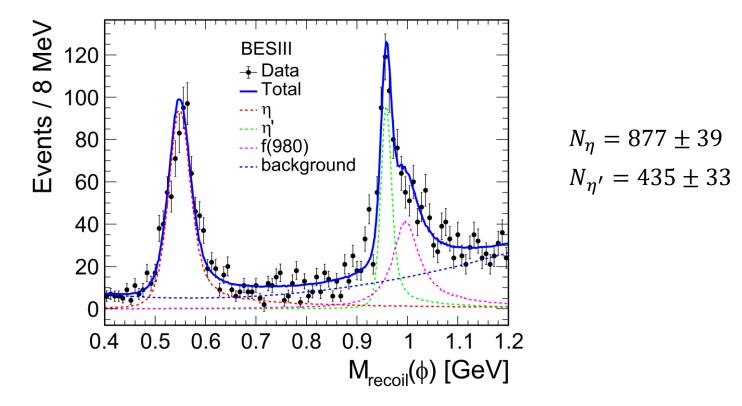


- The Phokhara MC could also describe the data much better than the other MC sample.
- \succ From the fit results, all of the photons are ISR photons.
- Because we focus on strong interaction part, the ISR process need to be

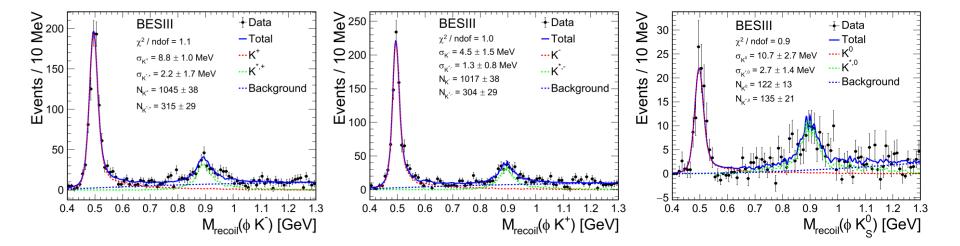
DATA&MC comparison of $e^+e^- \rightarrow \phi K^{\pm} + X_1$


> The $K^{\pm}/K^{*,\pm}$ are observed in the distribution of M_{recoil} against $\phi + K^{\mp}$.

> From the inclusive MC studies, the possible backgrounds are only from **non-\phi processes**, such as $e^+e^- \rightarrow K^+K^-K^+K^-$.


DATA&MC comparison of $e^+e^- \rightarrow \phi K_S^0 + X_2$

- > The neutral kaon and K^* are observed in the distribution of M_{recoil} against $\phi + K_s^0$.
- > The **non-** K_S^0 and **non-** ϕ backgrounds are estimated by a 2D sideband method and subtracted in the recoil mass distribution.


Fit results of $M_{recoil}(\phi) < 1.2 GeV$

- The distribution of M_{recoil} against ϕ is shown in **data**, and a mass spectrum fitting is performed to determine the number of events for $e^+e^- \rightarrow \phi + \eta$ and $e^+e^- \rightarrow \phi + \eta'$.
 - MC shapes are used to describe the signal of η , η' and $f_0(980)$.

Fit results of $M_{recoil}(\phi + K + X)$

- > The fit results of M_{recoil} against ϕK^{\pm} and ϕK^0_S , where the signal is described by MC shape \otimes gaussian and the background is described by 2nd order polynomial.
- ➤ The numbers of events for $e^+e^- \rightarrow \phi K^{\pm}K^{\mp}/K^{*,\mp}$, $e^+e^- \rightarrow \phi K^0_S K^0_L/K^0_S$ and $e^+e^- \rightarrow \phi K^0_S K^{*,0}/\overline{K}^{*,0}$ are determined from the mass spectrum fitting.

