

Study of $e^+e^- \rightarrow \omega/\phi \ K^+K^-/\pi^+\pi^-$ around J/ψ

Tianyou Li^{1,2}, Minggang Zhao¹, Hailong Ma²

¹Nankai University ²Institute of High Energy Physics, CAS

2025-4-16

 τ & QCD Group meeting

Motivation

- Data set and MC samples
- Event selection
- Signal yield fitting and amplitude analysis
- System uncertainties
- Fitting lineshape and extracting phase angle

Summary

Motivation

For the lineshape of hardon cross section around charmonium is determined by the interference between resonance produnction and non-resonance produnction, we need to study the phase between resonance Strong and EM amptitudes from charmonium decay

Motivation

- > In theory ,the phase is predicted as 0° or 180° with QCD and ± 90° with unsubtracted dispersion relations.
- ➢ In experiment, lots of phase between resonance Strong and EM amptitudes from charmonium decay are determined: $J/ψ → 1^-0^-, 0^-0^-: φ~90^\circ \quad Phys.Rev.D 41,1389$ $J/ψ → N\overline{N}: φ~91^\circ \quad Phys.Lett.B 444,111$

≻ In this work, we aim to exactly measure the BFs of $J/\psi \rightarrow \omega/\phi \ K^+K^-/\pi^+\pi^-$ with interference and extract the relative phase.

Data set and MC samples

> Data set : BOSS 7.1.3 for J/ψ scan, 86 pb^{-1}

BOSS 7.0.8 for J/ψ off-res @3080, 167 pb^{-1}

Datasets	Run Number	BEMS MeV	Corrected MeV	$\mathcal{L}(pb^{-1})$	Boss version
3050	28312 - 28346	3050.21 ± 0.03	3049.658	14.92 ± 0.16	6.6.4.p01
3059	28347 - 28381	3059.25 ± 0.03	3058.709	15.06 ± 0.16	6.6.4.p01
3080	27147-27233,28241-28266 54982-55053,59016-59141	-	3080.000	167.06 ± 0.10	7.0.8
3083	28382 - 28387,28466 - 28469	3083.06 ± 0.02	3082.512	4.77 ± 0.06	6.6.4.p01
3089	28388 - 28416,28472 - 28475	3089.42 ± 0.02	3088.870	15.56 ± 0.17	6.6.4.p01
3092	28417 - 28453,28476 - 28478	3092.32 ± 0.03	3091.776	14.91 ± 0.16	6.6.4.p01
3095	28479 - 28482	3095.26 ± 0.08	3094.713	2.14 ± 0.03	6.6.4.p01
3096	28487 - 28489	3095.99 ± 0.08	3095.446	1.82 ± 0.02	6.6.4.p01
3097	28490 - 28492	3096.39 ± 0.08	3095.842	2.14 ± 0.03	6.6.4.p01
3098	28493 - 28495	3097.78 ± 0.08	3097.229	2.07 ± 0.03	6.6.4.p01
3099	28496 - 28498	3098.90 ± 0.08	3098.356	2.20 ± 0.03	6.6.4.p01
3100	28499 - 28501	3099.61 ± 0.09	3099.058	0.76 ± 0.01	6.6.4.p01
3102	28504 - 28505	3101.92 ± 0.11	3101.375	1.61 ± 0.02	6.6.4.p01
3106	28506 - 28509	3106.14 ± 0.09	3105.596	2.11 ± 0.03	6.6.4.p01
3112	28510 - 28511	3112.62 ± 0.09	3112.067	1.72 ± 0.02	6.6.4.p01
3120	28512 - 28513	3120.44 ± 0.12	3119.894	1.26 ± 0.02	6.6.4.p01

Data set and MC samples

> Inclusive MC: J/ψ 224M(2009), BOSS7.0.8.

Signal MC: BOSS 7.1.3 for J/ψ scan BOSS 7.0.8 for J/ψ off-res @3080 Under the 00-04-08 version of BesEvtGen, using the generator ConExc generated 100,000 events at each energy point Up to now, the generator is PHSP.

➢Good charged track $V_{xy} < 1 \text{ cm}$ $V_z < 10 \text{ cm}$ |cosθ| < 0.93</pre>

$$\begin{split} & \succ \text{Particle Identification (dE/dx + TOF)} \\ & \text{K}^{\pm} \text{:} \text{CL}_{K} > \text{CL}_{\pi} \ \&\& \ \text{CL}_{K} > 0 \\ & \pi^{\pm} \text{:} \text{CL}_{\pi} > \text{CL}_{K} \ \&\& \ \text{CL}_{\pi} > 0 \end{split}$$

> π^0 reconstruction: $M_{\gamma\gamma} \in (0.080, 0.180) \text{GeV}/c^2$ 1-c kinematic fit: $\chi^2 < 200$

> Photon:

 $E_{\gamma} > 0.025$ GeV for barrel $E_{\gamma} > 0.05$ GeV for endcap $0 \le T_{EMC} \le 14$ $\theta_{c\gamma} > 10^{\circ}$

No extra charge tracks

Combination:

We combinate the lower momentum $K^+K^-/\pi^+\pi^-\pi^0$ candidates as ϕ/ω particle

4C kinematic fit

1:Energy-momentum constraint to energy point.

2:Choose the smallest χ^2_{4C}

3: $\chi^2_{4C} < 50$

rowNo	cascade decay branch of J/ψ	iCascDcyBrP	nCase	nCCase
1	$J/\psi \to \pi^0 \pi^+ \pi^- K^+ K^-$	0	20330	20330
2	$J/\psi \to \omega f_2(1270), \omega \to \pi^0 \pi^+ \pi^-, f_2(1270) \to K^+ K^-$	11	3893	24223
3	$J/\psi \to \pi^+ K^* K^{*-}, K^* \to \pi^- K^+, K^{*-} \to \pi^0 K^-$	4	3324	27547
4	$J/\psi ightarrow \omega K^+ K^-, \omega ightarrow \pi^0 \pi^+ \pi^-$	2	3319	30866
5	$J/\psi \to \pi^- \bar{K}^* K^{*+}, \bar{K}^* \to \pi^+ K^-, K^{*+} \to \pi^0 K^+$	3	3260	34126
6	$J/\psi ightarrow \pi^0 K^* ar K^*, K^* ightarrow \pi^- K^+, ar K^* ightarrow \pi^+ K^-$	10	887	35013
7	$J/\psi \to \pi^0 \bar{K}^* K_2^{*0}, \bar{K}^* \to \pi^+ K^-, K_2^{*0} \to \pi^- K^+$	5	740	35753
8	$J/\psi \to \pi^0 K^* K_2^{*0}, K^* \to \pi^- K^+, K_2^{*0} \to \pi^+ K^-$	16	723	36476
9	$J/\psi ightarrow K^- K_1^{'+}, K_1^{'+} ightarrow \omega K^+$	15	678	37154
10	$J/\psi \to \omega f_0(980), \omega \to \pi^0 \pi^+ \pi^-, f_0(980) \to K^+ K^-$	6	674	37828
11	$J/\psi \rightarrow K^+ \bar{K}_1^{\prime -}, \bar{K}_1^{\prime -} \rightarrow \omega K^-$	26	662	38490
12	$J/\psi \to \pi^0 \bar{K}^* K^0_0, \bar{K}^* \to \pi^+ K^-, K^0_0 \to \pi^- K^+$	47	310	38800
13	$J/\psi \to \pi^0 K^* \bar{K}_0^{*0}, K^* \to \pi^- K^+, \bar{K}_0^{*0} \to \pi^+ K^-$	14	288	39088
14	$J/\psi \to \pi^+ K^{*-} K^0_0, K^{*-} \to \pi^0 K^-, K^0_0 \to \pi^- K^+$	17	142	39230
15	$J/\psi \to \pi^+ K^* K_0^{*-}, K^* \to \pi^- K^+, K_0^{*-} \to \pi^0 K^-$	32	131	39361
16	$J/\psi \to \pi^- \bar{K}^* K_0^{*+}, \bar{K}^* \to \pi^+ K^-, K_0^{*+} \to \pi^0 K^+$	48	131	39492
17	$J/\psi \to K^* K_2^{*0}, K^* \to \pi^- K^+, K_2^{*0} \to \pi^0 \bar{K}^*$	18	130	39622
18	$J/\psi \to \pi^- K^{*+} \bar{K}^{*0}_0, K^{*+} \to \pi^0 K^+, \bar{K}^{*0}_0 \to \pi^+ K^-$	43	124	39746
19	$J/\psi \to \pi^0 \pi^+ \pi^- K^+ K^- \gamma^f$	41	120	39866
20	$J/\psi \to \pi^+\pi^-K^+K^-\gamma^F$	23	120	39986
21	$J/\psi \to K^* K_2^{*0}, K^* \to \pi^- K^+, K_2^{*0} \to \pi^+ K^{*-}$	13	115	40101
22	$J/\psi \to \bar{K}^* K_2^{*0}, \bar{K}^* \to \pi^+ K^-, K_2^{*0} \to \pi^0 K^*$	30	110	40211
23	$J/\psi \to K^{*+}K_2^{*-}, K^{*+} \to \pi^0 K^+, K_2^{*-} \to \pi^- \bar{K}^*$	9	105	40316
24	$J/\psi \to \bar{K}^* K_2^{*0}, \bar{K}^* \to \pi^+ K^-, K_2^{*0} \to \pi^- K^{*+}$	20	99	40415
25	$J/\psi \to \bar{K}^* K_2^{*0}, \bar{K}^* \to \pi^+ K^-, K_2^{*0} \to \rho^- K^+$	24	98	40513
26	$J/\psi \to K^{*-}K_2^{*+}, K^{*-} \to \pi^0 K^-, K_2^{*+} \to \pi^+ K^*$	12	92	40605
27	$J/\psi \to K^*K_2^{*0}, K^* \to \pi^-K^+, K_2^{*0} \to \rho^+K^-$	68	82	40687
28	$J/\psi o ar{K}^* K_2^0, ar{K}^* o \pi^+ K^-, K_2^0 o \pi^0 K_2^{*0}$	38	60	40747
29	$J/\psi \to K^+K_1^-, K_1^- \to \omega K^-$	7	51	40798
30	$J/\psi ightarrow K^- K_1^+, K_1^+ ightarrow \omega K^+$	56	38	40836
31	$J/\psi \to \bar{K}^* K_2^0, \bar{K}^* \to \pi^+ K^-, K_2^0 \to \pi^- K_2^{*+}$	51	38	40874
32	$J/\psi ightarrow ho^- ar{K}^* K^+, ho^- ightarrow \pi^0 \pi^-, ar{K}^* ightarrow \pi^+ K^-$	81	37	40911

