Search for axion with polarization measurement and beam dumps

Ningqiang Song

- with Haotian Li, Zuowei Liu, LiangLiang Su and Lei Wu
- Institute of Theoretical Physics, Chinese Academy of Sciences May 10, 2025

"Light" Axions from Polarization Measurements

with LiangLiang Su and Lei Wu

Axion-Photon Conversion

• CP conserved in QCD \Rightarrow axion

•
$$\mathscr{L}_{a\gamma\gamma} = \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Resonant conversion from axion to photon in plasma when $m_a \sim \omega_p$

Radio Observation Constraint

Observation of radio from Galactic Center

Hook et al 1804.03145

Polarization Signal

unpolarized light

 Photon only converts to axion in the direction parallel to magnetic field, inducing polarization signals

The Euler–Heisenberg Lagrangian

$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} \left(\partial_{\mu} a \partial^{\mu} a - m_a^2 a^2 \right) + \\ &+ \frac{\alpha^2}{90 m_e^4} \left[(F_{\mu\nu} F^{\mu\nu})^2 + \frac{7}{4} \left(F_{\mu\nu} \tilde{F}^{\mu\nu} \right) \right] \end{aligned}$$

• The Euler-Heisenberg Lagrangian is significant when $B \gtrsim B_{\rm OED} = m_e^2/e \simeq 4.41 \times 10^{13} \, {\rm G}$

The Equation of Motion

$$\begin{bmatrix} i\partial_z + \begin{pmatrix} \Delta_a & \Delta_M & 0\\ \Delta_M & \Delta_{\parallel} + \Delta_{\rm pl} & 0\\ 0 & 0 & \Delta_{\perp} \end{pmatrix} \end{bmatrix}$$
vacuum polarization

$$\begin{split} \Delta_{\mathrm{M}} &= \frac{1}{2} g_{a\gamma} B \sin \Theta, \ \Delta_{a} = -\frac{m_{a}^{2}}{2\omega}, \ \Delta_{\mathrm{pl}} = -\frac{\omega_{\mathrm{pl}}^{2}}{2\omega}, \qquad \xi = (\alpha/45\pi)(B/B_{\mathrm{QED}})^{2} \\ \Delta_{\parallel} &= \frac{7}{2} \omega \xi \sin^{2} \Theta, \ \Delta_{\perp} = \frac{4}{2} \omega \xi \sin^{2} \Theta, \qquad \qquad \omega_{\mathrm{pl}} = \sqrt{4\pi \alpha n_{e}/m_{e}} \end{split}$$

-photon mixing

plasma effect

The Equation of Motion

.

vacuum polarization

Effective axion-photon mixing

$$\tan 2\beta_m = \frac{2\Delta_{\rm M}}{\Delta_{\parallel} + \Delta_{\rm pl} - \Delta_a}$$

plasma effect

Resonant conversion condition

$$\Delta_{\parallel} + \Delta_{\rm pl} - \Delta_a = 0$$

Resonant Conversion Probability

$$\begin{bmatrix} i\partial_z + \begin{pmatrix} \Delta_a & \Delta_{\rm M} & 0\\ \Delta_{\rm M} & \Delta_{\parallel} + \Delta_{\rm pl} & 0\\ 0 & 0 & \Delta_{\perp} \end{pmatrix} \end{bmatrix}$$

Effective axion-photon mixing

Resonant conversion condition

Resonant conversion probability

$$H = n_e/|n'_e|$$

Resonant Conversion Conditions

Resonant conversion condition

Resonant conversion probability

$$egin{aligned} &\Delta_{\parallel}+\Delta_{
m pl}-\Delta_{a}=0\ &P_{\gamma
ightarrow a}=1-P_{
m jump} &P_{
m jump}=e^{-\pi\gamma_{
m res}}\ &\oplus\ &lpha=\Delta_{
m pl}\ &\propto -\Delta_{
m pl}\ &\propto g_{a\gamma}^{2}\frac{H}{\omega}pprox g_{a\gamma}^{2}rac{r_{
m NS}+z_{
m res}}{3\omega},\ &|\Delta_{a}|\ &g_{a\gamma}^{2}B_{
m res}^{2}\omega H &2\ &\mathrm{P}=-H \end{aligned}$$

$$\propto rac{g_{a\gamma} D_{
m res} \omega m}{m_a^2} pprox g_{a\gamma}^2 B_{
m res} \omega H$$

Resonant Conversion Conditions

11

Polarization from photon-axion conversion

inducing polarization signals

$$egin{aligned} &-P_{\gamma
ightarrow a}^{ ext{res}}) I_{\parallel}^{ ext{nonres}}(z) \ &-P_{\gamma
ightarrow a}^{ ext{res}}) I_{\parallel}^{ ext{nonres}}(z) \ &2| ext{Re}(A_{\parallel,2})| \ &+2| ext{Re}(A_{\parallel,2})|), \end{aligned}$$

$$z''\Delta_{\mathrm{M}}(z'')e^{-i\int_{z''}^{z'}\mathrm{d}z'''\Delta_{\mathrm{tr}}(z''')}$$