Preliminary results

The ratio
$$(R_{s\bar{s}} = \frac{\sigma(e^+e^- \to \phi + s\bar{s} + X')}{\sigma(e^+e^- \to \phi + X)})$$
 is calculated as

$$R_{s\bar{s}} = \frac{\sigma(e^+e^- \to \phi + (s\bar{s}) + X)}{\sigma(e^+e^- \to \phi + anything)} = \frac{N(e^+e^- \to \phi + (s\bar{s}) + X)}{N(e^+e^- \to \phi + anything)} = \frac{\sum_i n_i(e^+e^- \to \phi + (s\bar{s}) + X_i)/\epsilon_i}{n(e^+e^- \to \phi + anything)/\epsilon}$$

$$= \frac{\sum_i n_i(e^+e^- \to \phi + (s\bar{s}) + X_i)/(\epsilon_i/\epsilon)}{n(e^+e^- \to \phi + anything)} = \frac{\sum_i n_i(e^+e^- \to \phi + X'_i)/\epsilon'_i \times f_i^{s\bar{s}}}{n(e^+e^- \to \phi + anything)}$$

$$= \frac{\sum_i N_i(e^+e^- \to \phi + X'_i) \times f_i^{s\bar{s}}}{n(e^+e^- \to \phi + anything)} = \frac{\sum_i N_i^{s\bar{s}}(e^+e^- \to \phi + X'_i)}{n(e^+e^- \to \phi + anything)}$$

 $> n_i(e^+e^- \rightarrow \phi + X'_i)$ is the fitted number of events for the *i*th process.

$$\succ \epsilon'_{i} = \frac{N_{After all selection}^{i}}{N_{After selection of \phi}^{i}}$$
 is the relative efficiency.

 $> f_i^{s\bar{s}}$ is the fraction of $s\bar{s}$ components in the *i*th process.

Preliminary results

> The ratio $(R_{s\bar{s}} = \frac{\sigma(e^+e^- \rightarrow \phi + s\bar{s} + X')}{\sigma(e^+e^- \rightarrow \phi + X)})$ is determined to be (38.4±1.4)%.

Table 3: The values of ϵ'_i , n_i , N_i , $f_i^{s\bar{s}}$, and $N_i^{s\bar{s}}$.

Process	$\epsilon_i'(\%)$	n _i	N_i	$f_i^{sar{s}}$	$N_i^{s\bar{s}}$		
$e^+e^- \rightarrow \phi + \text{anything}$	1	11333 ± 117	11333 ± 117	-	_		
$e^+e^- ightarrow \phi + \gamma_{ m ISR}$	1	1264	1264	-	-		
$e^+e^- ightarrow \phi + \eta$	1	877 ± 39	877 ± 39	0.607 ± 0.006	533 ± 24		
$e^+e^- o \phi + \eta'$	1	435 ± 33	435 ± 33	0.794 ± 0.004	346 ± 26		
$e^+e^- \rightarrow \phi K^+ + X(K^-)$	88.1 ± 0.8	1017 ± 38	1154 ± 44	1	1154 ± 44		
$e^+e^- \rightarrow \phi K^+ + X(K^{*-})$	85.2 ± 0.9	304 ± 29	357 ± 34	1	357 ± 34		
$e^+e^- \rightarrow \phi K^- + X(K^+)$	89.4 ± 0.8	1045 ± 38	1169 ± 44	1	1169 ± 44		
$e^+e^- \rightarrow \phi K^- + X(K^{*-})$	86.3 ± 0.9	315 ± 29	365 ± 34	1	365 ± 34		
$e^+e^- \rightarrow \phi K_S^0 + X(K_I^0/K_S^0)$	30.5 ± 0.4	122 ± 13	400 ± 43	1	400 ± 43		
$e^+e^- \to \phi K_S^{0^+} + X(K^{*,0}/\bar{K}^{*,0})$	19.3 ± 0.4	135 ± 21	669 ± 110	1	669 ± 110		

Systematic uncertainties

- Since we utilize relative efficiencies to determine the $R_{s\bar{s}}$, the systematic uncertainties related to ϕ selection are canceled.
- > The remaining sources of systematic uncertainties are caused by
 - > The detection and PID efficiency of additional K^{\pm} , 1% for each.
 - \succ Reconstruction of K_S^0 , 1.5% per K_S^0 , Ks systematic uncertainty
 - Mis-modeling of MC is estimated by the difference of selection efficiency between the nominal and average of the MC samples with intermediate states.
 - Background description is estimated by changing the orders of polynomial functions.