rowNo	cascade decay branch of J/ψ	iCascDcyBrP	nCase	nCCase
1	$J/\psi o \pi^+\pi^-\omega, \omega o \pi^0\pi^+\pi^-$	1	241894	241894
2	$J/\psi \to \omega f_2(1270), \omega \to \pi^0 \pi^+ \pi^-, f_2(1270) \to \pi^+ \pi^-$	0	81750	323644
3	$J/\psi \to \pi^0 \pi^+ \pi^+ \pi^- \pi^-$	2	77705	401349
4	$J/\psi ightarrow \pi^- b_1^+, b_1^+ ightarrow \pi^+ \omega$	4	44852	446201
5	$J/\psi ightarrow \pi^+ b_1^-, b_1^- ightarrow \pi^- \omega$	3	44736	490937
6	$J/\psi ightarrow ho^0 a_2^0, ho^0 ightarrow \pi^+\pi^-, a_2^0 ightarrow \pi^- ho^+$	11	3670	494607
7	$J/\psi ightarrow ho^0 a_2^0, ho^0 ightarrow \pi^+\pi^-, a_2^0 ightarrow \pi^+ ho^-$	17	3479	498086
8	$J/\psi ightarrow \pi^+\pi^-\omega\gamma^f, \omega ightarrow \pi^0\pi^+\pi^-$	6	2458	500544
9	$J/\psi \to \pi^- \rho(2S)^+, \rho(2S)^+ \to \pi^0 \pi^+ \pi^+ \pi^-$	19	1960	502504
10	$J/\psi \to \omega f_0(980), \omega \to \pi^0 \pi^+ \pi^-, f_0(980) \to \pi^+ \pi^-$	14	1959	504463
11	$J/\psi \to \pi^+ \rho(2S)^-, \rho(2S)^- \to \pi^0 \pi^+ \pi^- \pi^-$	16	1883	506346
12	$J/\psi \to \omega f_2(1270), \omega \to \pi^0 \pi^+ \pi^-, f_2(1270) \to \pi^+ \pi^- \gamma^f$	24	1725	508071
13	$J/\psi ightarrow \pi^+\pi^-\omega, \omega ightarrow \pi^0\pi^+\pi^-\gamma^f$	9	1630	509701
14	$J/\psi ightarrow \pi^0 \pi^+ \pi^+ \pi^- \pi^- \gamma^f$	5	1170	510871
15	$J/\psi ightarrow ho^+ a_2^-, ho^+ ightarrow \pi^0 \pi^+, a_2^- ightarrow ho^0 \pi^-$	23	779	511650
16	$J/\psi ightarrow ho^- a_2^+, ho^- ightarrow \pi^0 \pi^-, a_2^+ ightarrow ho^0 \pi^+$	8	722	512372
17	$J/\psi \to \omega f_2(1270), \omega \to \pi^0 \pi^+ \pi^- \gamma^f, f_2(1270) \to \pi^+ \pi^-$	10	543	512915
18	$J/\psi ightarrow \pi^+ b_1^- \gamma^f, b_1^- ightarrow \pi^- \omega$	13	529	513444
19	$J/\psi ightarrow \pi^0 \pi^- a_2^+, a_2^+ ightarrow ho^0 \pi^+$	7	491	513935
20	$J/\psi ightarrow \pi^0 \pi^+ a_2^-, a_2^- ightarrow ho^0 \pi^-$	26	487	514422
21	$J/\psi ightarrow \pi^- b_1^+ \gamma^f, b_1^+ ightarrow \pi^+ \omega$	40	487	514909
22	$J/\psi o \pi^+ \pi^+ \pi^- \pi^- \gamma^F$	33	318	515227
23	$J/\psi ightarrow a_2^0 \pi^+ \pi^-, a_2^0 ightarrow \pi^- ho^+$	28	315	515542
24	$J/\psi ightarrow a_2^0 \pi^+ \pi^-, a_2^0 ightarrow \pi^+ ho^-$	72	313	515855
25	$J/\psi \to \pi^0 \pi^+ \pi^- f_2(1270), f_2(1270) \to \pi^+ \pi^-$	39	230	516085
26	$J/\psi ightarrow \pi^+ b_1^-, b_1^- ightarrow \pi^- \omega \gamma^f$	18	219	516304
27	$J/\psi ightarrow \pi^- b_1^+, b_1^+ ightarrow \pi^+ \omega \gamma^f$	34	216	516520
28	$J/\psi \to \pi^+ \rho^- f_2(1270), \rho^- \to \pi^0 \pi^-, f_2(1270) \to \pi^+ \pi^-$	25	179	516699
29	$J/\psi ightarrow \pi^0 \pi^+ a_1^-, a_1^- ightarrow ho^0 \pi^-$	21	175	516874
30	$J/\psi \to \pi^- \rho^+ f_2(1270), \rho^+ \to \pi^0 \pi^+, f_2(1270) \to \pi^+ \pi^-$	46	167	517041
31	$J/\psi ightarrow \pi^0 \pi^- a_1^+, a_1^+ ightarrow ho^0 \pi^+$	38	167	517208
32	$J/\psi \to \pi^0 \rho^0 f_2(1270), \rho^0 \to \pi^+ \pi^-, f_2(1270) \to \pi^+ \pi^-$	61	130	517338

For $\omega K^+ K^-$

For $\omega \pi^+ \pi^-$

No peaking background

rowNo	cascade decay branch of J/ψ	iCascDcyBrP	nCase	nCCase
1	$J/\psi ightarrow K^+K^-\phi, \phi ightarrow K^+K^-$	0	16493	16493
2	$J/\psi \rightarrow \phi f_2^{\prime}, \phi \rightarrow K^+K^-, f_2^{\prime} \rightarrow K^+K^-$	3	9386	25879
3	$J/\psi \to K^+K^+K^-K^-$	1	9282	35161
4	$J/\psi ightarrow K^+K^-f_2^{\prime}, f_2^{\prime} ightarrow K^+K^-$	2	6820	41981
5	$J/\psi o \phi f_0(1710), \phi o K^+K^-, f_0(1710) o K^+K^-$	4	189	42170
6	$J/\psi \to \phi f_0(980), \phi \to K^+K^-, f_0(980) \to K^+K^-$	8	124	42294
7	$J/\psi \to f_2(1270)\phi, f_2(1270) \to K^+K^-, \phi \to K^+K^-$	6	116	42410
8	$J/\psi ightarrow \phi f_2^{\prime}, \phi ightarrow K^+K^-, f_2^{\prime} ightarrow K^+K^-\gamma^f$	11	46	42456
9	$J/\psi ightarrow K^+K^-f_2', f_2' ightarrow K^+K^-\gamma^f$	5	32	42488
10	$J/\psi \to K^+K^-\phi\gamma^f, \phi \to K^+K^-$	7	17	42505
11	$J/\psi \to K^+ K^+ K^- K^- \gamma^f$	13	12	42517
12	$J/\psi o \eta_c \gamma, \eta_c o K^+ K^- \phi$	12	11	42528
13	$J/\psi \rightarrow \phi f_2^{\prime}, \phi \rightarrow K^+K^-\gamma^f, f_2^{\prime} \rightarrow K^+K^-$	15	4	42532
14	$J/\psi ightarrow K^+ K^- f_2' \gamma^f, f_2' ightarrow K^+ K^-$	9	3	42535
15	$J/\psi ightarrow K^+K^-\phi, \phi ightarrow K^+K^-\gamma^f$	10	3	42538
16	$J/\psi \to K^+K^-f_0(1710), f_0(1710) \to K^+K^-$	16	3	42541
17	$J/\psi ightarrow \eta_c \gamma, \eta_c ightarrow K^+ K^+ K^- K^-$	14	1	42542
18	$J/\psi \to f_2(1270)\phi, f_2(1270) \to K^+K^-\gamma^f, \phi \to K^+K^-$	17	1	42543
19	$J/\psi \to \phi f_0(980), \phi \to K^+K^-, f_0(980) \to K^+K^-\gamma^f$	18	1	42544
20	$J/\psi o \phi f_0(1710), \phi \to K^+K^-, f_0(1710) \to K^+K^-\gamma^f$	19	1	42545

