

Julia Zemelka, Riccardo Aliberti

Mai 28, 2025

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

MOTIVATION

 Hadronic Vacuum Polarisation is the main source of uncertainty in the Standard Model prediction of the muon's anomalous magnetic moment

- The **dominant channel** in data-driven approaches is: $e^+e^- \rightarrow \pi^+\pi^-$
 - Ongoing 2π measurement using ISR:

- \rightarrow The 3π channel acts as a large (\approx 10%) background to this measurement
- → This background has not been measured yet in this energy region

DATA AND MC SIMULATIONS

Data Sets

- 2010 and 2011 data, total integrated luminosity of (2.932 ± 0.014) fb⁻¹
- 2021/2022 data, total integrated luminosty of (4.995 ± 0.019) fb⁻¹
- CM energy of $\sqrt{s} = 3.773 \text{ GeV}$

MC Simulations

Final State	Generator	σ [pb]	LSF
$J/\psi\gamma_{ISR}$ (RR1S)	KKMC 4.15	1.1	0.100
$\psi(2S)\gamma_{ISR}$ (RR2S)	KKMC 4.15	3.4	0.100
$ au^+ au^-$	KKMC 4.15	2.652	0.088
$D^0 ar{D}^0$	KKMC 4.15	3.66	0.101
D^+D^-	KKMC 4.15	2.88	0.102
ψ (3770) $ ightarrow$ nonDD	KKMC 4.15	0.5	0.098
$\gamma\gamma(+n\gamma)$	KKMC 4.15	24.7	0.332
qā	KKMC 4.15	15.463	0.091
$\pi^+\pi^-\pi^0\pi^0(+n\gamma)$	Phokhara 10.0	0.569	0.452
$\pi^+\pi^-$ n γ	Phokhara 10.0	0.569	0.213
$\mu^+\mu^-$ n γ	Phokhara 10.0	2.459	0.770
$e^+e^-n\gamma$ $(e^+e^-{ m NLO})$	BabaYaga@NLO	270.860	10.58
$\pi^+\pi^-\pi^0(+n\gamma)$	Phokhara 10.0	0.243	0.193
$\pi^+\pi^-\pi^0$ phase space	EvtGen		

$$\mathsf{LSF} = rac{\mathcal{L}_{\mathsf{exp}} \sigma_{\mathsf{MC}}}{\mathcal{N}_{\mathsf{gen}}}$$

$$\longrightarrow$$
 exclude $\pi^+\pi^-\pi^0$

$$\rightarrow$$
 exclude $\pi^+\pi^-, \pi^+\pi^-\pi^0, \pi^+\pi^-\pi^0\pi^0$

$$\pi^{+}\pi^{-}\pi^{0}$$
:
 $|M(\pi^{+}\pi^{-}\pi^{0}) - 3.773 \text{GeV}| < 0.005 \text{ GeV}$
 $\pi^{+}\pi^{-}\pi^{0}\gamma$:
 $|M(\pi^{+}\pi^{-}\pi^{0}) - 3.773 \text{GeV}| > 0.05 \text{ GeV}$

PRE-SELECTION

Process of Interest: $e^+e^- \to \pi^+\pi^-\pi^0 \to \pi^+\pi^-\gamma\gamma$

Criterion	Requirement	
Tracks		
Production Vertex	dr < 1.0cm	
	$\mathrm{d}z < 10.0\mathrm{cm}$	
Number of Tracks	2	
Track Charges	Oppositely Charged	
Polar Angle	$ \cos(heta) < 0.93$	
Vertex Fit	Convergence	
Photons		
Polar Angle	$ \cos(heta) < 0.8$ (Barrel)	
	$0.86 < \cos(heta) < 0.92$ (Endcaps)	
Photon Energy	$E_{\gamma} >$ 25 MeV (Barrel)	
	$E_{\gamma} >$ 50 MeV (Endcaps)	
Time Difference	0 ns $< t < 700$ ns	
Angle Shower-Track	$eta > 10^\circ$	
4C-Kinematic Fi	t	
Energy-Momentum Conservation,		
Convergence		
Photon pair with the lowest χ^2 value is	selected.	