Systematic uncertainties

> The systematic uncertainties caused by mis-modeling of MC are estimated

	=						
as	_	Process	ϵ_i	$\overline{\epsilon}$	Δ_{ϵ}		
23		$e^+e^- \to \phi + f_0(980), f_0(980) \to K^+ + X(K^-)$	$(76.5 \pm 0.8)\%$				
	$e^+e^- \to \phi + f_2(1270), f_2(1270) \to K^+ + X(K^-)$	$(88.2 \pm 0.9)\%$	$(85.4 \pm 0.4)\%$	3.1%			
		$e^+e^- \to \phi + f_0(1500), f_0(1500) \to K^+ + X(K^-)$	$(88.2 \pm 0.8)\%$	(05.4 ± 0.4) //	5.4 ± 0.4) // 5.1 //		
		$e^+e^- \to \phi + f_2'(1525), f_2'(1525) \to K^+ + X(K^-)$	$(88.8 \pm 0.9)\%$				
	_	$e^+e^- \rightarrow \phi + f_0(980), f_0(980) \rightarrow K^- + X(K^+)$	$(78.2 \pm 0.8)\%$				
		$e^+e^- \to \phi + f_2(1270), f_2(1270) \to K^- + X(K^+)$	$(88.9 \pm 0.9)\%$	(96.5 + 0.4)0	2.00		
		$e^+e^- \rightarrow \phi + f_0(1500), f_0(1500) \rightarrow K^- + X(K^+)$	$(89.3 \pm 0.8)\%$	$(86.5 \pm 0.4)\%$	3.2%		
		$e^+e^- \to \phi + f_2'(1525), f_2'(1525) \to K^- + X(K^+)$	$(89.4 \pm 0.8)\%$				
	-	$e^+e^- \to \phi + f_0(980), f_0(980) \to K^0 \bar{K}^0$	$(29.7 \pm 0.4)\%$				
		$e^+e^- \rightarrow \phi + f_2(1270), f_2(1270) \rightarrow K^0 \bar{K}^0$	$(31.1 \pm 0.4)\%$		0.7~		
		$e^+e^- \rightarrow \phi + f_0(1500), f_0(1500) \rightarrow K^0 \bar{K}^0$	$(30.8 \pm 0.4)\%$	$(30.7 \pm 0.2)\%$	0.7%		
		$e^+e^- \rightarrow \phi + f'_2(1525), f'_2(1525) \rightarrow K^0 \bar{K}^0$	$(31.3 \pm 0.4)\%$				
	-	$e^+e^- \to K(1410)^{*,-} + X(K^{*,+}), K(1410)^{*,-} \to \phi K^-$	$(85.1 \pm 0.8)\%$	-	1.4%		
	-	$e^+e^- \to K(1410)^{*,+} + X(K^{*,-}), K(1410)^{*,+} \to \phi K^+$	$(84.5 \pm 0.8)\%$	-	0.8%		
	-	$e^+e^- \to K^{*,0}(1410)/\bar{K}^{*,0}(1410) + \bar{K}^{*,0}/K^{*,0}),$	(170 ± 0.2)		7.0%		
		$K^{*,0}(1410)/\bar{K}^{*,0}(1410) \to \phi K^0/\bar{K}^0$	$(17.9 \pm 0.3)\%$	-	7.2%		
	1.0 ^{×10²} BES 0.8 − e ⁺ e 0.4 − 0.2 − 0.2 −	SIII ϕ signal region $\phi = - \phi K^+ K^ \phi$ sideband region ϕ sideband subtraction intermediate states	Events / 40 MeV		·	egion -	e states
2025/4/2	0.0 ^L 1.00	, <u></u>	0 1.00	1.25 1.50	1.75 Μ _{recoil} (φ	2.00) [GeV]	20

Systematic uncertainties

> The systematic uncertainties caused by background description are

Table 6: The order of polynomial function in the recoil mass spectrum fitting.						
Process	Order of nominal	Order of variation	Relative systematic uncertainty			
$e^+e^- \rightarrow \phi + X(\text{anything})$	1	2	1.8%			
$e^+e^- ightarrow \phi + X(\eta)$	2	3	1.5%			
$e^+e^- \rightarrow \phi + X(\eta')$	2	3	0.5%			
$e^+e^- \rightarrow \phi + K^+ + X(K^-)$	2	3	0.8%			
$e^+e^- \rightarrow \phi + K^+ + X(K^{*-})$	2	3	4.6%			
$e^+e^- \rightarrow \phi + K^- + X(K^+)$	2	3	0.3%			
$e^+e^- \rightarrow \phi + K^- + X(K^{*-})$	2	3	0.9%			
$e^+e^- \rightarrow \phi + K^0_S + X(K^0_L/K^0_S)$	2	3	0.0%			
$e^+e^- \to \phi + K_S^{0,0} + X(K^{*,0}/\bar{K}^{*,0})$	2	3	11.8%			