rowNo	cascade decay branch of J/ψ	iCascDcyBrP	nCase	nCCase
1	$J/\psi ightarrow \pi^+\pi^-\phi, \phi ightarrow K^+K^-$	2	37599	37599
2	$J/\psi \to \pi^+\pi^-K^+K^-$	1	25693	63292
3	$J/\psi \to \phi f_0(980), \phi \to K^+K^-, f_0(980) \to \pi^+\pi^-$	5	7547	70839
4	$J/\psi \to f_2(1270)\phi, f_2(1270) \to \pi^+\pi^-, \phi \to K^+K^-$	3	7302	78141
5	$J/\psi ightarrow \pi^- \bar{K}^* K^+, \bar{K}^* ightarrow \pi^+ K^-$	0	6367	84508
6	$J/\psi ightarrow \pi^+ K^* K^-, K^* ightarrow \pi^- K^+$	7	6254	90762
7	$J/\psi \to \pi^- K_2^{*0} K^+, K_2^{*0} \to \pi^+ K^-$	4	1241	92003
8	$J/\psi \to \pi^+ K_2^{*0} K^-, K_2^{*0} \to \pi^- K^+$	8	1146	93149
9	$J/\psi \to \bar{K}^* K_2^{*0}, \bar{K}^* \to \pi^+ K^-, K_2^{*0} \to \pi^- K^+$	15	1101	94250
10	$J/\psi \to K^* K_2^{*0}, K^* \to \pi^- K^+, K_2^{*0} \to \pi^+ K^-$	6	1095	95345
11	$J/\psi \to \phi f_0(1710), \phi \to K^+K^-, f_0(1710) \to \pi^+\pi^-$	21	480	95825
12	$J/\psi \to \pi^+\pi^- a^0_0, a^0_0 \to K^+K^-$	19	234	96059
13	$J/\psi ightarrow \pi^+\pi^-\phi\gamma^f, \phi ightarrow K^+K^-$	18	210	96269
14	$J/\psi ightarrow K_2^{*0}K_2^{*0}, K_2^{*0} ightarrow \pi^- K^+, K_2^{*0} ightarrow \pi^+ K^-$	23	207	96476
15	$J/\psi ightarrow \pi^+\pi^- K^+ K^- \gamma^f$	25	174	96650
16	$J/\psi ightarrow \phi f_2^{'}, \phi ightarrow K^+K^-, f_2^{'} ightarrow \pi^+\pi^-$	16	156	96806
17	$J/\psi \to f_2(1270)\phi, f_2(1270) \to \pi^+\pi^-\gamma^f, \phi \to K^+K^-$	20	141	96947
18	$J/\psi \to \bar{K}^* K^0_0, \bar{K}^* \to \pi^+ K^-, K^0_0 \to \pi^- K^+$	11	123	97070
19	$J/\psi \to \phi f_0(980), \phi \to K^+K^-, f_0(980) \to \pi^+\pi^-\gamma^f$	9	114	97184
20	$J/\psi \to K^* \bar{K}_0^{*0}, K^* \to \pi^- K^+, \bar{K}_0^{*0} \to \pi^+ K^-$	24	108	97292
21	$J/\psi \to K^+ \bar{K}_1^{'-}, \bar{K}_1^{'-} \to \pi^- \bar{K}^*$	28	88	97380
22	$J/\psi o K^- K_1^{'+}, K_1^{'+} o \pi^+ K^*$	13	83	97463
23	$J/\psi o \pi^- K^+ \bar{K}_0^{*0}, \bar{K}_0^{*0} o \pi^+ K^-$	10	54	97517
24	$J/\psi o \pi^+ K^- K_0^0, K_0^0 o \pi^- K^+$	44	54	97571
25	$J/\psi \rightarrow K^+K^-f_2', f_2' \rightarrow \pi^+\pi^-$	35	43	97614
26	$J/\psi ightarrow \pi^- \bar{K}^* K^+, \bar{K}^* ightarrow \pi^+ K^- \gamma^f$	33	42	97656
27	$J/\psi ightarrow \pi^- ar K^* K^+ \gamma^f, ar K^* ightarrow \pi^+ K^-$	14	38	97694
28	$J/\psi \rightarrow \pi^+ K^* K^- \gamma^f, K^* \rightarrow \pi^- K^+$	29	36	97730
29	$J/\psi ightarrow \eta \phi, \eta ightarrow \pi^+\pi^-\gamma^F, \phi ightarrow K^+K^-$	46	33	97763
30	$J/\psi ightarrow \pi^+ K^* K^-, K^* ightarrow \pi^- K^+ \gamma^f$	26	29	97792
31	$J/\psi ightarrow \pi^+\pi^- K^+ K^- \gamma^F$	37	25	97817
32	$J/\psi ightarrow ho^0 a_2^0, ho^0 ightarrow \pi^+\pi^-, a_2^0 ightarrow K^+K^-$	17	22	97839

For $\phi K^+ K^-$

For $\phi \pi^+ \pi^-$

No peaking background

11

unbinned maximum likelihood fit to $M_{\pi^+\pi^-\pi^0}$ for ωK^+K^- : Signal shape: Briet-Wigner (blue)

background: 1-st order Chebyshev polynomial (red dash line)

 $\mathbf{M}_{\pi^{*}\pi^{*}\pi^{0}}\left(\mathbf{GeV}/c^{2}\right)$

unbinned maximum likelihood fit to $M_{\pi^+\pi^-\pi^0}$ for $\omega\pi^+\pi^-$: Signal shape: Briet-Wigner (blue)

background: 1-st order Chebyshev polynomial (red dash line)

 $M_{\pi^+\pi^-\pi^0}$ (GeV/ c^2)

unbinned maximum likelihood fit to $M_{K^+K^-}$ for ϕK^+K^- : Signal shape: Briet-Wigner (blue)

background: 1-st order Chebyshev polynomial (red dash line)

 $\mathbf{M}_{\mathbf{K}^{+}\mathbf{K}^{-}}\left(\mathbf{GeV}/c^{2}\right)$

unbinned maximum likelihood fit to $M_{K^+K^-}$ for $\phi \pi^+\pi^-$: Signal shape: Briet-Wigner (blue)

background: 1-st order Chebyshev polynomial (red dash line)

 $\mathbf{M}_{\mathbf{K}^{^{+}}\mathbf{K}^{^{-}}}\left(\mathbf{GeV}/c^{2}\right)$

Comparison of data and MC for ωK^+K^-

On-Resonance (@3.0972GeV)