Selection of π^0 Candidates

$$|M(\gamma \gamma) - 0.13428 \text{GeV}| < 3 \times 000625 \text{GeV}$$

Energy to Mometum Ratio $E_{\rm EMC}/p_{\rm MDC}$

 $0.05 < E_{\rm EMC}/p_{\rm MDC} < 0.8$,

for ≥ 1 track

Optimization of Selection Cuts:

$$\frac{S}{\sqrt{S+B}}$$

Opening Angle between the Charged Tracks in CM Frame

 α < 162 $^{\circ}$

Optimization of Selection Cuts:

$$\frac{S}{\sqrt{S+B}}$$

Energy Asymmetry $A = \frac{|E_{\gamma 1} - E_{\gamma 2}|}{E_{\gamma 1} + E_{\gamma 2}}$

Optimization of Selection Cuts:

$$\frac{S}{\sqrt{S+B}}$$

Quality of the Kinematic Fit Result

$$\chi^2$$
 < 50

BACKGROUND SUBSTRACTION

$\pi\pi$ Invariant Mass Spectra

ightarrow MC simulations indicate that background still remains in the selected data

BACKGROUND SUBSTRACTION

 $9 \times 000625 \text{GeV} < |M(\gamma \gamma) - 0.13428 \text{GeV}| < 12 \times 000625 \text{GeV}$

$\pi\pi$ Mass Spectra in Sideband Regions

BACKGROUND SUBSTRACTION

Sideband Substracted $\pi\pi$ Mass Spectra

PARTIAL WAVE ANALYSIS

	significance
$\omega(782)\rho(770)$	null hypothesis

PARTIAL WAVE ANALYSIS

	significance	
$\omega(782)\rho(770)$	null hypothesis	
$\omega(782)\rho(770)\rho(1450)$	22.2σ	

PARTIAL WAVE ANALYSIS

	significance	
$\omega(782)\rho(770)$	null hypothesis	
$\omega(782) \rho(770) \rho(1450)$	22.2σ	null hypothesis
$\omega(782)\rho(770)\rho(1450)\rho(1900)$	23.7σ	8.6σ

Resonance parameters

$$\omega(782)$$
, $\rho(770)$, $\rho(1450)$, $\rho(1900)$

neutral neutral and charged, amplitudes constrained in charged case masses and widths held fixed during fit determined with bounds

Both spin orientations of Ψ(3770) are considered

Signal Yield Extraction $N_{\pi^+\pi^-\pi^0}$

$$P_{0} \cdot e^{-0.5\left(\frac{x-P_{1}}{P_{2}}\right)^{2}} \cdot \left(1 + \left(\frac{x-P_{1}}{P_{2}}\right)^{2}\right)^{-P_{3}} + P_{4} \cdot x^{0.5} + P_{5} \cdot x + P_{6}$$
signal background

$$\rightarrow N_{\pi^{+}\pi^{-}\pi^{0}} = 19038 \pm 176$$

Efficiency

→ This calculation uses the MC events generated based on the PWA

$$\varepsilon = \frac{N_{acc}}{N_{gen}} = \frac{N_{acc}}{2000000}$$

$$P_{0} \cdot e^{-0.5\left(\frac{x-P_{1}}{P_{2}}\right)^{2}} \cdot \left(1 + \left(\frac{x-P_{1}}{P_{2}}\right)^{2}\right)^{-P_{3}} + P_{4} \cdot x^{P_{5}} \cdot e^{-P_{6}x}$$
signal background

$$\rightarrow \epsilon = 0.401 \pm 0.001$$

$$ightarrow \sigma(e^+e^- o \pi^+\pi^-\pi^0) = (5.99 \pm 0.06_{
m stat.}) \;
m pb$$

Background Substracted $\pi\pi$ Invariant Mass

Signal Yield Extraction $N_{\pi^{+}\pi^{-}\pi^{-}}$

$$\frac{-\frac{(x-P_2)^2}{2P_3^2} + P_1 \cdot e^{-\frac{(x-P_2)^2}{2P_4^2}}}{+ P_5 \cdot x^{0.5} + P_6 \cdot x + P_7}$$

$$\rightarrow N_{\pi^{+}\pi^{-}\pi^{0}} = 17929$$

$$ightarrow \sigma(e^+e^- o \pi^+\pi^-\pi^0) = (5.99 \pm 0.06_{
m stat.} \pm 0.55_{
m sys.}) \;
m pb$$

→ Including photon & tracking efficiency

Efficiency

$$\frac{2P_3}{2}$$
 $+ \frac{1}{2}$ $\frac{1}{2}$ $\frac{2P_4}{4}$ $+ \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

$$\rightarrow \epsilon = 0.404$$

BACK-UP

YY INVARIANT MASS

$\pi^-\pi^0$ INVARIANT MASS