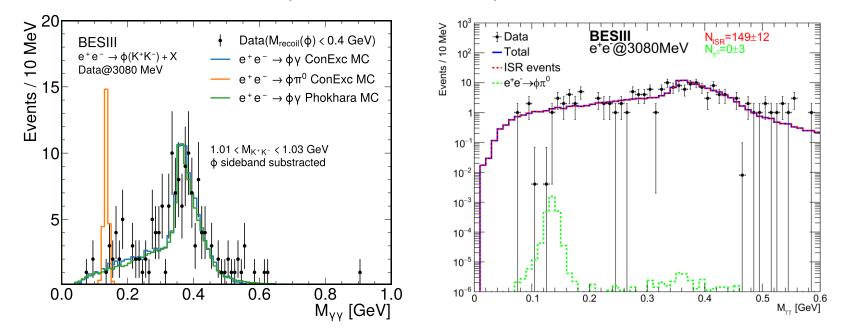
The summary of systematic uncertainties are shown as below, which are

less than the corresponding statistic uncertainty.

Process	Tracking	PID	K_S^0	Background	Efficiency	Total on $R_{s\bar{s}}$
$e^+e^- \rightarrow \phi + X(anything)$	-	-	-	0.78%	-	0.78%
$e^+e^- \rightarrow \phi + X(\eta)$	-	-	-	0.08%	-	0.08%
$e^+e^- \rightarrow \phi + X(\eta')$	-	-	-	0.02%	-	0.02%
$e^+e^- \rightarrow \phi + K^+ + X(K^-)$	0.06%	0.06%	-	0.05%	0.18%	0.21%
$e^+e^- \rightarrow \phi + K^+ + X(K^{*-})$	0.04%	0.04%	-	0.16%	0.03%	0.17%
$e^+e^- \rightarrow \phi + K^- + X(K^+)$	0.06%	0.06%	-	0.02%	0.19%	0.21%
$e^+e^- \rightarrow \phi + K^- + X(K^{*+})$	0.04%	0.04%	-	0.03%	0.05%	0.08%
$e^+e^- \rightarrow \phi + K^0_{\rm S} + X(K^0_I/K^0_{\rm S})$	-	-	0.06%	0.00%	0.03%	0.07%
$e^+e^- \to \phi + K_S^{0} + X(K^{*,0}/\bar{K}^{*,0})$	-	-	0.10%	0.82%	0.50%	0.97%

Summary

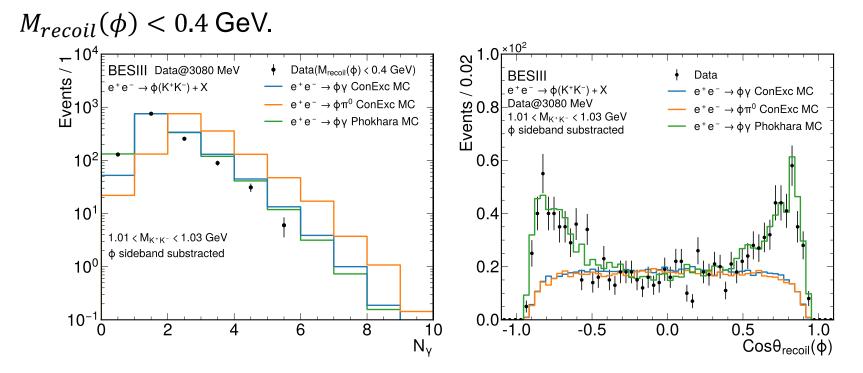
- ➤ Using $167pb^{-1}$ data @3080 MeV, we study $ee \rightarrow \phi + s\bar{s} + X$ processes and measure the $R_{s\bar{s}}$.
- > Currently, $R_{s\bar{s}}$ is determined to be $(38 \pm 1.4_{stat} \pm 1.3_{syst})$ % by considering $s\bar{s} + X$ as KK, KK^* , η and η' .
- > In future studies, we will include more processes of $s\bar{s} + X$ to calculate $R_{s\bar{s}}$. > Memo is ready.