16

Comparison of data and MC for $\omega \pi^+ \pi^-$

Comparison of data and MC for ϕK^+K^-

Comparison of data and MC for $\phi \pi^+ \pi^-$

Efficiencies iteration for $\omega K^+ K^- / \pi^+ \pi^-$

Efficiencies iteration

Observed cross sections for $\omega K^+K^-/\pi^+\pi^-$

\sqrt{s} (MeV)	$N_{obs}^{\omega K^+K^-}$	$\epsilon(\%)$	$\mathcal{B}(\mathrm{sub})(\%)$	$\mathcal{L}(\mathrm{pb}^{-1})$	$\sigma_{\rm obs}^{\omega K^+K^-}({\rm pb})$					•	
3049.6 ± 0.1	132.6 ± 14.8	6.7 ± 0.1	89.02 ± 0.03	14.92 ± 0.16	148.2 ± 16.6				Ι	I	' –
3058.7 ± 0.1	132.3 ± 14.7	6.7 ± 0.1	89.02 ± 0.03	15.06 ± 0.16	147.8 ± 16.4		- ω K	' <i>K</i>		•	_
3080.0 ± 0.1	1300.4 ± 44.3	5.7 ± 0.1	89.02 ± 0.03	293.27 ± 0.91	153.4 ± 5.2					•	
3082.5 ± 0.1	35.4 ± 7.9	6.0 ± 0.1	89.02 ± 0.03	4.77 ± 0.06	139.1 ± 31.2		-				-
3088.8 ± 0.1	130.5 ± 8.1	5.5 ± 0.1	89.02 ± 0.03	15.56 ± 0.17	171.7 ± 10.7						
3091.8 ± 0.1	123.6 ± 13.2	5.3 ± 0.1	89.02 ± 0.03	14.91 ± 0.16	177.3 ± 18.9		3			+ +	
3094.7 ± 0.1	96.4 ± 12.3	14.5 ± 0.1	89.02 ± 0.03	2.14 ± 0.03	348.6 ± 44.5	ô	10 [°] –			I	
3095.4 ± 0.1	345.3 ± 23.9	18.4 ± 0.1	89.02 ± 0.03	1.82 ± 0.02	1159.5 ± 80.3	đ	-				
3095.8 ± 0.1	1045.2 ± 40.8	19.5 ± 0.1	89.02 ± 0.03	2.14 ± 0.03	2820.3 ± 110.0	'n	-			4	_
3097.2 ± 0.1	1884.2 ± 52.9	20.3 ± 0.2	89.02 ± 0.03	2.07 ± 0.03	5036.0 ± 141.4	U				· ·	_
3098.3 ± 0.1	903.3 ± 36.9	19.3 ± 0.1	89.02 ± 0.03	2.20 ± 0.03	2386.7 ± 97.4					+ +	
3099.0 ± 0.1	135.9 ± 17.0	17.4 ± 0.1	89.02 ± 0.03	0.76 ± 0.01	1162.3 ± 145.5		_			•	-
3101.4 ± 0.1	101.4 ± 12.3	13.2 ± 0.1	89.02 ± 0.03	1.61 ± 0.02	537.2 ± 65.1						
3105.6 ± 0.1	79.4 ± 10.2	11.4 ± 0.1	89.02 ± 0.03	2.11 ± 0.03	371.2 ± 47.8		1	I.	· · · + +	l i i i i i i i i i i i i i i i i i i i	†
3112.0 ± 0.1	27.3 ± 7.3	9.7 ± 0.1	89.02 ± 0.03	1.72 ± 0.02	183.2 ± 49.2		T	Ť	- +		· •
3119.9 ± 0.1	13.5 ± 5.0	8.2 ± 0.1	89.02 ± 0.03	1.26 ± 0.02	146.1 ± 53.8		10^{2}				
								3.06	3.08	3.1	3.12
									√s (GeV)		
									,		
	1+ -				+				· · · · · · · · · · · · · · · · · · ·	•	
\sqrt{s} (MeV)	$N_{obs}^{\omega\pi^+\pi^-}$	$\epsilon(\%)$	$\mathcal{B}(\mathrm{sub})(\%)$	$\mathcal{L}(ext{pb}^{-1})$	$\sigma^{\omega\pi^+\pi^-}_{ m obs}({ m pb})$			$\pi^+\pi^-$	· · · · · · · · · · · · · · · · · · ·	•	
\sqrt{s} (MeV) 3049.6 ± 0.1	$\frac{N_{obs}^{\omega\pi^{+}\pi^{-}}}{36.8\pm7.3}$	$\frac{\epsilon(\%)}{6.3\pm0.1}$	$\frac{\mathcal{B}(\mathrm{sub})(\%)}{89.02\pm0.03}$	$\frac{\mathcal{L}(\mathrm{pb}^{-1})}{14.92\pm0.16}$	$\frac{\sigma_{\rm obs}^{\omega \pi^+ \pi^-}(\rm pb)}{44.1 \pm 8.8}$		10 ⁴ Ξ ω	$\pi^+\pi^-$		•	
\sqrt{s} (MeV) 3049.6 ± 0.1 3058.7 ± 0.1	$\frac{N_{obs}^{\omega\pi^{+}\pi^{-}}}{36.8\pm7.3}$ 36.4 ± 8.1	$\epsilon(\%) \ 6.3 \pm 0.1 \ 6.2 \pm 0.1$	$\frac{\mathcal{B}(\text{sub})(\%)}{89.02 \pm 0.03}$ 89.02 ± 0.03	$\frac{\mathcal{L}(\text{pb}^{-1})}{14.92 \pm 0.16}$ 15.06 ± 0.16	$\frac{\sigma_{\rm obs}^{\omega \pi^+ \pi^-}(\rm pb)}{44.1 \pm 8.8} \\ 42.6 \pm 9.7$		10 ⁴ ω	$\pi^+\pi^-$		•	
$\frac{\sqrt{s} \text{ (MeV)}}{3049.6 \pm 0.1} \\ 3058.7 \pm 0.1 \\ 3080.0 \pm 0.1 $	$\frac{N_{obs}^{\omega\pi^{+}\pi^{-}}}{36.8 \pm 7.3}$ 36.4 ± 8.1 498.9 ± 29.6	$\epsilon(\%) \ 6.3 \pm 0.1 \ 6.2 \pm 0.1 \ 6.0 \pm 0.1$	$\frac{\mathcal{B}(\text{sub})(\%)}{89.02 \pm 0.03}$ 89.02 ± 0.03 89.02 ± 0.03	$\frac{\mathcal{L}(pb^{-1})}{14.92 \pm 0.16} \\ 15.06 \pm 0.16 \\ 293.27 \pm 0.91$	$\frac{\sigma_{\rm obs}^{\omega \pi^+ \pi^-} (\rm pb)}{44.1 \pm 8.8} \\ 42.6 \pm 9.7 \\ 56.1 \pm 3.3$		10 ⁴ <i>w</i>	$\pi^+\pi^-$		••	
$\frac{\sqrt{s} \text{ (MeV)}}{3049.6 \pm 0.1} \\ 3058.7 \pm 0.1 \\ 3080.0 \pm 0.1 \\ 3082.5 \pm 0.1 \\ \end{array}$	$\frac{N_{obs}^{\omega\pi^{+}\pi^{-}}}{36.8 \pm 7.3}$ 36.4 ± 8.1 498.9 ± 29.6 13.0 ± 3.6	$\begin{array}{c} \epsilon(\%) \\ \hline 6.3 \pm 0.1 \\ 6.2 \pm 0.1 \\ 6.0 \pm 0.1 \\ 6.8 \pm 0.1 \end{array}$	$\frac{\mathcal{B}(\text{sub})(\%)}{89.02 \pm 0.03}$ 89.02 ± 0.03 89.02 ± 0.03 89.02 ± 0.03 89.02 ± 0.03	$\frac{\mathcal{L}(\mathrm{pb}^{-1})}{14.92\pm0.16}\\15.06\pm0.16\\293.27\pm0.91\\4.77\pm0.06$	$\frac{\sigma_{\rm obs}^{\omega\pi^+\pi^-}(\rm pb)}{44.1\pm8.8}$ 42.6 ± 9.7 56.1 ± 3.3 45.1 ± 12.5		10 ⁴ ω	$\pi^+\pi^-$		•	
$\frac{\sqrt{s} \text{ (MeV)}}{3049.6 \pm 0.1} \\ 3058.7 \pm 0.1 \\ 3080.0 \pm 0.1 \\ 3082.5 \pm 0.1 \\ 3088.8 \pm 0.1 \\ \end{array}$	$\frac{N_{obs}^{\omega\pi^{+}\pi^{-}}}{36.8\pm7.3}$ 36.4 ± 8.1 498.9 ± 29.6 13.0 ± 3.6 42.4 ± 10.2	$\frac{\epsilon(\%)}{6.3 \pm 0.1} \\ 6.2 \pm 0.1 \\ 6.0 \pm 0.1 \\ 6.8 \pm 0.1 \\ 7.6 \pm 0.1 \\ \end{array}$	$\begin{array}{c} \mathcal{B}(\mathrm{sub})(\%) \\ 89.02 \pm 0.03 \end{array}$	$\begin{array}{c} \mathcal{L}(\mathrm{pb}^{-1}) \\ 14.92 \pm 0.16 \\ 15.06 \pm 0.16 \\ 293.27 \pm 0.91 \\ 4.77 \pm 0.06 \\ 15.56 \pm 0.17 \end{array}$	$\frac{\sigma_{\rm obs}^{\omega\pi^+\pi^-}(\rm pb)}{44.1\pm8.8}$ 42.6 ± 9.7 56.1 ± 3.3 45.1 ± 12.5 40.4 ± 9.7		10 ⁴ ω	$\pi^+\pi^-$		•	
$\frac{\sqrt{s} \text{ (MeV)}}{3049.6 \pm 0.1} \\ 3058.7 \pm 0.1 \\ 3080.0 \pm 0.1 \\ 3082.5 \pm 0.1 \\ 3088.8 \pm 0.1 \\ 3091.8 \pm 0.1 \\ \end{array}$	$\frac{N_{obs}^{\omega\pi^{+}\pi^{-}}}{36.8 \pm 7.3}$ 36.4 ± 8.1 498.9 ± 29.6 13.0 ± 3.6 42.4 ± 10.2 103.2 ± 12.2	$\frac{\epsilon(\%)}{6.3 \pm 0.1} \\ 6.2 \pm 0.1 \\ 6.0 \pm 0.1 \\ 6.8 \pm 0.1 \\ 7.6 \pm 0.1 \\ 8.9 \pm 0.1 \\ \end{array}$	$\begin{array}{c} \mathcal{B}(\mathrm{sub})(\%) \\ 89.02 \pm 0.03 \end{array}$	$\begin{array}{c} \mathcal{L}(\mathrm{pb}^{-1}) \\ 14.92 \pm 0.16 \\ 15.06 \pm 0.16 \\ 293.27 \pm 0.91 \\ 4.77 \pm 0.06 \\ 15.56 \pm 0.17 \\ 14.91 \pm 0.16 \end{array}$	$\frac{\sigma_{\rm obs}^{\omega\pi^+\pi^-}(\rm pb)}{44.1\pm8.8}$ 42.6 ± 9.7 56.1 ± 3.3 45.1 ± 12.5 40.4 ± 9.7 87.6 ± 10.4	(a	10 ⁴ ω	$\pi^+\pi^-$		· · ·	