Photon only converts to axion in the direction parallel to magnetic field,

Optical Polarization Signal

limits

Optical polarization signals from neutron stars could place the most stringent NS, Liangliang Su, Lei Wu, PRD/2402.15144

"Heavy" Axions at Beam Dump

with Haotian Li and Zuowei Liu

The NA64µ Experiment

2022 pilot run MS1 $ST_{5,4}$ BMS₂ QPLs QPLs QPLs $MM_{3,4}$ \mathbf{S}_0 $\mu_{\rm in}$ $BMS_{3,6}$ BMS_4 $BMS_{1,5}$ $MM_{1,2}$ V_1 $p_{\rm in} \simeq 160 \ {\rm GeV/c}$

CERN Super Proton Synchrotron (SPS)

160 GeV muon beam 1.98×10^{10} muon on target

NA64 collaboration, PRL/2401.01708

 Region B: hard scattering and large energy deposition in the target

10²

10

- Region C: soft scattering and large energy deposition in the last calorimeter
- Region D: Hard scattering in the target with hadrons left out

Axion-Photon Interaction

 $\mathcal{L}_{\rm ALP} \supset \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_a^2 a^2 - \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

Axion production through photon-photon fusion

Cross Section

$$N_{\rm signal} = N_{\rm MOT} n_{\rm Pb} L_{\rm tar} \int d\sigma (\mu N \to \mu N X) \epsilon P_{\rm inv}$$

Weizsacker-William $\frac{d\sigma}{dx} = \frac{\alpha}{8\pi^2}\sqrt{E}$ approxmation

effective photon flux $\chi = \int_{t_{\min}}^{t_{\max}} dt^{t}$

Nucleus elastic $F(t) \simeq Z(\frac{b^2}{1+t})$ form factor

 $\mathcal{A}_{a-\gamma} = -e^2 g_{a\gamma\gamma}^2 \tilde{u}^2 rac{\tilde{u}x(2-x)}{2}$

$$\overline{E_a^2 - m_a^2} E_\mu (1 - x) \int \mathrm{d} \cos \theta \frac{\chi}{\tilde{u}^2} \mathcal{A}$$

$$\frac{t-t_{\min}}{t^2}F^2(t)$$

$$\frac{^{2}t}{^{2}b^{2}t})(\frac{1}{1+t/d})$$

$$\frac{x) + 2m_{\mu}^2 x^2 + m_a^2 (1-x)(2-x)}{(m_a^2 (1-x) + x\tilde{u})^2}$$

Decay Probability

The target ECAL consists of 150 layers of Pb

$$P_{\text{invisible}} = \left(e^{-L_{\text{ECAL}}/l_a} - e^{-L_V/l_a} \right) + \left(e^{-(L_V + L_{\text{VHCAL}})/l_a} - e^{-L_H/l_a} \right) + e^{-(L_H + 2L_{\text{HCAL}})/l_a}$$

 $\bar{P}_{inv} =$

production in each ECAL layer

$$\frac{1}{N}\sum_{i=0}^{N}P_i$$

Average over the decay probability from axion

Visible vs Invisible

Constraints on Axion-Photon Interaction

Axion-Muon Interaction

 $\mathcal{L} \supset \frac{1}{2} (\partial_{\sigma} a)^2 - \frac{1}{2} m_a^2 a^2 + g_{a\mu\mu} (\partial_{\sigma} a) \bar{\mu} \gamma^{\sigma} \gamma_5 \mu$

Axion production through muon bremsstrahlung

Cross Section

$$N_{\rm signal} = N_{\rm MOT} n_{\rm Pb} L_{\rm tar} \int d\sigma (\mu N \to \mu N X) \epsilon P_{\rm inv}$$

Weizsacker-William $\frac{d\sigma}{dx} = \frac{\alpha}{8\pi^2}\sqrt{E}$ approxmation

effective photon flux $\chi = \int_{t_{\min}}^{t_{\max}} dt^{\frac{1}{2}}$

Nucleus elastic *J* form factor

 $F(t) \simeq Z(\frac{b^2}{1+t})$

 $\mathcal{A}_{a-\mu} = e^2 g_{a\mu\mu}^2 4m_{\mu}^2 \left[\frac{x^2}{1-x} + \frac{1}{1-x} \right]$

$$\overline{E_a^2 - m_a^2} E_\mu (1 - x) \int \mathrm{d} \cos \theta \frac{\chi}{\tilde{u}^2} \mathcal{A}$$

$$\frac{t-t_{\min}}{t^2}F^2(t)$$

$$\frac{b^2t}{b^2t})(\frac{1}{1+t/d})$$

$$2m_a^2 \frac{\tilde{u}x + m_a^2(1-x) + m_\mu^2 x^2}{\tilde{u}^2} \bigg]$$

Constraints on Axion-Muon Interaction

- search for light axion
- Search for New Physics at NA64 μ
 - New gauge boson
 - Axion-photon interaction
 - Axion-muon interaction