Thanks for attention!

$M_{\gamma\gamma}$ in $M_{recoil}(\phi) < 0.4$ GeV region

> A mass spectra fitting on the distribution of $M_{\gamma\gamma}$ is performed to determine

the numbers of $e^+e^- \rightarrow \phi \pi^0$ and $e^+e^- \rightarrow \phi \gamma$.

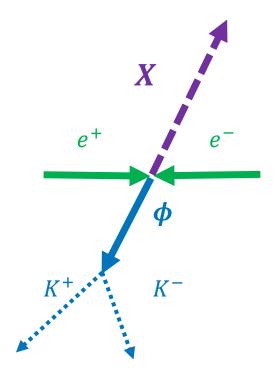


> Almost all of events (>99.99%) in the region of $M_{recoil}(\phi) < 0.4$ GeV are from $e^+e^- \rightarrow \phi\gamma$ from the fitting results.

 \succ An additional fit is used to distinguish if the photons are ISR photons or not.

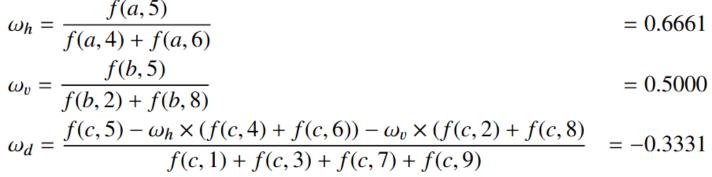
N_{γ} and $cos\theta_{recoil}(\phi)$ in $M_{recoil}(\phi) < 0.4$ GeV region

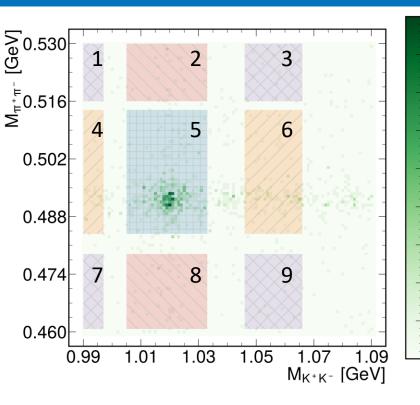
> The distributions of N_{γ} and $cos\theta_{recoil}(\phi)$ for the events in the region of



> The Phokhara MC could describe the data better than the other two MC samples for both N_{γ} and $cos\theta_{recoil}(\phi)$, which are related to each other.

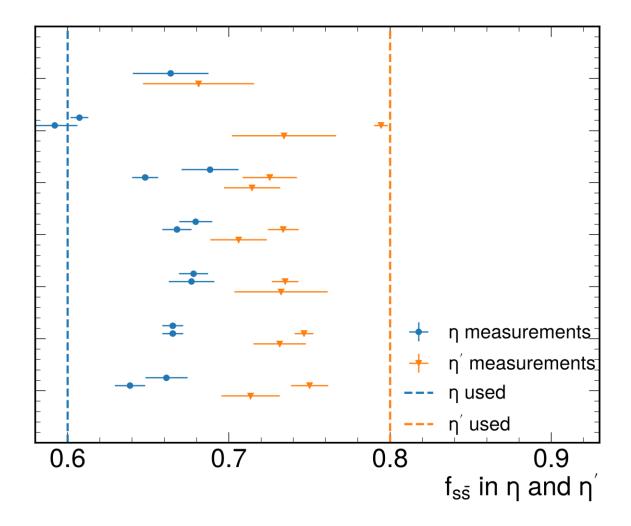
A simultaneous fit to N_{γ} and $cos\theta_{recoil}(\phi)$ is performed.