$\begin{array}{c} \sqrt{s} \ ({\rm MeV}) \\ 3049.6 \pm 0.1 \\ 3058.7 \pm 0.1 \\ 3080.0 \pm 0.1 \\ 3082.5 \pm 0.1 \\ 3088.8 \pm 0.1 \\ 3091.8 \pm 0.1 \\ 3094.7 \pm 0.1 \end{array}$	$\frac{N_{obs}^{\omega\pi^+\pi^-}}{36.8\pm7.3}$ 36.4 ± 8.1 498.9 ± 29.6 13.0 ± 3.6 42.4 ± 10.2 103.2 ± 12.2 476.9 ± 28.3	$\frac{\epsilon(\%)}{6.3 \pm 0.1} \\ 6.2 \pm 0.1 \\ 6.0 \pm 0.1 \\ 6.8 \pm 0.1 \\ 7.6 \pm 0.1 \\ 8.9 \pm 0.1 \\ 17.4 \pm 0.2 \\ 17.4 \pm 0.2 \\ 17.4 \pm 0.2 \\ 10.1 \\$	$\begin{array}{c} \mathcal{B}(\mathrm{sub})(\%) \\ 89.02 \pm 0.03 \\ 289.02 \pm 0.03 \end{array}$	$\begin{array}{c} \mathcal{L}(\mathrm{pb}^{-1}) \\ 14.92 \pm 0.16 \\ 15.06 \pm 0.16 \\ 293.27 \pm 0.91 \\ 4.77 \pm 0.06 \\ 15.56 \pm 0.17 \\ 14.91 \pm 0.16 \\ 2.14 \pm 0.03 \end{array}$	$ \begin{array}{c} \sigma_{\rm obs}^{\omega\pi^+\pi^-} ({\rm pb}) \\ \hline 44.1 \pm 8.8 \\ 42.6 \pm 9.7 \\ 56.1 \pm 3.3 \\ 45.1 \pm 12.5 \\ 40.4 \pm 9.7 \\ 87.6 \pm 10.4 \\ 1434.8 \pm 85.0 \end{array} $	(ad)	10^4 ω 10^3	$\pi^+\pi^-$		•••	
$\frac{\sqrt{s} \text{ (MeV)}}{3049.6 \pm 0.1} \\ 3058.7 \pm 0.1 \\ 3080.0 \pm 0.1 \\ 3082.5 \pm 0.1 \\ 3081.8 \pm 0.1 \\ 3091.8 \pm 0.1 \\ 3094.7 \pm 0.1 \\ 3095.4 \pm 0.1 \\ $	$\frac{N_{obs}^{\omega\pi^+\pi^-}}{36.8\pm7.3}$ 36.4 ± 8.1 498.9 ± 29.6 13.0 ± 3.6 42.4 ± 10.2 103.2 ± 12.2 476.9 ± 28.3 1700.2 ± 51.8	$\frac{\epsilon(\%)}{6.3 \pm 0.1}$ 6.2 ± 0.1 6.0 ± 0.1 6.8 ± 0.1 7.6 ± 0.1 8.9 ± 0.1 17.4 ± 0.2 17.8 ± 0.2	$\begin{array}{c} \mathcal{B}(\mathrm{sub})(\%)\\ \hline \mathcal{B}(\mathrm{sub})(2\pm0.03)\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 289.02\pm0.03\\ & 289.02\pm0.03\\ & 289.02\pm0.03\\ & 289.02\pm0.03\\ & 289.02\pm0.03\\ & 289.02\pm0.03\\ & 89.02\pm0.03\\ & 89$	$\begin{array}{c} \mathcal{L}(\mathrm{pb}^{-1}) \\ 14.92 \pm 0.16 \\ 15.06 \pm 0.16 \\ 293.27 \pm 0.91 \\ 4.77 \pm 0.06 \\ 15.56 \pm 0.17 \\ 14.91 \pm 0.16 \\ 2.14 \pm 0.03 \\ 1.82 \pm 0.02 \end{array}$	$\frac{\sigma_{obs}^{\omega\pi^+\pi^-}(pb)}{44.1 \pm 8.8}$ 42.6 ± 9.7 56.1 ± 3.3 45.1 ± 12.5 40.4 ± 9.7 87.6 ± 10.4 1434.8 ± 85.0 5899.0 ± 179.6	α (bp)	10 ⁴ ω 10 ³	$\pi^+\pi^-$		•••	
$\frac{\sqrt{s} \text{ (MeV)}}{3049.6 \pm 0.1} \\ 3058.7 \pm 0.1 \\ 3080.0 \pm 0.1 \\ 3082.5 \pm 0.1 \\ 3091.8 \pm 0.1 \\ 3094.7 \pm 0.1 \\ 3095.4 \pm 0.1 \\ 3095.8 \pm 0.1 \\ $	$\frac{N_{obs}^{\omega\pi^+\pi^-}}{36.8\pm7.3}$ 36.4 ± 8.1 498.9 ± 29.6 13.0 ± 3.6 42.4 ± 10.2 103.2 ± 12.2 476.9 ± 28.3 1700.2 ± 51.8 5072.2 ± 90.6	$\frac{\epsilon(\%)}{6.3 \pm 0.1}$ 6.2 ± 0.1 6.0 ± 0.1 6.8 ± 0.1 7.6 ± 0.1 8.9 ± 0.1 17.4 ± 0.2 17.8 ± 0.2 17.9 ± 0.2	$\begin{array}{c} \mathcal{B}(\mathrm{sub})(\%)\\ \hline \mathcal{B}(\mathrm{sub})(2\pm0.03)\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 289.02\pm0.03\\ & 289.02\pm$	$\begin{array}{c} \mathcal{L}(\mathrm{pb}^{-1}) \\ 14.92 \pm 0.16 \\ 15.06 \pm 0.16 \\ 293.27 \pm 0.91 \\ 4.77 \pm 0.06 \\ 15.56 \pm 0.17 \\ 14.91 \pm 0.16 \\ 2.14 \pm 0.03 \\ 1.82 \pm 0.02 \\ 2.14 \pm 0.03 \end{array}$	$\frac{\sigma_{obs}^{\omega\pi^+\pi^-}(pb)}{44.1\pm8.8}$ 42.6 ± 9.7 56.1 ± 3.3 45.1 ± 12.5 40.4 ± 9.7 87.6 ± 10.4 1434.8 ± 85.0 5899.0 ± 179.6 14883.6 ± 266.0	α (bb)	10 ⁴ ω 10 ³	$\pi^+\pi^-$		•••	
$\frac{\sqrt{s} \text{ (MeV)}}{3049.6 \pm 0.1} \\ 3058.7 \pm 0.1 \\ 3080.0 \pm 0.1 \\ 3082.5 \pm 0.1 \\ 3088.8 \pm 0.1 \\ 3091.8 \pm 0.1 \\ 3094.7 \pm 0.1 \\ 3095.4 \pm 0.1 \\ 3095.8 \pm 0.1 \\ 3097.2 \pm 0.1 \\ $	$\frac{N_{obs}^{\omega\pi^+\pi^-}}{36.8\pm7.3}$ 36.4 ± 8.1 498.9 ± 29.6 13.0 ± 3.6 42.4 ± 10.2 103.2 ± 12.2 476.9 ± 28.3 1700.2 ± 51.8 5072.2 ± 90.6 8606.0 ± 118.6	$\frac{\epsilon(\%)}{6.3 \pm 0.1}$ 6.2 ± 0.1 6.2 ± 0.1 6.8 ± 0.1 7.6 ± 0.1 8.9 ± 0.1 17.4 ± 0.2 17.8 ± 0.2 17.9 ± 0.2 $5 17.7 \pm 0.2$	$\begin{array}{c} \mathcal{B}(\mathrm{sub})(\%)\\ \hline \mathcal{B}(\mathrm{sub})(2\pm0.03)\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 289.02\pm0.03\\ & 289.02$	$\begin{array}{c} \mathcal{L}(\mathrm{pb}^{-1}) \\ 14.92 \pm 0.16 \\ 15.06 \pm 0.16 \\ 293.27 \pm 0.91 \\ 4.77 \pm 0.06 \\ 15.56 \pm 0.17 \\ 14.91 \pm 0.16 \\ 2.14 \pm 0.03 \\ 1.82 \pm 0.02 \\ 2.14 \pm 0.03 \\ 2.07 \pm 0.03 \end{array}$	$ \begin{array}{c} \sigma_{\rm obs}^{\omega\pi^+\pi^-}({\rm pb}) \\ \hline 44.1 \pm 8.8 \\ 42.6 \pm 9.7 \\ 56.1 \pm 3.3 \\ 45.1 \pm 12.5 \\ 40.4 \pm 9.7 \\ 87.6 \pm 10.4 \\ 1434.8 \pm 85.0 \\ 5899.0 \pm 179.6 \\ 14883.6 \pm 266.0 \\ 26342.0 \pm 363.1 \\ \hline \end{array} $	a (db)	10 ⁴ ω 10 ³	$\pi^+\pi^-$		•••	+ + -