Polarization measurement from neutron stars could be a powerful tool to

X-ray Polarization Signal

No resonant conversion is expected in the X-ray energy range as vacuum polarization is too large

NS, Liangliang Su, Lei Wu, PRD/2402.15144

Dependence on Emission Height

NS, Liangliang Su, Lei Wu, PRD/2402.15144

New Physics Search at NA64µ

Search for missing energy

NA64 collaboration, PRL/2401.01708

New Physics Search at NA64µ

 $Z' \rightarrow \chi \bar{\chi}$

Search for missing energy

NA64 collaboration, PRL/2401.01708

Muonphilic Dark Sector

 $L \supset -\frac{1}{\Lambda} Z_{\alpha\beta}' Z^{\prime\alpha\beta} + g_{Z'} (\bar{\mu}\gamma_{\alpha}\mu + \bar{\nu}_{\mu L}\gamma_{\alpha}\nu_{\mu L} - \bar{\tau}\gamma_{\alpha}\tau - \bar{\nu}_{\tau L}\gamma_{\alpha}\nu_{\tau L}) Z^{\prime\alpha} + \bar{\chi}(\mathrm{i}\partial \!\!\!/ + g_{\chi}Z' - m_{\chi})\chi$

Massless $L_{\mu} - L_{\tau}$ mediator with a dark sector

Cross Section

$$N_{
m signal} = N_{
m MOT} n_{
m Pb} L_{
m tar} \int d\sigma (\mu N o \mu N X) \epsilon P_{
m inv}$$

$$d\sigma(\mu N \to \mu N \chi \bar{\chi}) = d\sigma(\mu N \to \mu N Z') \\ \times \frac{g_{\chi}^2}{12\pi^2} \frac{dQ^2}{Q^2} \sqrt{1 - \frac{4m_{\chi}^2}{Q^2}} (1 + \frac{2m_{\chi}^2}{Q^2}) \\ \mathcal{A}_{Z'-\chi} = e^2 g_{Z'}^2 \left[2\frac{x^2 - 2x + 2}{1 - x} + 4\frac{Q^2 + 2m_{\mu}^2}{\tilde{u}} \right]$$

$$\begin{aligned} (\mu N \to \mu N \chi \bar{\chi}) = &d\sigma(\mu N \to \mu N Z') \\ &\times \frac{g_{\chi}^2}{12\pi^2} \frac{dQ^2}{Q^2} \sqrt{1 - \frac{4m_{\chi}^2}{Q^2}} (1 + \frac{2m_{\chi}^2}{Q^2}) \\ \mathcal{A}_{Z'-\chi} = &e^2 g_{Z'}^2 \Big[2\frac{x^2 - 2x + 2}{1 - x} + 4\frac{Q^2 + 2m_{\mu}^2}{\tilde{u}} \\ &+ 4\frac{2m_{\mu}^4 x^2 + Q^4(1 - x) + m_{\mu}^2 Q^2(x^2 - 2x + 2)}{\tilde{u}^2} \Big] \end{aligned}$$

Muophilic Millicharge?

 $L \supset -\frac{1}{4} Z_{\alpha\beta}' Z^{\prime\alpha\beta} + g_{Z'} (\bar{\mu}\gamma_{\alpha}\mu + \bar{\nu}_{\mu L}\gamma_{\alpha}\nu_{\mu L} - \bar{\tau}\gamma_{\alpha}\tau - \bar{\nu}_{\tau L}\gamma_{\alpha}\nu_{\tau L}) Z^{\prime\alpha} + \bar{\chi}(\mathrm{i}\partial \!\!\!/ + g_{\chi}Z' - m_{\chi})\chi$

 $\mathcal{L}_{\mathrm{kin}}$:

$$\Pi(q^2) = \frac{eg_{Z'}}{2\pi^2} \int_0^1 \mathrm{d}x(1-x) \ln \frac{m_\tau^2 - x(1-x)q^2}{m_\mu^2 - x(1-x)q^2}$$

$$\epsilon_{\text{eff}} = \frac{g_{Z'}g_{\chi}}{2\pi^2} \int_0^1 \mathrm{d}x(1-x)\ln\frac{m_{\tau}^2 - x(1-x)q^2}{m_{\mu}^2 - x(1-x)q^2}.$$

$$\supset rac{\Pi(q^2)}{2} Z'_{\mu
u} F^{\mu
u}$$

Constraints on Muonphilic Dark Sector

Croon et al, JHEP/2006.13942