Preliminary results


- ➢ Boss version : 708.
- > Data : e^+e^- collision data @3080 MeV.
- ≻ MC samples:
 - Inclusive MC : same statistic with data
 - $e^+e^- \rightarrow \phi + \pi^0$ with ConExc generator,
 - $e^+e^- \rightarrow \phi + \gamma$ with ConExc generator,
 - $e^+e^- \rightarrow \phi + \gamma$ with Phokhara generator,

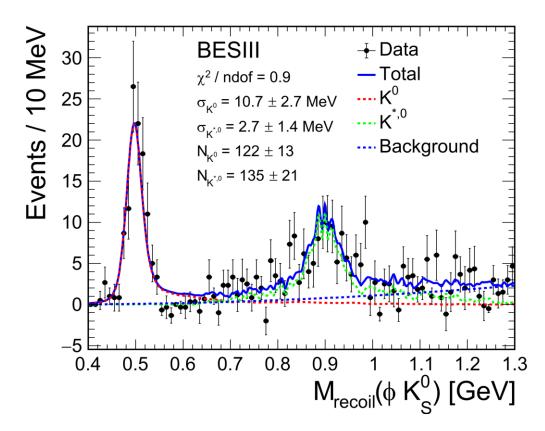
2D sideband method for $e^+e^- \rightarrow \phi K_S^0 + X_2$

- ϕ and K_S^0 signal region, 1.01 < $M_{K^+K^-}$ < 1.03 and 0.485 < $M_{\pi^+\pi^-}$ < 0.515 GeV, which is highlighted with green box.
- ϕ side-band and K_S^0 signal regions, 0.990 < $M_{K^+K^-}$ < 0.997 \cup 1.046 < $M_{K^+K^-}$ < 1.066 and 0.485 < $M_{\pi^+\pi^-}$ < 0.515 GeV, which are highlighted with black boxes.
- ϕ signal and K_S^0 side-band regions, $1.01 < M_{K^+K^-} < 1.03$ and $0.461 < M_{K^+K^-} < 0.478 \cup 0.516 < M_{K^+K^-} < 0.529$ GeV, which are highlighted with red boxes.
- ϕ side-band and K_S^0 side-band regions, $0.990 < M_{K^+K^-} < 0.997 \cup 1.046 < M_{K^+K^-} < 1.066$ and $0.461 < M_{K^+K^-} < 0.478 \cup 0.516 < M_{K^+K^-} < 0.529$ GeV, which are highlighted with purple boxes.

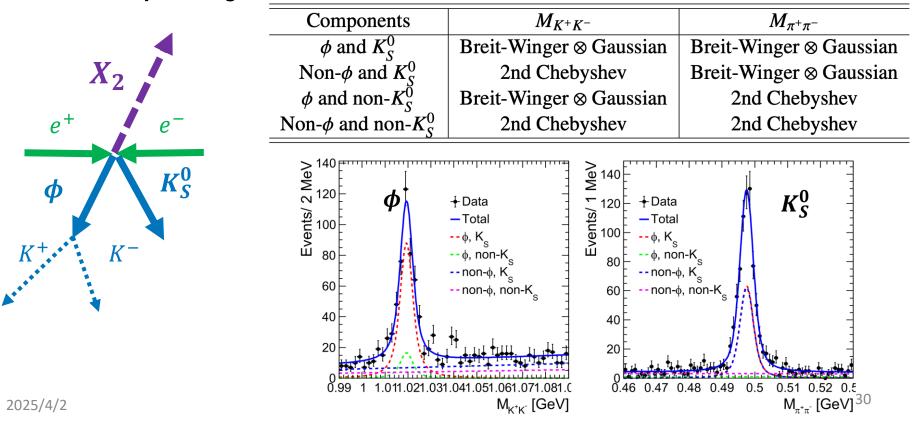

8

6

5


$\eta \sim \eta'$ mixing angle

> The mixing angle between η and η' is $(37.4 \pm 0.4)^{\circ}$ from link.


Fit results of $M_{recoil}(\phi + K_S^0 + X)$

> The fit results of M_{recoil} against ϕK_S^0 , where the signal is described by MC shape \otimes gaussian and the background is described by 2nd order polynomial.

Preliminary results of $e^+e^- \rightarrow \phi K_S^0 + X_2$

- The K_S^0 is reconstructed using $\pi^+\pi^-$ decay mode, that causes the non- K_S^0 background, such as $e^+e^- \rightarrow \phi \pi^+\pi^-\pi^+\pi^-$.
- > We perform 2D mass spectra fit of $M_{K^+K^-}$ VS $M_{\pi^+\pi^-}$ to estimate the **non-** K_S^0 and **non-** ϕ backgrounds.