$\begin{array}{c} \sqrt{s} \ ({\rm MeV}) \\ 3049.6 \pm 0.1 \\ 3058.7 \pm 0.1 \\ 3080.0 \pm 0.1 \\ 3082.5 \pm 0.1 \\ 3088.8 \pm 0.1 \\ 3091.8 \pm 0.1 \\ 3095.4 \pm 0.1 \\ 3095.8 \pm 0.1 \\ 3095.8 \pm 0.1 \\ 3097.2 \pm 0.1 \\ 3098.3 \pm 0.1 \end{array}$	$\frac{N_{obs}^{\omega\pi^+\pi^-}}{36.8\pm7.3}$ 36.4 ± 8.1 498.9 ± 29.6 13.0 ± 3.6 42.4 ± 10.2 103.2 ± 12.2 476.9 ± 28.3 1700.2 ± 51.8 5072.2 ± 90.6 8606.0 ± 118.6 4031.1 ± 81.3	$\frac{\epsilon(\%)}{6.3 \pm 0.1} \\ 6.3 \pm 0.1 \\ 6.2 \pm 0.1 \\ 6.0 \pm 0.1 \\ 7.6 \pm 0.1 \\ 7.6 \pm 0.1 \\ 17.6 \pm 0.1 \\ 17.4 \pm 0.2 \\ 17.8 \pm 0.2 \\ 17.9 \pm 0.2 \\ 5 17.7 \pm 0.2 \\ 17.8 \pm 0.2 \\ 10.8 \pm 0.2 $	$\begin{array}{c} \mathcal{B}(\mathrm{sub})(\%)\\ \hline \mathcal{B}(\mathrm{sub})(2\pm0.03\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 89.02\pm0.03\\ & 289.02\pm0.03\\ & 289.02\pm$	$\begin{array}{c} \mathcal{L}(\mathrm{pb}^{-1}) \\ 14.92 \pm 0.16 \\ 15.06 \pm 0.16 \\ 293.27 \pm 0.91 \\ 4.77 \pm 0.06 \\ 15.56 \pm 0.17 \\ 14.91 \pm 0.16 \\ 2.14 \pm 0.03 \\ 1.82 \pm 0.02 \\ 2.14 \pm 0.03 \\ 2.07 \pm 0.03 \\ 2.20 \pm 0.03 \end{array}$	$ \begin{array}{c} \sigma_{\rm obs}^{\omega\pi^+\pi^-}({\rm pb}) \\ 44.1 \pm 8.8 \\ 42.6 \pm 9.7 \\ 56.1 \pm 3.3 \\ 45.1 \pm 12.5 \\ 40.4 \pm 9.7 \\ 87.6 \pm 10.4 \\ 1434.8 \pm 85.0 \\ 5899.0 \pm 179.6 \\ 14883.6 \pm 266.0 \\ 26342.0 \pm 363.1 \\ 11573.1 \pm 233.4 \end{array} $	α (ba)	10 ⁴ ω 10 ³	$\pi^+\pi^-$		•••	+ +
$\begin{array}{c} \sqrt{s} \ ({\rm MeV}) \\ 3049.6 \pm 0.1 \\ 3058.7 \pm 0.1 \\ 3080.0 \pm 0.1 \\ 3082.5 \pm 0.1 \\ 3088.8 \pm 0.1 \\ 3091.8 \pm 0.1 \\ 3095.4 \pm 0.1 \\ 3095.8 \pm 0.1 \\ 3097.2 \pm 0.1 \\ 3098.3 \pm 0.1 \\ 3099.0 \pm 0.1 \end{array}$	$\frac{N_{obs}^{\omega\pi^+\pi^-}}{36.8\pm7.3}$ 36.4 ± 8.1 498.9 ± 29.6 13.0 ± 3.6 42.4 ± 10.2 103.2 ± 12.2 476.9 ± 28.3 1700.2 ± 51.8 5072.2 ± 90.6 8606.0 ± 118.6 4031.1 ± 81.3 596.1 ± 31.1	$\frac{\epsilon(\%)}{6.3 \pm 0.1} \\ 6.3 \pm 0.1 \\ 6.2 \pm 0.1 \\ 6.0 \pm 0.1 \\ 7.6 \pm 0.1 \\ 7.6 \pm 0.1 \\ 7.6 \pm 0.1 \\ 17.4 \pm 0.2 \\ 17.8 \pm 0.2 \\ 17.9 \pm 0.2 \\ 5 17.7 \pm 0.2 \\ 17.8 \pm 0.2 \\ 17.8 \pm 0.2 \\ 17.4 \pm 0.2 \\$	$\begin{array}{c} \mathcal{B}(\mathrm{sub})(\%)\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 289.02\pm0.03\\ 2$	$\begin{array}{c} \mathcal{L}(\mathrm{pb}^{-1}) \\ 14.92 \pm 0.16 \\ 15.06 \pm 0.16 \\ 293.27 \pm 0.91 \\ 4.77 \pm 0.06 \\ 15.56 \pm 0.17 \\ 14.91 \pm 0.16 \\ 2.14 \pm 0.03 \\ 1.82 \pm 0.02 \\ 2.14 \pm 0.03 \\ 2.07 \pm 0.03 \\ 2.20 \pm 0.03 \\ 0.76 \pm 0.01 \end{array}$	$ \begin{array}{c} \sigma_{\rm obs}^{\omega\pi^+\pi^-}({\rm pb}) \\ 44.1 \pm 8.8 \\ 42.6 \pm 9.7 \\ 56.1 \pm 3.3 \\ 45.1 \pm 12.5 \\ 40.4 \pm 9.7 \\ 87.6 \pm 10.4 \\ 1434.8 \pm 85.0 \\ 5899.0 \pm 179.6 \\ 14883.6 \pm 266.0 \\ 26342.0 \pm 363.1 \\ 11573.1 \pm 233.4 \\ 5095.1 \pm 265.7 \end{array} $	α (bb)	10^4 ω 10^3	$\pi^+\pi^-$		•••	
$\begin{array}{c} \sqrt{s} \ ({\rm MeV}) \\ 3049.6 \pm 0.1 \\ 3058.7 \pm 0.1 \\ 3080.0 \pm 0.1 \\ 3082.5 \pm 0.1 \\ 3082.5 \pm 0.1 \\ 3091.8 \pm 0.1 \\ 3091.8 \pm 0.1 \\ 3095.4 \pm 0.1 \\ 3095.8 \pm 0.1 \\ 3097.2 \pm 0.1 \\ 3098.3 \pm 0.1 \\ 3099.0 \pm 0.1 \\ 3101.4 \pm 0.1 \end{array}$	$\frac{N_{obs}^{\omega\pi^+\pi^-}}{36.8\pm7.3}\\36.4\pm8.1\\498.9\pm29.6\\13.0\pm3.6\\42.4\pm10.2\\103.2\pm12.2\\476.9\pm28.3\\1700.2\pm51.8\\5072.2\pm90.6\\8606.0\pm118.6\\4031.1\pm81.3\\596.1\pm31.1\\340.7\pm23.1$	$\frac{\epsilon(\%)}{6.3 \pm 0.1} \\ 6.3 \pm 0.1 \\ 6.2 \pm 0.1 \\ 6.0 \pm 0.1 \\ 6.8 \pm 0.1 \\ 7.6 \pm 0.1 \\ 7.6 \pm 0.1 \\ 17.8 \pm 0.2 \\ 17.8 \pm 0.2 \\ 17.9 \pm 0.2 \\ 17.8 \pm 0.2 \\ 17.8 \pm 0.2 \\ 17.8 \pm 0.2 \\ 17.4 \pm 0.2 \\ 16.6 \pm 0.2 \\ 16.6 \pm 0.2 \\ 10.0 \\ $	$\begin{array}{c} \mathcal{B}(\mathrm{sub})(\%)\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 289.02\pm0.03\\ 2$	$\begin{array}{c} \mathcal{L}(\mathrm{pb}^{-1}) \\ 14.92 \pm 0.16 \\ 15.06 \pm 0.16 \\ 293.27 \pm 0.91 \\ 4.77 \pm 0.06 \\ 15.56 \pm 0.17 \\ 14.91 \pm 0.16 \\ 2.14 \pm 0.03 \\ 1.82 \pm 0.02 \\ 2.14 \pm 0.03 \\ 2.07 \pm 0.03 \\ 2.20 \pm 0.03 \\ 0.76 \pm 0.01 \\ 1.61 \pm 0.02 \end{array}$	$ \begin{array}{c} \sigma_{\rm obs}^{\omega\pi^+\pi^-}({\rm pb}) \\ 44.1 \pm 8.8 \\ 42.6 \pm 9.7 \\ 56.1 \pm 3.3 \\ 45.1 \pm 12.5 \\ 40.4 \pm 9.7 \\ 87.6 \pm 10.4 \\ 1434.8 \pm 85.0 \\ 5899.0 \pm 179.6 \\ 14883.6 \pm 266.0 \\ 26342.0 \pm 363.1 \\ 11573.1 \pm 233.4 \\ 5095.1 \pm 265.7 \\ 1425.5 \pm 96.5 \\ \end{array} $	α (bb)	10^4 ω 10^3 10^2	$\pi^+\pi^-$	· · · · · · · ·	•••	+ +
$\begin{array}{c} \sqrt{s} \ ({\rm MeV}) \\ 3049.6 \pm 0.1 \\ 3058.7 \pm 0.1 \\ 3058.7 \pm 0.1 \\ 3080.0 \pm 0.1 \\ 3082.5 \pm 0.1 \\ 3091.8 \pm 0.1 \\ 3094.7 \pm 0.1 \\ 3095.4 \pm 0.1 \\ 3095.8 \pm 0.1 \\ 3097.2 \pm 0.1 \\ 3098.3 \pm 0.1 \\ 3099.0 \pm 0.1 \\ 3101.4 \pm 0.1 \\ 3105.6 \pm 0.1 \end{array}$	$\frac{N_{obs}^{\omega\pi^+\pi^-}}{36.8\pm7.3}\\36.4\pm8.1\\498.9\pm29.6\\13.0\pm3.6\\42.4\pm10.2\\103.2\pm12.2\\476.9\pm28.3\\1700.2\pm51.8\\5072.2\pm90.6\\8606.0\pm118.6\\4031.1\pm81.3\\596.1\pm31.1\\340.7\pm23.1\\234.3\pm20.9$	$\frac{\epsilon(\%)}{6.3 \pm 0.1} \\ 6.3 \pm 0.1 \\ 6.2 \pm 0.1 \\ 6.0 \pm 0.1 \\ 6.8 \pm 0.1 \\ 7.6 \pm 0.1 \\ 7.6 \pm 0.1 \\ 17.8 \pm 0.2 \\ 17.4 \pm 0.2 \\ 16.6 \pm 0.2 \\ 16.0 \pm 0.1 \\ 16.0 \pm 0.1 \\ 16.0 \pm 0.1 \\ 10.0 \pm 0.0 \\ 1$	$\begin{array}{c} \mathcal{B}(\mathrm{sub})(\%)\\ \\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 189.02\pm0.03\\ \end{array}$	$\begin{array}{c} \mathcal{L}(\mathrm{pb}^{-1}) \\ 14.92 \pm 0.16 \\ 15.06 \pm 0.16 \\ 293.27 \pm 0.91 \\ 4.77 \pm 0.06 \\ 15.56 \pm 0.17 \\ 14.91 \pm 0.16 \\ 2.14 \pm 0.03 \\ 1.82 \pm 0.02 \\ 2.14 \pm 0.03 \\ 2.07 \pm 0.03 \\ 2.20 \pm 0.03 \\ 0.76 \pm 0.01 \\ 1.61 \pm 0.02 \\ 2.11 \pm 0.03 \end{array}$	$ \begin{array}{c} \sigma_{\rm obs}^{\omega\pi^+\pi^-}({\rm pb}) \\ 44.1 \pm 8.8 \\ 42.6 \pm 9.7 \\ 56.1 \pm 3.3 \\ 45.1 \pm 12.5 \\ 40.4 \pm 9.7 \\ 87.6 \pm 10.4 \\ 1434.8 \pm 85.0 \\ 5899.0 \pm 179.6 \\ 14883.6 \pm 266.0 \\ 26342.0 \pm 363.1 \\ 11573.1 \pm 233.4 \\ 5095.1 \pm 265.7 \\ 1425.5 \pm 96.5 \\ 779.0 \pm 69.6 \\ \end{array} $	a (db)	10^4 ω 10^3 10^2 ω	π+π-	•	•••	+ +
$\begin{array}{c} \sqrt{s} \ ({\rm MeV}) \\ 3049.6 \pm 0.1 \\ 3058.7 \pm 0.1 \\ 3080.0 \pm 0.1 \\ 3082.5 \pm 0.1 \\ 3082.5 \pm 0.1 \\ 3091.8 \pm 0.1 \\ 3094.7 \pm 0.1 \\ 3095.4 \pm 0.1 \\ 3095.8 \pm 0.1 \\ 3095.8 \pm 0.1 \\ 3099.0 \pm 0.1 \\ 3101.4 \pm 0.1 \\ 3105.6 \pm 0.1 \\ 3112.0 \pm 0.1 \end{array}$	$\frac{N_{obs}^{\omega\pi^+\pi^-}}{36.8\pm7.3}\\ 36.4\pm8.1\\ 498.9\pm29.6\\ 13.0\pm3.6\\ 42.4\pm10.2\\ 103.2\pm12.2\\ 476.9\pm28.3\\ 1700.2\pm51.8\\ 5072.2\pm90.6\\ 8606.0\pm118.6\\ 4031.1\pm81.3\\ 596.1\pm31.1\\ 340.7\pm23.1\\ 234.3\pm20.9\\ 94.6\pm13.2\\ \end{cases}$	$\begin{array}{c} \epsilon(\%) \\ \hline 6.3 \pm 0.1 \\ 6.2 \pm 0.1 \\ 6.0 \pm 0.1 \\ 6.8 \pm 0.1 \\ 7.6 \pm 0.1 \\ 7.6 \pm 0.1 \\ 17.8 \pm 0.1 \\ 17.8 \pm 0.2 \\ 17.8 \pm 0.2 \\ 17.8 \pm 0.2 \\ 17.8 \pm 0.2 \\ 17.4 \pm 0.2 \\ 16.6 \pm 0.2 \\ 16.0 \pm 0.1 \\ 14.9 \pm 0.1 \end{array}$	$\begin{array}{c} \mathcal{B}(\mathrm{sub})(\%)\\ \\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 189.02\pm0.03\\ 189.02\pm0.03\\$	$\begin{array}{c} \mathcal{L}(\mathrm{pb}^{-1}) \\ 14.92 \pm 0.16 \\ 15.06 \pm 0.16 \\ 293.27 \pm 0.91 \\ 4.77 \pm 0.06 \\ 15.56 \pm 0.17 \\ 14.91 \pm 0.16 \\ 2.14 \pm 0.03 \\ 1.82 \pm 0.02 \\ 2.14 \pm 0.03 \\ 2.07 \pm 0.03 \\ 2.20 \pm 0.03 \\ 0.76 \pm 0.01 \\ 1.61 \pm 0.02 \\ 2.11 \pm 0.03 \\ 1.72 \pm 0.02 \end{array}$	$ \begin{array}{c} \sigma_{\rm obs}^{\omega\pi^+\pi^-} ({\rm pb}) \\ \hline 44.1 \pm 8.8 \\ 42.6 \pm 9.7 \\ 56.1 \pm 3.3 \\ 45.1 \pm 12.5 \\ 40.4 \pm 9.7 \\ 87.6 \pm 10.4 \\ 1434.8 \pm 85.0 \\ 5899.0 \pm 179.6 \\ 14883.6 \pm 266.0 \\ 26342.0 \pm 363.1 \\ 11573.1 \pm 233.4 \\ 5095.1 \pm 265.7 \\ 1425.5 \pm 96.5 \\ 779.0 \pm 69.6 \\ 414.9 \pm 58.1 \\ \end{array} $	a (pb)	10^4 ω 10^3 10^2 ψ	π+π-	· · · · · · · ·	•••	
$\begin{array}{c} \sqrt{s} \ ({\rm MeV}) \\ 3049.6 \pm 0.1 \\ 3058.7 \pm 0.1 \\ 3058.7 \pm 0.1 \\ 3080.0 \pm 0.1 \\ 3082.5 \pm 0.1 \\ 3091.8 \pm 0.1 \\ 3091.8 \pm 0.1 \\ 3095.4 \pm 0.1 \\ 3095.8 \pm 0.1 \\ 3095.8 \pm 0.1 \\ 3097.2 \pm 0.1 \\ 3099.0 \pm 0.1 \\ 3101.4 \pm 0.1 \\ 3105.6 \pm 0.1 \\ 3112.0 \pm 0.1 \\ 3119.9 \pm 0.1 \end{array}$	$\frac{N_{obs}^{\omega\pi^+\pi^-}}{36.8\pm7.3}\\ 36.4\pm8.1\\ 498.9\pm29.6\\ 13.0\pm3.6\\ 42.4\pm10.2\\ 103.2\pm12.2\\ 476.9\pm28.3\\ 1700.2\pm51.8\\ 5072.2\pm90.6\\ 8606.0\pm118.6\\ 4031.1\pm81.3\\ 596.1\pm31.1\\ 340.7\pm23.1\\ 234.3\pm20.9\\ 94.6\pm13.2\\ 63.3\pm11.0\\ \end{array}$	$\begin{array}{c} \epsilon(\%) \\ \hline 6.3 \pm 0.1 \\ 6.2 \pm 0.1 \\ 6.2 \pm 0.1 \\ 6.0 \pm 0.1 \\ \hline 7.6 \pm 0.1 \\ 7.6 \pm 0.1 \\ 7.6 \pm 0.1 \\ 17.8 \pm 0.2 \\ 16.6 \pm 0.2 \\ 16.0 \pm 0.1 \\ 14.9 \pm 0.1 \\ 13.2 \pm 0.1 \end{array}$	$\begin{array}{c} \mathcal{B}(\mathrm{sub})(\%)\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 89.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 289.02\pm0.03\\ 189.02\pm0.03\\ 1$	$\begin{array}{c} \mathcal{L}(\mathrm{pb}^{-1}) \\ 14.92 \pm 0.16 \\ 15.06 \pm 0.16 \\ 293.27 \pm 0.91 \\ 4.77 \pm 0.06 \\ 15.56 \pm 0.17 \\ 14.91 \pm 0.16 \\ 2.14 \pm 0.03 \\ 1.82 \pm 0.02 \\ 2.14 \pm 0.03 \\ 2.07 \pm 0.03 \\ 2.20 \pm 0.03 \\ 0.76 \pm 0.01 \\ 1.61 \pm 0.02 \\ 2.11 \pm 0.03 \\ 1.72 \pm 0.02 \\ 1.26 \pm 0.02 \end{array}$	$\begin{array}{r} \sigma_{\rm obs}^{\omega\pi^+\pi^-}({\rm pb}) \\ 44.1 \pm 8.8 \\ 42.6 \pm 9.7 \\ 56.1 \pm 3.3 \\ 45.1 \pm 12.5 \\ 40.4 \pm 9.7 \\ 87.6 \pm 10.4 \\ 1434.8 \pm 85.0 \\ 5899.0 \pm 179.6 \\ 14883.6 \pm 266.0 \\ 26342.0 \pm 363.1 \\ 11573.1 \pm 233.4 \\ 5095.1 \pm 265.7 \\ 1425.5 \pm 96.5 \\ 779.0 \pm 69.6 \\ 414.9 \pm 58.1 \\ 425.9 \pm 74.0 \\ \end{array}$	α (bb)	10^4 ω 10^3 10^2 ψ	$\pi^+\pi^-$		• • • • • • • • • • • • • • • • • • •	+ + +
$\begin{array}{c} \sqrt{s} \ ({\rm MeV}) \\ 3049.6 \pm 0.1 \\ 3058.7 \pm 0.1 \\ 3058.7 \pm 0.1 \\ 3080.0 \pm 0.1 \\ 3082.5 \pm 0.1 \\ 3091.8 \pm 0.1 \\ 3091.8 \pm 0.1 \\ 3095.4 \pm 0.1 \\ 3095.8 \pm 0.1 \\ 3095.8 \pm 0.1 \\ 3097.2 \pm 0.1 \\ 3099.0 \pm 0.1 \\ 3101.4 \pm 0.1 \\ 3105.6 \pm 0.1 \\ 3112.0 \pm 0.1 \\ 3119.9 \pm 0.1 \end{array}$	$\frac{N_{obs}^{\omega\pi^{+}\pi^{-}}}{36.8 \pm 7.3}$ 36.4 ± 8.1 498.9 ± 29.6 13.0 ± 3.6 42.4 ± 10.2 103.2 ± 12.2 476.9 ± 28.3 1700.2 ± 51.8 5072.2 ± 90.6 8606.0 ± 118.6 4031.1 ± 81.3 596.1 ± 31.1 340.7 ± 23.1 234.3 ± 20.9 94.6 ± 13.2 63.3 ± 11.0	$\begin{array}{c} \epsilon(\%) \\ \hline 6.3 \pm 0.1 \\ 6.2 \pm 0.1 \\ 6.0 \pm 0.1 \\ 6.8 \pm 0.1 \\ 7.6 \pm 0.1 \\ 7.6 \pm 0.1 \\ 17.8 \pm 0.2 \\ 17.4 \pm 0.2 \\ 16.6 \pm 0.2 \\ 16.0 \pm 0.1 \\ 14.9 \pm 0.1 \\ 13.2 \pm 0.1 \end{array}$	$\begin{array}{c} \mathcal{B}(\mathrm{sub})(\%) \\ 89.02 \pm 0.03 \\ 289.02 \pm 0.03 \\ 189.02 \pm 0.$	$\begin{array}{c} \mathcal{L}(\mathrm{pb}^{-1}) \\ 14.92 \pm 0.16 \\ 15.06 \pm 0.16 \\ 293.27 \pm 0.91 \\ 4.77 \pm 0.06 \\ 15.56 \pm 0.17 \\ 14.91 \pm 0.16 \\ 2.14 \pm 0.03 \\ 1.82 \pm 0.02 \\ 2.14 \pm 0.03 \\ 2.07 \pm 0.03 \\ 2.20 \pm 0.03 \\ 0.76 \pm 0.01 \\ 1.61 \pm 0.02 \\ 2.11 \pm 0.03 \\ 1.72 \pm 0.02 \\ 1.26 \pm 0.02 \end{array}$	$ \begin{array}{c} \sigma_{\rm obs}^{\omega\pi^+\pi^-} ({\rm pb}) \\ 44.1 \pm 8.8 \\ 42.6 \pm 9.7 \\ 56.1 \pm 3.3 \\ 45.1 \pm 12.5 \\ 40.4 \pm 9.7 \\ 87.6 \pm 10.4 \\ 1434.8 \pm 85.0 \\ 5899.0 \pm 179.6 \\ 14883.6 \pm 266.0 \\ 26342.0 \pm 363.1 \\ 11573.1 \pm 233.4 \\ 5095.1 \pm 265.7 \\ 1425.5 \pm 96.5 \\ 779.0 \pm 69.6 \\ 414.9 \pm 58.1 \\ 425.9 \pm 74.0 \\ \end{array} $	a (db)	10^4 ω 10^3 10^2 ψ	π ⁺ π ⁻ 3.06		• • • • • • • • • • • • • • • • • • •	+ + +

Observed cross sections for $\phi K^+K^-/\pi^+\pi^-$

Fitting formula of observed cross sections

Fitting the observed cross section with taking into account the ISR and the beam energy spread

$$\sigma_{\mathsf{obs}}(\sqrt{s}) = \int_{\sqrt{s}-5\delta}^{\sqrt{s}+5\delta} G(\sqrt{s}' - \sqrt{s}, \delta) d\sqrt{s}' \int_0^{1-\frac{s_{\mathsf{min}}}{s}} dx \cdot F_{ISR}(x, s) \cdot \sigma_{\mathsf{born}}(s(1-x))$$

 $\sigma_{born}(s)$ is the Born cross sections.

 $G(\sqrt{s}' - \sqrt{s}, \delta)$ is the normal distribution to describe energy spread.

 F_{ISR} is the ISR function by Kuraev and Fadin.

s is the square of energy, and \sqrt{s} is the center of mass system.

The details can be found in: Doc-1552 or Doc-1569

χ^2 construction function

The χ^2 is constructed by this formula:

$$\chi^2 = (\Delta \vec{X})^T (M^{-1}) (\Delta \vec{X})$$

The $\Delta \bar{X}_i = y_i^{obs} - y_i^{expect}(\bar{\theta})$, y_i^{obs} is the measured Born cross sections, $y_i^{expect}(\bar{\theta})$ is the expected value calculated from the cross-section lineshape for each CM energy and $\bar{\theta}$ is the fit parameters. The *M* is the covariance matrix, where the diagonal elements of *M* are the total uncertainties calculated with:

 $M_{ii} = M_{\text{stat},i}^{\sqrt{s}} + M_{\text{sys-cor},i} + M_{\text{sys-uncor},i},$ Where the $M_{\text{stat},i}^{\sqrt{s}}$ is the statistical uncertainties, $M_{\text{sys-cor},i}$ is the correlated system uncertainties and $M_{\text{sys-uncor},i}$ is the uncorrelated system uncertainties. The details can be found in: <u>Doc-1552</u> or <u>Doc-1569</u> 25

Results of fit to cross sections for $e^+e^- \rightarrow \omega K^+K^-$

26

Results of fit to cross sections for $e^+e^- \rightarrow \omega \pi^+\pi^-$

Solution	φ (°)	δ (MeV)	A	$\mathcal{B}(J/\psi \to \omega \pi^+ \pi^-) \ (10^{-3})$	χ^2/ndf
Positive	95.2 ± 9.5	0.90 ± 0.02	5.66 ± 0.46	8.06 ± 0.18	24.4/12
Negative	-95.1 ± 9.4	0.90 ± 0.02	5.73 ± 0.46	8.28 ± 0.18	24.4/12

Results of fit to cross sections for $e^+e^- \rightarrow \phi K^+K^-$

Solution	φ (°)	δ (MeV)	A	$\mathcal{B}(J/\psi \to \phi K^+ K^-) \ (10^{-4})$	χ^2/ndf
Positive	119.9 ± 15.2	0.89 ± 0.04	1.45 ± 0.39	10.66 ± 0.45	20.5/12
Negative	-118.4 ± 14.8	0.89 ± 0.04	1.52 ± 0.37	11.97 ± 0.48	20.5/12

Results of fit to cross sections for $e^+e^- \rightarrow \phi \pi^+\pi^-$

Solution	φ (°)	δ (MeV)	A	$\mathcal{B}(J/\psi \to \phi \pi^+ \pi^-) \ (10^{-4})$	χ^2/ndf
Positive	150.5 ± 22.0	0.87 ± 0.03	2.75 ± 0.35	9.66 ± 0.40	16.6/12
Negative	-149.1 ± 21.8	0.87 ± 0.03	2.79 ± 0.35	10.22 ± 0.38	16.6/12

Results comparison

Experiment	$\mathcal{B}(J/\psi \to \omega K^+ K^-) \ (10^{-3})$	$\mathcal{B}(J/\psi \to \omega \pi^+ \pi^+) \ (10^{-3})$
DM2	•••	7.0 ± 1.6
KEDR	$1.52 \pm 0.30 \pm 0.01$	$10.6\pm1.2\pm0.1$
PDG	1.52 ± 0.31	8.5 ± 1.0
This work	1.46 ± 0.05	8.06 ± 0.18
	1.63 ± 0.05	8.28 ± 0.18

Experiment	$\mathcal{B}(J/\psi \to \phi K^+ K^-) \ (10^{-4})$	$\mathcal{B}(J/\psi \to \phi \pi^+ \pi^-) \ (10^{-4})$
BABAR	$8.32 \pm 1.12 \pm 0.09$	$8.10 \pm 0.89 \pm 0.09$
BES		$10.9\pm0.2\pm1.3$
PDG	8.3 ± 1.1	9.4 ± 1.5
This mould	10.66 ± 0.45	9.66 ± 0.40
I IIIS WOLK	11.97 ± 0.48	10.22 ± 0.38

1: By analyzing the data taken around J/ψ , we measured the cross sections of $e^+e^- \rightarrow \omega/\phi \ K^+K^-/\pi^+\pi^-$

2: The phase angles between the strong and electromagnetic amplitudes in $e^+e^- \rightarrow \omega/\phi \ K^+K^-/\pi^+\pi^-$ are extracted from the fits to these cross sections.

3: The branching fractions of $J/\psi \rightarrow \omega/\phi \ K^+K^-/\pi^+\pi^-$ are also obtained. The branching fractions of $J/\psi \rightarrow \omega \ K^+K^-/\pi^+\pi^-$ and $J/\psi \rightarrow \phi \ \pi^+\pi^-$ are consistent with PDG within 1 σ . The branching fractions of $J/\psi \rightarrow \phi \ K^+K^-$ is consistent with PDG in 2 σ (postive) and 3 σ (negative). 1:TFPWA to obtain more reliable efficiencies

2:Systematic uncertainties

Thanks For Your Attention

Backup slides

$$\sigma_{\text{born}}(s) = |A_{\text{cont}} + A_{\gamma} + A_{3g}|^2$$
$$= \sigma_0(\mathcal{B}) \left| \frac{1}{s} + \frac{3/\alpha \sqrt{\Gamma_{ee} \Gamma_{ee}/s}}{(s - M^2) + iM\Gamma} \cdot \left(1 + Ae^{i\varphi}\right) \right|^2 \cdot q(s)$$

M and Γ are the mass and total width of charmonium

And $\sigma_0(B)$ is expressed by

$$\sigma_0(\mathcal{B}) = \frac{4\pi\alpha^2}{3s} \cdot \frac{\mathcal{B}(J/\psi \to K_S^0 K^+ \pi^-)}{\mathcal{B}(J/\psi \to ee)} \cdot \frac{M^4}{|1 + Ae^{i\varphi}|^2 \cdot q(M^2)}$$